text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] α : Type inst✝ : Fintype α B✝ : Stonean X : α → Stonean B : Stonean e : (a : α) → X a ⟶ B ⊢ Continuous fun x => match x with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] apply continuous_sigma [GOAL] case hf α : Type inst✝ : Fintype α B✝ : Stonean X : α → Stonean B : Stonean e : (a : α) → X a ⟶ B ⊢ ∀ (i : α), Continuous fun a => match { fst := i, snd := a } with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] intro a [GOAL] case hf α : Type inst✝ : Fintype α B✝ : Stonean X : α → Stonean B : Stonean e : (a : α) → X a ⟶ B a : α ⊢ Continuous fun a_1 => match { fst := a, snd := a_1 } with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] exact (e a).continuous [GOAL] α : Type inst✝ : Fintype α B✝ : Stonean X : α → Stonean B : Stonean f g : finiteCoproduct X ⟶ B h : ∀ (a : α), ι X a ≫ f = ι X a ≫ g ⊢ f = g [PROOFSTEP] ext ⟨a, x⟩ [GOAL] case w.mk α : Type inst✝ : Fintype α B✝ : Stonean X : α → Stonean B : Stonean f g : finiteCoproduct X ⟶ B h : ∀ (a : α), ι X a ≫ f = ι X a ≫ g a : α x : CoeSort.coe (X a) ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] specialize h a [GOAL] case w.mk α : Type inst✝ : Fintype α B✝ : Stonean X : α → Stonean B : Stonean f g : finiteCoproduct X ⟶ B a : α x : CoeSort.coe (X a) h : ι X a ≫ f = ι X a ≫ g ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] apply_fun (fun q => q x) at h [GOAL] case w.mk α : Type inst✝ : Fintype α B✝ : Stonean X : α → Stonean B : Stonean f g : finiteCoproduct X ⟶ B a : α x : CoeSort.coe (X a) h : ↑(ι X a ≫ f) x = ↑(ι X a ≫ g) x ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] exact h [GOAL] α : Type inst✝ : Fintype α B : Stonean X : α → Stonean F : Discrete α ⥤ Stonean s : Cocone F m : (cocone F).pt ⟶ s.pt hm : ∀ (j : Discrete α), NatTrans.app (cocone F).ι j ≫ m = NatTrans.app s.ι j a : Discrete α ⊢ ι (fun a => F.obj a) a ≫ m = ι (fun a => F.obj a) a ≫ (fun s => desc (fun a => F.obj a) fun a => NatTrans.app s.ι a) s [PROOFSTEP] specialize hm a [GOAL] α : Type inst✝ : Fintype α B : Stonean X : α → Stonean F : Discrete α ⥤ Stonean s : Cocone F m : (cocone F).pt ⟶ s.pt a : Discrete α hm : NatTrans.app (cocone F).ι a ≫ m = NatTrans.app s.ι a ⊢ ι (fun a => F.obj a) a ≫ m = ι (fun a => F.obj a) a ≫ (fun s => desc (fun a => F.obj a) fun a => NatTrans.app s.ι a) s [PROOFSTEP] ext t [GOAL] case w α : Type inst✝ : Fintype α B : Stonean X : α → Stonean F : Discrete α ⥤ Stonean s : Cocone F m : (cocone F).pt ⟶ s.pt a : Discrete α hm : NatTrans.app (cocone F).ι a ≫ m = NatTrans.app s.ι a t : (forget Stonean).obj (F.obj a) ⊢ ↑(ι (fun a => F.obj a) a ≫ m) t = ↑(ι (fun a => F.obj a) a ≫ (fun s => desc (fun a => F.obj a) fun a => NatTrans.app s.ι a) s) t [PROOFSTEP] apply_fun (fun q => q t) at hm [GOAL] case w α : Type inst✝ : Fintype α B : Stonean X : α → Stonean F : Discrete α ⥤ Stonean s : Cocone F m : (cocone F).pt ⟶ s.pt a : Discrete α t : (forget Stonean).obj (F.obj a) hm : ↑(NatTrans.app (cocone F).ι a ≫ m) t = ↑(NatTrans.app s.ι a) t ⊢ ↑(ι (fun a => F.obj a) a ≫ m) t = ↑(ι (fun a => F.obj a) a ≫ (fun s => desc (fun a => F.obj a) fun a => NatTrans.app s.ι a) s) t [PROOFSTEP] exact hm
{"mathlib_filename": "Mathlib.Topology.Category.Stonean.Limits", "llama_tokens": 1622}
[GOAL] R : TopCommRingCat ⊢ Continuous ↑(RingHom.id R.α) [PROOFSTEP] rw [RingHom.id] [GOAL] R : TopCommRingCat ⊢ Continuous ↑{ toMonoidHom := { toOneHom := { toFun := id, map_one' := (_ : id 1 = id 1) }, map_mul' := (_ : ∀ (x y : R.α), OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y) = OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y)) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := id, map_one' := (_ : id 1 = id 1) }, map_mul' := (_ : ∀ (x y : R.α), OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y) = OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y)) }) 0 = OneHom.toFun (↑{ toOneHom := { toFun := id, map_one' := (_ : id 1 = id 1) }, map_mul' := (_ : ∀ (x y : R.α), OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y) = OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y)) }) 0), map_add' := (_ : ∀ (x y : R.α), OneHom.toFun (↑{ toOneHom := { toFun := id, map_one' := (_ : id 1 = id 1) }, map_mul' := (_ : ∀ (x y : R.α), OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y) = OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y)) }) (x + y) = OneHom.toFun (↑{ toOneHom := { toFun := id, map_one' := (_ : id 1 = id 1) }, map_mul' := (_ : ∀ (x y : R.α), OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y) = OneHom.toFun { toFun := id, map_one' := (_ : id 1 = id 1) } (x * y)) }) (x + y)) } [PROOFSTEP] continuity [GOAL] X✝ Y✝ Z✝ : TopCommRingCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ Continuous ↑(RingHom.comp ↑g ↑f) [PROOFSTEP] cases f [GOAL] case mk X✝ Y✝ Z✝ : TopCommRingCat g : Y✝ ⟶ Z✝ val✝ : X✝.α →+* Y✝.α property✝ : Continuous ↑val✝ ⊢ Continuous ↑(RingHom.comp ↑g ↑{ val := val✝, property := property✝ }) [PROOFSTEP] cases g [GOAL] case mk.mk X✝ Y✝ Z✝ : TopCommRingCat val✝¹ : X✝.α →+* Y✝.α property✝¹ : Continuous ↑val✝¹ val✝ : Y✝.α →+* Z✝.α property✝ : Continuous ↑val✝ ⊢ Continuous ↑(RingHom.comp ↑{ val := val✝, property := property✝ } ↑{ val := val✝¹, property := property✝¹ }) [PROOFSTEP] dsimp [GOAL] case mk.mk X✝ Y✝ Z✝ : TopCommRingCat val✝¹ : X✝.α →+* Y✝.α property✝¹ : Continuous ↑val✝¹ val✝ : Y✝.α →+* Z✝.α property✝ : Continuous ↑val✝ ⊢ Continuous (↑val✝ ∘ ↑val✝¹) [PROOFSTEP] apply Continuous.comp [GOAL] case mk.mk.hg X✝ Y✝ Z✝ : TopCommRingCat val✝¹ : X✝.α →+* Y✝.α property✝¹ : Continuous ↑val✝¹ val✝ : Y✝.α →+* Z✝.α property✝ : Continuous ↑val✝ ⊢ Continuous ↑val✝ [PROOFSTEP] assumption [GOAL] case mk.mk.hf X✝ Y✝ Z✝ : TopCommRingCat val✝¹ : X✝.α →+* Y✝.α property✝¹ : Continuous ↑val✝¹ val✝ : Y✝.α →+* Z✝.α property✝ : Continuous ↑val✝ ⊢ Continuous ↑val✝¹ [PROOFSTEP] assumption [GOAL] X Y : TopCommRingCat f : X ⟶ Y x✝ : IsIso ((forget₂ TopCommRingCat TopCat).map f) ⊢ IsIso f [PROOFSTEP] let i_Top := asIso ((forget₂ TopCommRingCat TopCat).map f) -- and a `RingEquiv`. [GOAL] X Y : TopCommRingCat f : X ⟶ Y x✝ : IsIso ((forget₂ TopCommRingCat TopCat).map f) i_Top : (forget₂ TopCommRingCat TopCat).obj X ≅ (forget₂ TopCommRingCat TopCat).obj Y := asIso ((forget₂ TopCommRingCat TopCat).map f) ⊢ IsIso f [PROOFSTEP] let e_Ring : X ≃+* Y := { f.1, ((forget TopCat).mapIso i_Top).toEquiv with } -- Putting these together we obtain the isomorphism we're after: [GOAL] X Y : TopCommRingCat f : X ⟶ Y x✝ : IsIso ((forget₂ TopCommRingCat TopCat).map f) i_Top : (forget₂ TopCommRingCat TopCat).obj X ≅ (forget₂ TopCommRingCat TopCat).obj Y := asIso ((forget₂ TopCommRingCat TopCat).map f) e_Ring : X.α ≃+* Y.α := let src := ↑f; let src_1 := ((forget TopCat).mapIso i_Top).toEquiv; { toEquiv := { toFun := src.toFun, invFun := src_1.invFun, left_inv := (_ : Function.LeftInverse src_1.invFun src_1.toFun), right_inv := (_ : Function.RightInverse src_1.invFun src_1.toFun) }, map_mul' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x * y) = OneHom.toFun (↑↑src) x * OneHom.toFun (↑↑src) y), map_add' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) } ⊢ IsIso f [PROOFSTEP] exact ⟨⟨⟨e_Ring.symm, i_Top.inv.2⟩, ⟨by ext x exact e_Ring.left_inv x, by ext x exact e_Ring.right_inv x⟩⟩⟩ [GOAL] X Y : TopCommRingCat f : X ⟶ Y x✝ : IsIso ((forget₂ TopCommRingCat TopCat).map f) i_Top : (forget₂ TopCommRingCat TopCat).obj X ≅ (forget₂ TopCommRingCat TopCat).obj Y := asIso ((forget₂ TopCommRingCat TopCat).map f) e_Ring : X.α ≃+* Y.α := let src := ↑f; let src_1 := ((forget TopCat).mapIso i_Top).toEquiv; { toEquiv := { toFun := src.toFun, invFun := src_1.invFun, left_inv := (_ : Function.LeftInverse src_1.invFun src_1.toFun), right_inv := (_ : Function.RightInverse src_1.invFun src_1.toFun) }, map_mul' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x * y) = OneHom.toFun (↑↑src) x * OneHom.toFun (↑↑src) y), map_add' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) } ⊢ f ≫ { val := ↑(RingEquiv.symm e_Ring), property := (_ : Continuous i_Top.inv.toFun) } = 𝟙 X [PROOFSTEP] ext x [GOAL] case w X Y : TopCommRingCat f : X ⟶ Y x✝ : IsIso ((forget₂ TopCommRingCat TopCat).map f) i_Top : (forget₂ TopCommRingCat TopCat).obj X ≅ (forget₂ TopCommRingCat TopCat).obj Y := asIso ((forget₂ TopCommRingCat TopCat).map f) e_Ring : X.α ≃+* Y.α := let src := ↑f; let src_1 := ((forget TopCat).mapIso i_Top).toEquiv; { toEquiv := { toFun := src.toFun, invFun := src_1.invFun, left_inv := (_ : Function.LeftInverse src_1.invFun src_1.toFun), right_inv := (_ : Function.RightInverse src_1.invFun src_1.toFun) }, map_mul' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x * y) = OneHom.toFun (↑↑src) x * OneHom.toFun (↑↑src) y), map_add' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) } x : (forget TopCommRingCat).obj X ⊢ ↑(f ≫ { val := ↑(RingEquiv.symm e_Ring), property := (_ : Continuous i_Top.inv.toFun) }) x = ↑(𝟙 X) x [PROOFSTEP] exact e_Ring.left_inv x [GOAL] X Y : TopCommRingCat f : X ⟶ Y x✝ : IsIso ((forget₂ TopCommRingCat TopCat).map f) i_Top : (forget₂ TopCommRingCat TopCat).obj X ≅ (forget₂ TopCommRingCat TopCat).obj Y := asIso ((forget₂ TopCommRingCat TopCat).map f) e_Ring : X.α ≃+* Y.α := let src := ↑f; let src_1 := ((forget TopCat).mapIso i_Top).toEquiv; { toEquiv := { toFun := src.toFun, invFun := src_1.invFun, left_inv := (_ : Function.LeftInverse src_1.invFun src_1.toFun), right_inv := (_ : Function.RightInverse src_1.invFun src_1.toFun) }, map_mul' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x * y) = OneHom.toFun (↑↑src) x * OneHom.toFun (↑↑src) y), map_add' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) } ⊢ { val := ↑(RingEquiv.symm e_Ring), property := (_ : Continuous i_Top.inv.toFun) } ≫ f = 𝟙 Y [PROOFSTEP] ext x [GOAL] case w X Y : TopCommRingCat f : X ⟶ Y x✝ : IsIso ((forget₂ TopCommRingCat TopCat).map f) i_Top : (forget₂ TopCommRingCat TopCat).obj X ≅ (forget₂ TopCommRingCat TopCat).obj Y := asIso ((forget₂ TopCommRingCat TopCat).map f) e_Ring : X.α ≃+* Y.α := let src := ↑f; let src_1 := ((forget TopCat).mapIso i_Top).toEquiv; { toEquiv := { toFun := src.toFun, invFun := src_1.invFun, left_inv := (_ : Function.LeftInverse src_1.invFun src_1.toFun), right_inv := (_ : Function.RightInverse src_1.invFun src_1.toFun) }, map_mul' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x * y) = OneHom.toFun (↑↑src) x * OneHom.toFun (↑↑src) y), map_add' := (_ : ∀ (x y : X.α), OneHom.toFun (↑↑src) (x + y) = OneHom.toFun (↑↑src) x + OneHom.toFun (↑↑src) y) } x : (forget TopCommRingCat).obj Y ⊢ ↑({ val := ↑(RingEquiv.symm e_Ring), property := (_ : Continuous i_Top.inv.toFun) } ≫ f) x = ↑(𝟙 Y) x [PROOFSTEP] exact e_Ring.right_inv x
{"mathlib_filename": "Mathlib.Topology.Category.TopCommRingCat", "llama_tokens": 3976}
[GOAL] R : Type u_1 inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R p : R[X] ⊢ Continuous fun x => eval x p [PROOFSTEP] continuity [GOAL] R : Type u_1 inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R p : R[X] X : Set R ⊢ Continuous ↑(toContinuousMap p) [PROOFSTEP] continuity [GOAL] R : Type u_1 inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R p : R[X] X : Set R ⊢ Continuous fun x => ↑x [PROOFSTEP] continuity [GOAL] R : Type u_1 α : Type u_2 inst✝³ : TopologicalSpace α inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R g : R[X] f : C(α, R) x : α ⊢ ↑(↑(aeval f) g) x = eval (↑f x) g [PROOFSTEP] refine' Polynomial.induction_on' g _ _ [GOAL] case refine'_1 R : Type u_1 α : Type u_2 inst✝³ : TopologicalSpace α inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R g : R[X] f : C(α, R) x : α ⊢ ∀ (p q : R[X]), ↑(↑(aeval f) p) x = eval (↑f x) p → ↑(↑(aeval f) q) x = eval (↑f x) q → ↑(↑(aeval f) (p + q)) x = eval (↑f x) (p + q) [PROOFSTEP] intro p q hp hq [GOAL] case refine'_1 R : Type u_1 α : Type u_2 inst✝³ : TopologicalSpace α inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R g : R[X] f : C(α, R) x : α p q : R[X] hp : ↑(↑(aeval f) p) x = eval (↑f x) p hq : ↑(↑(aeval f) q) x = eval (↑f x) q ⊢ ↑(↑(aeval f) (p + q)) x = eval (↑f x) (p + q) [PROOFSTEP] simp [hp, hq] [GOAL] case refine'_2 R : Type u_1 α : Type u_2 inst✝³ : TopologicalSpace α inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R g : R[X] f : C(α, R) x : α ⊢ ∀ (n : ℕ) (a : R), ↑(↑(aeval f) (↑(monomial n) a)) x = eval (↑f x) (↑(monomial n) a) [PROOFSTEP] intro n a [GOAL] case refine'_2 R : Type u_1 α : Type u_2 inst✝³ : TopologicalSpace α inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R g : R[X] f : C(α, R) x : α n : ℕ a : R ⊢ ↑(↑(aeval f) (↑(monomial n) a)) x = eval (↑f x) (↑(monomial n) a) [PROOFSTEP] simp [Pi.pow_apply] [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R ⊢ (fun p => toContinuousMap p) 1 = 1 [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a✝ : R ⊢ ↑((fun p => toContinuousMap p) 1) a✝ = ↑1 a✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R x✝¹ x✝ : R[X] ⊢ OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x✝¹ * x✝) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x✝¹ * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x✝ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R x✝¹ x✝ : R[X] a✝ : R ⊢ ↑(OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x✝¹ * x✝)) a✝ = ↑(OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x✝¹ * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x✝) a✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) 0 = 0 [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a✝ : R ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) 0) a✝ = ↑0 a✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R x✝¹ x✝ : R[X] ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) (x✝¹ + x✝) = OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) x✝¹ + OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) x✝ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R x✝¹ x✝ : R[X] a✝ : R ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) (x✝¹ + x✝)) a✝ = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) x✝¹ + OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) x✝) a✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R x✝ : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) 0 = 0), map_add' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_2) }) (x + x_1) = OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_2) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_2) }) x_1) }) (↑(algebraMap R R[X]) x✝) = ↑(algebraMap R C(R, R)) x✝ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R x✝ a✝ : R ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_1) }) 0 = 0), map_add' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_2) }) (x + x_1) = OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_2) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMap p, map_one' := (_ : (fun p => toContinuousMap p) 1 = 1) } x_2) }) x_1) }) (↑(algebraMap R R[X]) x✝)) a✝ = ↑(↑(algebraMap R C(R, R)) x✝) a✝ [PROOFSTEP] simp [Algebra.algebraMap_eq_smul_one] [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R ⊢ (fun p => toContinuousMapOn p X) 1 = 1 [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R a✝ : ↑X ⊢ ↑((fun p => toContinuousMapOn p X) 1) a✝ = ↑1 a✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x✝¹ x✝ : R[X] ⊢ OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x✝¹ * x✝) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x✝¹ * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x✝ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x✝¹ x✝ : R[X] a✝ : ↑X ⊢ ↑(OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x✝¹ * x✝)) a✝ = ↑(OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x✝¹ * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x✝) a✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) 0 = 0 [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R a✝ : ↑X ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) 0) a✝ = ↑0 a✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x✝¹ x✝ : R[X] ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) (x✝¹ + x✝) = OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) x✝¹ + OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) x✝ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x✝¹ x✝ : R[X] a✝ : ↑X ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) (x✝¹ + x✝)) a✝ = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) x✝¹ + OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) x✝) a✝ [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x✝ : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) 0 = 0), map_add' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_2) }) (x + x_1) = OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_2) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_2) }) x_1) }) (↑(algebraMap R R[X]) x✝) = ↑(algebraMap R C(↑X, R)) x✝ [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x✝ : R a✝ : ↑X ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_1) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_1) }) 0 = 0), map_add' := (_ : ∀ (x x_1 : R[X]), OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_2) }) (x + x_1) = OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_2) }) x + OneHom.toFun (↑{ toOneHom := { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) }, map_mul' := (_ : ∀ (x x_2 : R[X]), OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } (x * x_2) = OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x * OneHom.toFun { toFun := fun p => toContinuousMapOn p X, map_one' := (_ : (fun p => toContinuousMapOn p X) 1 = 1) } x_2) }) x_1) }) (↑(algebraMap R R[X]) x✝)) a✝ = ↑(↑(algebraMap R C(↑X, R)) x✝) a✝ [PROOFSTEP] simp [Algebra.algebraMap_eq_smul_one] [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R ⊢ ↑(polynomialFunctions X) = Set.range ↑(toContinuousMapOnAlgHom X) [PROOFSTEP] ext [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x✝ : C(↑X, R) ⊢ x✝ ∈ ↑(polynomialFunctions X) ↔ x✝ ∈ Set.range ↑(toContinuousMapOnAlgHom X) [PROOFSTEP] simp [polynomialFunctions] [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x y : ↑X h : x ≠ y ⊢ ∃ f, f ∈ (fun f => ↑f) '' ↑(polynomialFunctions X) ∧ f x ≠ f y [PROOFSTEP] refine' ⟨_, ⟨⟨_, ⟨⟨Polynomial.X, ⟨Algebra.mem_top, rfl⟩⟩, rfl⟩⟩, _⟩⟩ [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x y : ↑X h : x ≠ y ⊢ (fun f => ↑f) (↑↑(toContinuousMapOnAlgHom X) Polynomial.X) x ≠ (fun f => ↑f) (↑↑(toContinuousMapOnAlgHom X) Polynomial.X) y [PROOFSTEP] dsimp [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x y : ↑X h : x ≠ y ⊢ ¬eval (↑x) Polynomial.X = eval (↑y) Polynomial.X [PROOFSTEP] simp only [Polynomial.eval_X] [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R X : Set R x y : ↑X h : x ≠ y ⊢ ¬↑x = ↑y [PROOFSTEP] exact fun h' => h (Subtype.ext h') [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b ⊢ Subalgebra.comap (compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (polynomialFunctions I) = polynomialFunctions (Set.Icc a b) [PROOFSTEP] ext f [GOAL] case h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) ⊢ f ∈ Subalgebra.comap (compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (polynomialFunctions I) ↔ f ∈ polynomialFunctions (Set.Icc a b) [PROOFSTEP] fconstructor [GOAL] case h.mp R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) ⊢ f ∈ Subalgebra.comap (compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (polynomialFunctions I) → f ∈ polynomialFunctions (Set.Icc a b) [PROOFSTEP] rintro ⟨p, ⟨-, w⟩⟩ [GOAL] case h.mp.intro.intro R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f ⊢ f ∈ polynomialFunctions (Set.Icc a b) [PROOFSTEP] rw [FunLike.ext_iff] at w [GOAL] case h.mp.intro.intro R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), ↑(↑↑(toContinuousMapOnAlgHom I) p) x = ↑(↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f) x ⊢ f ∈ polynomialFunctions (Set.Icc a b) [PROOFSTEP] dsimp at w [GOAL] case h.mp.intro.intro R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) ⊢ f ∈ polynomialFunctions (Set.Icc a b) [PROOFSTEP] let q := p.comp ((b - a)⁻¹ • Polynomial.X + Polynomial.C (-a * (b - a)⁻¹)) [GOAL] case h.mp.intro.intro R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) ⊢ f ∈ polynomialFunctions (Set.Icc a b) [PROOFSTEP] refine' ⟨q, ⟨_, _⟩⟩ [GOAL] case h.mp.intro.intro.refine'_1 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) ⊢ q ∈ ↑⊤.toSubsemiring [PROOFSTEP] simp [GOAL] case h.mp.intro.intro.refine'_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) ⊢ ↑↑(toContinuousMapOnAlgHom (Set.Icc a b)) q = f [PROOFSTEP] ext x [GOAL] case h.mp.intro.intro.refine'_2.h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) ⊢ ↑(↑↑(toContinuousMapOnAlgHom (Set.Icc a b)) q) x = ↑f x [PROOFSTEP] simp only [neg_mul, RingHom.map_neg, RingHom.map_mul, AlgHom.coe_toRingHom, Polynomial.eval_X, Polynomial.eval_neg, Polynomial.eval_C, Polynomial.eval_smul, smul_eq_mul, Polynomial.eval_mul, Polynomial.eval_add, Polynomial.coe_aeval_eq_eval, Polynomial.eval_comp, Polynomial.toContinuousMapOnAlgHom_apply, Polynomial.toContinuousMapOn_apply, Polynomial.toContinuousMap_apply] [GOAL] case h.mp.intro.intro.refine'_2.h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) ⊢ Polynomial.eval ((b - a)⁻¹ * ↑x + -(a * (b - a)⁻¹)) p = ↑f x [PROOFSTEP] convert w ⟨_, _⟩ [GOAL] case h.e'_3.h.e'_6 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) ⊢ x = ↑(Homeomorph.symm (iccHomeoI a b h)) { val := (b - a)⁻¹ * ↑x + -(a * (b - a)⁻¹), property := ?h.mp.intro.intro.refine'_2.h.convert_2 } [PROOFSTEP] ext [GOAL] case h.e'_3.h.e'_6.a R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) ⊢ ↑x = ↑(↑(Homeomorph.symm (iccHomeoI a b h)) { val := (b - a)⁻¹ * ↑x + -(a * (b - a)⁻¹), property := ?h.mp.intro.intro.refine'_2.h.convert_2 }) [PROOFSTEP] simp only [iccHomeoI_symm_apply_coe, Subtype.coe_mk] [GOAL] case h.e'_3.h.e'_6.a R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) ⊢ ↑x = (b - a) * ((b - a)⁻¹ * ↑x + -(a * (b - a)⁻¹)) + a [PROOFSTEP] replace h : b - a ≠ 0 := sub_ne_zero_of_ne h.ne.symm [GOAL] case h.e'_3.h.e'_6.a R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h✝ : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h✝)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h✝)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) h : b - a ≠ 0 ⊢ ↑x = (b - a) * ((b - a)⁻¹ * ↑x + -(a * (b - a)⁻¹)) + a [PROOFSTEP] simp only [mul_add] [GOAL] case h.e'_3.h.e'_6.a R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h✝ : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h✝)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h✝)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) h : b - a ≠ 0 ⊢ ↑x = (b - a) * ((b - a)⁻¹ * ↑x) + (b - a) * -(a * (b - a)⁻¹) + a [PROOFSTEP] field_simp [GOAL] case h.e'_3.h.e'_6.a R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h✝ : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h✝)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h✝)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) h : b - a ≠ 0 ⊢ ↑x * (b - a) = (b - a) * ↑x + -((b - a) * a) + a * (b - a) [PROOFSTEP] ring [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) ⊢ (b - a)⁻¹ * ↑x + -(a * (b - a)⁻¹) ∈ I [PROOFSTEP] change _ + _ ∈ I [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) ⊢ (b - a)⁻¹ * ↑x + -(a * (b - a)⁻¹) ∈ I [PROOFSTEP] rw [mul_comm (b - a)⁻¹, ← neg_mul, ← add_mul, ← sub_eq_add_neg] [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) ⊢ (↑x - a) * (b - a)⁻¹ ∈ I [PROOFSTEP] have w₁ : 0 < (b - a)⁻¹ := inv_pos.mpr (sub_pos.mpr h) [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) w₁ : 0 < (b - a)⁻¹ ⊢ (↑x - a) * (b - a)⁻¹ ∈ I [PROOFSTEP] have w₂ : 0 ≤ (x : ℝ) - a := sub_nonneg.mpr x.2.1 [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) w₁ : 0 < (b - a)⁻¹ w₂ : 0 ≤ ↑x - a ⊢ (↑x - a) * (b - a)⁻¹ ∈ I [PROOFSTEP] have w₃ : (x : ℝ) - a ≤ b - a := sub_le_sub_right x.2.2 a [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) w₁ : 0 < (b - a)⁻¹ w₂ : 0 ≤ ↑x - a w₃ : ↑x - a ≤ b - a ⊢ (↑x - a) * (b - a)⁻¹ ∈ I [PROOFSTEP] fconstructor [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2.left R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) w₁ : 0 < (b - a)⁻¹ w₂ : 0 ≤ ↑x - a w₃ : ↑x - a ≤ b - a ⊢ 0 ≤ (↑x - a) * (b - a)⁻¹ [PROOFSTEP] exact mul_nonneg w₂ (le_of_lt w₁) [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2.right R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) w₁ : 0 < (b - a)⁻¹ w₂ : 0 ≤ ↑x - a w₃ : ↑x - a ≤ b - a ⊢ (↑x - a) * (b - a)⁻¹ ≤ 1 [PROOFSTEP] rw [← div_eq_mul_inv, div_le_one (sub_pos.mpr h)] [GOAL] case h.mp.intro.intro.refine'_2.h.convert_2.right R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) p : ℝ[X] w✝ : ↑↑(toContinuousMapOnAlgHom I) p = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) f w : ∀ (x : ↑I), Polynomial.eval (↑x) p = ↑f (↑(Homeomorph.symm (iccHomeoI a b h)) x) q : ℝ[X] := Polynomial.comp p ((b - a)⁻¹ • X + ↑Polynomial.C (-a * (b - a)⁻¹)) x : ↑(Set.Icc a b) w₁ : 0 < (b - a)⁻¹ w₂ : 0 ≤ ↑x - a w₃ : ↑x - a ≤ b - a ⊢ ↑x - a ≤ b - a [PROOFSTEP] exact w₃ [GOAL] case h.mpr R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b f : C(↑(Set.Icc a b), ℝ) ⊢ f ∈ polynomialFunctions (Set.Icc a b) → f ∈ Subalgebra.comap (compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (polynomialFunctions I) [PROOFSTEP] rintro ⟨p, ⟨-, rfl⟩⟩ [GOAL] case h.mpr.intro.intro R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b p : ℝ[X] ⊢ ↑↑(toContinuousMapOnAlgHom (Set.Icc a b)) p ∈ Subalgebra.comap (compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (polynomialFunctions I) [PROOFSTEP] let q := p.comp ((b - a) • Polynomial.X + Polynomial.C a) [GOAL] case h.mpr.intro.intro R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b p : ℝ[X] q : ℝ[X] := Polynomial.comp p ((b - a) • X + ↑Polynomial.C a) ⊢ ↑↑(toContinuousMapOnAlgHom (Set.Icc a b)) p ∈ Subalgebra.comap (compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (polynomialFunctions I) [PROOFSTEP] refine' ⟨q, ⟨_, _⟩⟩ [GOAL] case h.mpr.intro.intro.refine'_1 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b p : ℝ[X] q : ℝ[X] := Polynomial.comp p ((b - a) • X + ↑Polynomial.C a) ⊢ q ∈ ↑⊤.toSubsemiring [PROOFSTEP] simp [GOAL] case h.mpr.intro.intro.refine'_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b p : ℝ[X] q : ℝ[X] := Polynomial.comp p ((b - a) • X + ↑Polynomial.C a) ⊢ ↑↑(toContinuousMapOnAlgHom I) q = ↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (↑↑(toContinuousMapOnAlgHom (Set.Icc a b)) p) [PROOFSTEP] ext x [GOAL] case h.mpr.intro.intro.refine'_2.h R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R a b : ℝ h : a < b p : ℝ[X] q : ℝ[X] := Polynomial.comp p ((b - a) • X + ↑Polynomial.C a) x : ↑I ⊢ ↑(↑↑(toContinuousMapOnAlgHom I) q) x = ↑(↑↑(compRightAlgHom ℝ ℝ (Homeomorph.toContinuousMap (Homeomorph.symm (iccHomeoI a b h)))) (↑↑(toContinuousMapOnAlgHom (Set.Icc a b)) p)) x [PROOFSTEP] simp [mul_comm] [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R ⊢ polynomialFunctions s = Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] refine le_antisymm ?_ (Algebra.adjoin_le fun _ h => ⟨X, trivial, (Set.mem_singleton_iff.1 h).symm⟩) [GOAL] R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R ⊢ polynomialFunctions s ≤ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] rintro - ⟨p, -, rfl⟩ [GOAL] case intro.intro R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R p : R[X] ⊢ ↑↑(toContinuousMapOnAlgHom s) p ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] rw [AlgHom.coe_toRingHom] [GOAL] case intro.intro R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R p : R[X] ⊢ ↑(toContinuousMapOnAlgHom s) p ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] refine p.induction_on (fun r => ?_) (fun f g hf hg => ?_) fun n r hn => ?_ [GOAL] case intro.intro.refine_1 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R p : R[X] r : R ⊢ ↑(toContinuousMapOnAlgHom s) (↑Polynomial.C r) ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] rw [Polynomial.C_eq_algebraMap, AlgHomClass.commutes] [GOAL] case intro.intro.refine_1 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R p : R[X] r : R ⊢ ↑(algebraMap R C(↑s, R)) r ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] exact Subalgebra.algebraMap_mem _ r [GOAL] case intro.intro.refine_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R p f g : R[X] hf : ↑(toContinuousMapOnAlgHom s) f ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} hg : ↑(toContinuousMapOnAlgHom s) g ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} ⊢ ↑(toContinuousMapOnAlgHom s) (f + g) ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] rw [map_add] [GOAL] case intro.intro.refine_2 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R p f g : R[X] hf : ↑(toContinuousMapOnAlgHom s) f ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} hg : ↑(toContinuousMapOnAlgHom s) g ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} ⊢ ↑(toContinuousMapOnAlgHom s) f + ↑(toContinuousMapOnAlgHom s) g ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] exact add_mem hf hg [GOAL] case intro.intro.refine_3 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R p : R[X] n : ℕ r : R hn : ↑(toContinuousMapOnAlgHom s) (↑Polynomial.C r * X ^ n) ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} ⊢ ↑(toContinuousMapOnAlgHom s) (↑Polynomial.C r * X ^ (n + 1)) ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] rw [pow_succ', ← mul_assoc, map_mul] [GOAL] case intro.intro.refine_3 R : Type u_1 inst✝² : CommSemiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set R p : R[X] n : ℕ r : R hn : ↑(toContinuousMapOnAlgHom s) (↑Polynomial.C r * X ^ n) ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} ⊢ ↑(toContinuousMapOnAlgHom s) (↑Polynomial.C r * X ^ n) * ↑(toContinuousMapOnAlgHom s) X ∈ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] exact mul_mem hn (Algebra.subset_adjoin <| Set.mem_singleton _) [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : TopologicalSpace R inst✝² : TopologicalSemiring R A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R A s : Set R φ ψ : C(↑s, R) →ₐ[R] A h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ polynomialFunctions s ≤ AlgHom.equalizer φ ψ [PROOFSTEP] rw [polynomialFunctions.eq_adjoin_X s] [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : TopologicalSpace R inst✝² : TopologicalSemiring R A : Type u_2 inst✝¹ : Semiring A inst✝ : Algebra R A s : Set R φ ψ : C(↑s, R) →ₐ[R] A h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ Algebra.adjoin R {↑(toContinuousMapOnAlgHom s) X} ≤ AlgHom.equalizer φ ψ [PROOFSTEP] exact φ.adjoin_le_equalizer ψ fun x hx => (Set.mem_singleton_iff.1 hx).symm ▸ h [GOAL] R : Type u_1 inst✝⁴ : CommSemiring R inst✝³ : TopologicalSpace R inst✝² : TopologicalSemiring R inst✝¹ : StarRing R inst✝ : ContinuousStar R s : Set R ⊢ Subalgebra.starClosure (polynomialFunctions s) = adjoin R {↑(toContinuousMapOnAlgHom s) X} [PROOFSTEP] rw [polynomialFunctions.eq_adjoin_X s, adjoin_eq_starClosure_adjoin] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R A : Type u_2 inst✝⁴ : StarRing R inst✝³ : ContinuousStar R inst✝² : Semiring A inst✝¹ : StarRing A inst✝ : Algebra R A s : Set R φ ψ : C(↑s, R) →⋆ₐ[R] A h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ Subalgebra.starClosure (polynomialFunctions s) ≤ StarAlgHom.equalizer φ ψ [PROOFSTEP] rw [polynomialFunctions.starClosure_eq_adjoin_X s] [GOAL] R : Type u_1 inst✝⁷ : CommSemiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R A : Type u_2 inst✝⁴ : StarRing R inst✝³ : ContinuousStar R inst✝² : Semiring A inst✝¹ : StarRing A inst✝ : Algebra R A s : Set R φ ψ : C(↑s, R) →⋆ₐ[R] A h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ adjoin R {↑(toContinuousMapOnAlgHom s) X} ≤ StarAlgHom.equalizer φ ψ [PROOFSTEP] exact StarAlgHom.adjoin_le_equalizer φ ψ fun x hx => (Set.mem_singleton_iff.1 hx).symm ▸ h
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Polynomial", "llama_tokens": 26381}
[GOAL] X : CompHaus inst✝ : Projective X ⊢ ExtremallyDisconnected ↑X.toTop [PROOFSTEP] apply CompactT2.Projective.extremallyDisconnected [GOAL] case h X : CompHaus inst✝ : Projective X ⊢ CompactT2.Projective ↑X.toTop [PROOFSTEP] intro A B _ _ _ _ _ _ f g hf hg hsurj [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] have : CompactSpace (TopCat.of A) := by assumption [GOAL] X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g ⊢ CompactSpace ↑(TopCat.of A) [PROOFSTEP] assumption [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this : CompactSpace ↑(TopCat.of A) ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] have : T2Space (TopCat.of A) := by assumption [GOAL] X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this : CompactSpace ↑(TopCat.of A) ⊢ T2Space ↑(TopCat.of A) [PROOFSTEP] assumption [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝ : CompactSpace ↑(TopCat.of A) this : T2Space ↑(TopCat.of A) ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] have : CompactSpace (TopCat.of B) := by assumption [GOAL] X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝ : CompactSpace ↑(TopCat.of A) this : T2Space ↑(TopCat.of A) ⊢ CompactSpace ↑(TopCat.of B) [PROOFSTEP] assumption [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝¹ : CompactSpace ↑(TopCat.of A) this✝ : T2Space ↑(TopCat.of A) this : CompactSpace ↑(TopCat.of B) ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] have : T2Space (TopCat.of B) := by assumption [GOAL] X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝¹ : CompactSpace ↑(TopCat.of A) this✝ : T2Space ↑(TopCat.of A) this : CompactSpace ↑(TopCat.of B) ⊢ T2Space ↑(TopCat.of B) [PROOFSTEP] assumption [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝² : CompactSpace ↑(TopCat.of A) this✝¹ : T2Space ↑(TopCat.of A) this✝ : CompactSpace ↑(TopCat.of B) this : T2Space ↑(TopCat.of B) ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] let A' : CompHaus := ⟨TopCat.of A⟩ [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝² : CompactSpace ↑(TopCat.of A) this✝¹ : T2Space ↑(TopCat.of A) this✝ : CompactSpace ↑(TopCat.of B) this : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] let B' : CompHaus := ⟨TopCat.of B⟩ [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝² : CompactSpace ↑(TopCat.of A) this✝¹ : T2Space ↑(TopCat.of A) this✝ : CompactSpace ↑(TopCat.of B) this : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] let f' : X ⟶ B' := ⟨f, hf⟩ [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝² : CompactSpace ↑(TopCat.of A) this✝¹ : T2Space ↑(TopCat.of A) this✝ : CompactSpace ↑(TopCat.of B) this : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] let g' : A' ⟶ B' := ⟨g, hg⟩ [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝² : CompactSpace ↑(TopCat.of A) this✝¹ : T2Space ↑(TopCat.of A) this✝ : CompactSpace ↑(TopCat.of B) this : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f g' : A' ⟶ B' := ContinuousMap.mk g ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] have : Epi g' := by rw [CompHaus.epi_iff_surjective] assumption [GOAL] X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝² : CompactSpace ↑(TopCat.of A) this✝¹ : T2Space ↑(TopCat.of A) this✝ : CompactSpace ↑(TopCat.of B) this : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f g' : A' ⟶ B' := ContinuousMap.mk g ⊢ Epi g' [PROOFSTEP] rw [CompHaus.epi_iff_surjective] [GOAL] X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝² : CompactSpace ↑(TopCat.of A) this✝¹ : T2Space ↑(TopCat.of A) this✝ : CompactSpace ↑(TopCat.of B) this : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f g' : A' ⟶ B' := ContinuousMap.mk g ⊢ Function.Surjective ↑g' [PROOFSTEP] assumption [GOAL] case h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝³ : CompactSpace ↑(TopCat.of A) this✝² : T2Space ↑(TopCat.of A) this✝¹ : CompactSpace ↑(TopCat.of B) this✝ : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f g' : A' ⟶ B' := ContinuousMap.mk g this : Epi g' ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] obtain ⟨h, hh⟩ := Projective.factors f' g' [GOAL] case h.intro X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝³ : CompactSpace ↑(TopCat.of A) this✝² : T2Space ↑(TopCat.of A) this✝¹ : CompactSpace ↑(TopCat.of B) this✝ : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f g' : A' ⟶ B' := ContinuousMap.mk g this : Epi g' h : X ⟶ A' hh : h ≫ g' = f' ⊢ ∃ h, Continuous h ∧ g ∘ h = f [PROOFSTEP] refine ⟨h, h.2, ?_⟩ [GOAL] case h.intro X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝³ : CompactSpace ↑(TopCat.of A) this✝² : T2Space ↑(TopCat.of A) this✝¹ : CompactSpace ↑(TopCat.of B) this✝ : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f g' : A' ⟶ B' := ContinuousMap.mk g this : Epi g' h : X ⟶ A' hh : h ≫ g' = f' ⊢ g ∘ ↑h = f [PROOFSTEP] ext t [GOAL] case h.intro.h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝³ : CompactSpace ↑(TopCat.of A) this✝² : T2Space ↑(TopCat.of A) this✝¹ : CompactSpace ↑(TopCat.of B) this✝ : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f g' : A' ⟶ B' := ContinuousMap.mk g this : Epi g' h : X ⟶ A' hh : h ≫ g' = f' t : ↑X.toTop ⊢ (g ∘ ↑h) t = f t [PROOFSTEP] apply_fun (fun e => e t) at hh [GOAL] case h.intro.h X : CompHaus inst✝⁶ : Projective X A B : Type u inst✝⁵ : TopologicalSpace A inst✝⁴ : TopologicalSpace B inst✝³ : CompactSpace A inst✝² : T2Space A inst✝¹ : CompactSpace B inst✝ : T2Space B f : ↑X.toTop → B g : A → B hf : Continuous f hg : Continuous g hsurj : Function.Surjective g this✝³ : CompactSpace ↑(TopCat.of A) this✝² : T2Space ↑(TopCat.of A) this✝¹ : CompactSpace ↑(TopCat.of B) this✝ : T2Space ↑(TopCat.of B) A' : CompHaus := mk (TopCat.of A) B' : CompHaus := mk (TopCat.of B) f' : X ⟶ B' := ContinuousMap.mk f g' : A' ⟶ B' := ContinuousMap.mk g this : Epi g' h : X ⟶ A' t : ↑X.toTop hh : ↑(h ≫ g') t = ↑f' t ⊢ (g ∘ ↑h) t = f t [PROOFSTEP] exact hh
{"mathlib_filename": "Mathlib.Topology.Category.Stonean.Basic", "llama_tokens": 5413}
[GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U x✝ : OpensLeCover U ⊢ { obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.map (𝟙 x✝) = 𝟙 ({ obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.obj x✝) [PROOFSTEP] refine Over.OverMorphism.ext ?_ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U x✝ : OpensLeCover U ⊢ ({ obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.map (𝟙 x✝)).left = (𝟙 ({ obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.obj x✝)).left [PROOFSTEP] simp only [Functor.id_obj, Sieve.generate_apply, Functor.const_obj_obj, Over.homMk_left, eq_iff_true_of_subsingleton] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U x✝² x✝¹ x✝ : OpensLeCover U f : x✝² ⟶ x✝¹ g : x✝¹ ⟶ x✝ ⊢ { obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.map (f ≫ g) = { obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.map f ≫ { obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.map g [PROOFSTEP] refine Over.OverMorphism.ext ?_ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U x✝² x✝¹ x✝ : OpensLeCover U f : x✝² ⟶ x✝¹ g : x✝¹ ⟶ x✝ ⊢ ({ obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.map (f ≫ g)).left = ({ obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.map f ≫ { obj := fun V => { obj := { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }, property := (_ : ∃ Y_1 h g, presieveOfCoveringAux U Y g ∧ h ≫ g = { left := V.obj, right := { as := PUnit.unit }, hom := homOfLE (_ : (𝟭 (Opens ↑X)).obj V.obj ≤ (Functor.fromPUnit Y).obj { as := PUnit.unit }) }.hom) }, map := fun {x x_1} g => Over.homMk g }.map g).left [PROOFSTEP] simp only [Functor.id_obj, Sieve.generate_apply, Functor.const_obj_obj, Over.homMk_left, eq_iff_true_of_subsingleton] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ ∀ (X_1 : FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom), (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).obj X_1 = (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).obj X_1 [PROOFSTEP] rintro ⟨⟨_, _⟩, _⟩ [GOAL] case mk.mk C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U left✝ : Opens ↑X right✝ : Discrete PUnit hom✝ : (𝟭 (Opens ↑X)).obj left✝ ⟶ (Functor.fromPUnit Y).obj right✝ property✝ : (Sieve.generate (presieveOfCoveringAux U Y)).arrows { left := left✝, right := right✝, hom := hom✝ }.hom ⊢ (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).obj { obj := { left := left✝, right := right✝, hom := hom✝ }, property := property✝ } = (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).obj { obj := { left := left✝, right := right✝, hom := hom✝ }, property := property✝ } [PROOFSTEP] dsimp [GOAL] case mk.mk C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U left✝ : Opens ↑X right✝ : Discrete PUnit hom✝ : (𝟭 (Opens ↑X)).obj left✝ ⟶ (Functor.fromPUnit Y).obj right✝ property✝ : (Sieve.generate (presieveOfCoveringAux U Y)).arrows { left := left✝, right := right✝, hom := hom✝ }.hom ⊢ { obj := { left := left✝, right := right✝, hom := hom✝ }, property := property✝ } = (generateEquivalenceOpensLe_inverse' U ?m.44608).obj ((generateEquivalenceOpensLe_functor' U ?m.44561).obj { obj := { left := left✝, right := right✝, hom := hom✝ }, property := property✝ }) [PROOFSTEP] congr [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ ∀ (X_1 Y_1 : FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom) (f : X_1 ⟶ Y_1), (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).map f = eqToHom (_ : (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).obj X_1 = (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).obj X_1) ≫ (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).map f ≫ eqToHom (_ : (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).obj Y_1 = (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).obj Y_1) [PROOFSTEP] intros [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U X✝ Y✝ : FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom f✝ : X✝ ⟶ Y✝ ⊢ (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).map f✝ = eqToHom (_ : (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).obj X✝ = (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).obj X✝) ≫ (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).map f✝ ≫ eqToHom (_ : (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).obj Y✝ = (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).obj Y✝) [PROOFSTEP] refine Over.OverMorphism.ext ?_ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U X✝ Y✝ : FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom f✝ : X✝ ⟶ Y✝ ⊢ ((𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).map f✝).left = (eqToHom (_ : (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).obj X✝ = (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).obj X✝) ≫ (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).map f✝ ≫ eqToHom (_ : (generateEquivalenceOpensLe_functor' U ?m.44561 ⋙ generateEquivalenceOpensLe_inverse' U ?m.44608).obj Y✝ = (𝟭 (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)).obj Y✝)).left [PROOFSTEP] aesop_cat [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ ∀ (X_1 : OpensLeCover U), (generateEquivalenceOpensLe_inverse' U (_ : Y = iSup U) ⋙ generateEquivalenceOpensLe_functor' U (_ : Y = iSup U)).obj X_1 = (𝟭 (OpensLeCover U)).obj X_1 [PROOFSTEP] intro [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U X✝ : OpensLeCover U ⊢ (generateEquivalenceOpensLe_inverse' U (_ : Y = iSup U) ⋙ generateEquivalenceOpensLe_functor' U (_ : Y = iSup U)).obj X✝ = (𝟭 (OpensLeCover U)).obj X✝ [PROOFSTEP] refine FullSubcategory.ext _ _ ?_ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U X✝ : OpensLeCover U ⊢ ((generateEquivalenceOpensLe_inverse' U (_ : Y = iSup U) ⋙ generateEquivalenceOpensLe_functor' U (_ : Y = iSup U)).obj X✝).obj = ((𝟭 (OpensLeCover U)).obj X✝).obj [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ ∀ (X_1 Y_1 : OpensLeCover U) (f : X_1 ⟶ Y_1), HEq ((generateEquivalenceOpensLe_inverse' U (_ : Y = iSup U) ⋙ generateEquivalenceOpensLe_functor' U (_ : Y = iSup U)).map f) ((𝟭 (OpensLeCover U)).map f) [PROOFSTEP] intros [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U X✝ Y✝ : OpensLeCover U f✝ : X✝ ⟶ Y✝ ⊢ HEq ((generateEquivalenceOpensLe_inverse' U (_ : Y = iSup U) ⋙ generateEquivalenceOpensLe_functor' U (_ : Y = iSup U)).map f✝) ((𝟭 (OpensLeCover U)).map f✝) [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U j : (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)ᵒᵖ ⊢ F.map (eqToHom (_ : op (opensLeCoverCocone U).pt = op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt)) ≫ NatTrans.app (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows))).π j = NatTrans.app (Cone.whisker (Equivalence.op (generateEquivalenceOpensLe U hY)).functor (F.mapCone (Cocone.op (opensLeCoverCocone U)))).π j [PROOFSTEP] erw [← F.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U j : (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)ᵒᵖ ⊢ F.map (eqToHom (_ : op (opensLeCoverCocone U).pt = op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt) ≫ NatTrans.app (Cocone.op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows)).π j) = NatTrans.app (Cone.whisker (Equivalence.op (generateEquivalenceOpensLe U hY)).functor (F.mapCone (Cocone.op (opensLeCoverCocone U)))).π j [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U j : (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)ᵒᵖ ⊢ F.map (eqToHom (_ : op (opensLeCoverCocone U).pt = op Y) ≫ j.unop.obj.hom.op) = F.map (NatTrans.app (opensLeCoverCocone U).ι ((generateEquivalenceOpensLe_functor' U (_ : Y = iSup U)).obj j.unop)).op [PROOFSTEP] congr 1 [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U j : (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)ᵒᵖ ⊢ F.map (eqToHom (_ : op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt = op (opensLeCoverCocone U).pt)) ≫ NatTrans.app (Cone.whisker (Equivalence.op (generateEquivalenceOpensLe U hY)).functor (F.mapCone (Cocone.op (opensLeCoverCocone U)))).π j = NatTrans.app (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows))).π j [PROOFSTEP] erw [← F.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U j : (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)ᵒᵖ ⊢ F.map (eqToHom (_ : op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt = op (opensLeCoverCocone U).pt) ≫ NatTrans.app (Cocone.op (opensLeCoverCocone U)).π ((Equivalence.op (generateEquivalenceOpensLe U hY)).functor.obj j)) = NatTrans.app (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows))).π j [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U j : (FullSubcategory fun f => (Sieve.generate (presieveOfCoveringAux U Y)).arrows f.hom)ᵒᵖ ⊢ F.map (eqToHom (_ : op Y = op (opensLeCoverCocone U).pt) ≫ (NatTrans.app (opensLeCoverCocone U).ι ((generateEquivalenceOpensLe_functor' U (_ : Y = iSup U)).obj j.unop)).op) = F.map j.unop.obj.hom.op [PROOFSTEP] congr 1 [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ ConeMorphism.mk (F.map (eqToHom (_ : op (opensLeCoverCocone U).pt = op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt))) ≫ ConeMorphism.mk (F.map (eqToHom (_ : op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt = op (opensLeCoverCocone U).pt))) = 𝟙 (Cone.whisker (Equivalence.op (generateEquivalenceOpensLe U hY)).functor (F.mapCone (Cocone.op (opensLeCoverCocone U)))) [PROOFSTEP] ext [GOAL] case w C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ (ConeMorphism.mk (F.map (eqToHom (_ : op (opensLeCoverCocone U).pt = op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt))) ≫ ConeMorphism.mk (F.map (eqToHom (_ : op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt = op (opensLeCoverCocone U).pt)))).Hom = (𝟙 (Cone.whisker (Equivalence.op (generateEquivalenceOpensLe U hY)).functor (F.mapCone (Cocone.op (opensLeCoverCocone U))))).Hom [PROOFSTEP] simp [eqToHom_map] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ ConeMorphism.mk (F.map (eqToHom (_ : op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt = op (opensLeCoverCocone U).pt))) ≫ ConeMorphism.mk (F.map (eqToHom (_ : op (opensLeCoverCocone U).pt = op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt))) = 𝟙 (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows))) [PROOFSTEP] ext [GOAL] case w C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ (ConeMorphism.mk (F.map (eqToHom (_ : op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt = op (opensLeCoverCocone U).pt))) ≫ ConeMorphism.mk (F.map (eqToHom (_ : op (opensLeCoverCocone U).pt = op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows).pt)))).Hom = (𝟙 (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U Y)).arrows)))).Hom [PROOFSTEP] simp [eqToHom_map] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U R : Presieve Y hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) Y ⊢ IsLimit (F.mapCone (Cocone.op (opensLeCoverCocone (coveringOfPresieve Y R)))) ≃ IsLimit (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate R).arrows))) [PROOFSTEP] convert isLimitOpensLeEquivGenerate₁ F (coveringOfPresieve Y R) (coveringOfPresieve.iSup_eq_of_mem_grothendieck Y R hR).symm using 1 [GOAL] case h.e'_2 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U R : Presieve Y hR : Sieve.generate R ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) Y ⊢ IsLimit (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate R).arrows))) = IsLimit (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux (coveringOfPresieve Y R) Y)).arrows))) [PROOFSTEP] rw [covering_presieve_eq_self R] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ IsSheaf F ↔ IsSheafOpensLeCover F [PROOFSTEP] refine' (Presheaf.isSheaf_iff_isLimit _ _).trans _ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ (∀ ⦃X_1 : Opens ↑X⦄ (S : Sieve X_1), S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) X_1 → Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone S.arrows))))) ↔ IsSheafOpensLeCover F [PROOFSTEP] constructor [GOAL] case mp C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ (∀ ⦃X_1 : Opens ↑X⦄ (S : Sieve X_1), S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) X_1 → Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone S.arrows))))) → IsSheafOpensLeCover F [PROOFSTEP] intro h ι U [GOAL] case mp C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι✝ : Type w U✝ : ι✝ → Opens ↑X Y : Opens ↑X hY : Y = iSup U✝ h : ∀ ⦃X_1 : Opens ↑X⦄ (S : Sieve X_1), S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) X_1 → Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone S.arrows)))) ι : Type w U : ι → Opens ↑X ⊢ Nonempty (IsLimit (F.mapCone (Cocone.op (opensLeCoverCocone U)))) [PROOFSTEP] rw [(isLimitOpensLeEquivGenerate₁ F U rfl).nonempty_congr] [GOAL] case mp C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι✝ : Type w U✝ : ι✝ → Opens ↑X Y : Opens ↑X hY : Y = iSup U✝ h : ∀ ⦃X_1 : Opens ↑X⦄ (S : Sieve X_1), S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) X_1 → Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone S.arrows)))) ι : Type w U : ι → Opens ↑X ⊢ Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate (presieveOfCoveringAux U (iSup U))).arrows)))) [PROOFSTEP] apply h [GOAL] case mp.a C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι✝ : Type w U✝ : ι✝ → Opens ↑X Y : Opens ↑X hY : Y = iSup U✝ h : ∀ ⦃X_1 : Opens ↑X⦄ (S : Sieve X_1), S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) X_1 → Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone S.arrows)))) ι : Type w U : ι → Opens ↑X ⊢ Sieve.generate (presieveOfCoveringAux U (iSup U)) ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) (iSup U) [PROOFSTEP] apply presieveOfCovering.mem_grothendieckTopology [GOAL] case mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y : Opens ↑X hY : Y = iSup U ⊢ IsSheafOpensLeCover F → ∀ ⦃X_1 : Opens ↑X⦄ (S : Sieve X_1), S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) X_1 → Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone S.arrows)))) [PROOFSTEP] intro h Y S [GOAL] case mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y✝ : Opens ↑X hY : Y✝ = iSup U h : IsSheafOpensLeCover F Y : Opens ↑X S : Sieve Y ⊢ S ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) Y → Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone S.arrows)))) [PROOFSTEP] rw [← Sieve.generate_sieve S] [GOAL] case mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y✝ : Opens ↑X hY : Y✝ = iSup U h : IsSheafOpensLeCover F Y : Opens ↑X S : Sieve Y ⊢ Sieve.generate S.arrows ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) Y → Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate S.arrows).arrows)))) [PROOFSTEP] intro hS [GOAL] case mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y✝ : Opens ↑X hY : Y✝ = iSup U h : IsSheafOpensLeCover F Y : Opens ↑X S : Sieve Y hS : Sieve.generate S.arrows ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) Y ⊢ Nonempty (IsLimit (F.mapCone (Cocone.op (Presieve.cocone (Sieve.generate S.arrows).arrows)))) [PROOFSTEP] rw [← (isLimitOpensLeEquivGenerate₂ F S.1 hS).nonempty_congr] [GOAL] case mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ι : Type w U : ι → Opens ↑X Y✝ : Opens ↑X hY : Y✝ = iSup U h : IsSheafOpensLeCover F Y : Opens ↑X S : Sieve Y hS : Sieve.generate S.arrows ∈ GrothendieckTopology.sieves (Opens.grothendieckTopology ↑X) Y ⊢ Nonempty (IsLimit (F.mapCone (Cocone.op (opensLeCoverCocone (coveringOfPresieve Y S.arrows))))) [PROOFSTEP] apply h
{"mathlib_filename": "Mathlib.Topology.Sheaves.SheafCondition.OpensLeCover", "llama_tokens": 11635}
[GOAL] X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Epi g ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] rw [epi_iff_surjective] at hg [GOAL] X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] obtain ⟨g', hg'⟩ := hg.hasRightInverse [GOAL] case intro X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] let t : X → Y := g' ∘ f ∘ (pure : X → Ultrafilter X) [GOAL] case intro X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] let h : Ultrafilter X → Y := Ultrafilter.extend t [GOAL] case intro X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toTop := Ultrafilter.extend t ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] have hh : Continuous h := continuous_ultrafilter_extend _ [GOAL] case intro X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toTop := Ultrafilter.extend t hh : Continuous h ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] use⟨h, hh⟩ [GOAL] case h X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toTop := Ultrafilter.extend t hh : Continuous h ⊢ ContinuousMap.mk h ≫ g = f [PROOFSTEP] apply Faithful.map_injective (F := forget CompHaus) [GOAL] case h.a X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toTop := Ultrafilter.extend t hh : Continuous h ⊢ (forget CompHaus).map (ContinuousMap.mk h ≫ g) = (forget CompHaus).map f [PROOFSTEP] simp only [Functor.map_comp, ContinuousMap.coe_mk, coe_comp] [GOAL] case h.a X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toTop := Ultrafilter.extend t hh : Continuous h ⊢ (forget CompHaus).map (ContinuousMap.mk (Ultrafilter.extend (g' ∘ ↑f ∘ pure))) ≫ (forget CompHaus).map g = (forget CompHaus).map f [PROOFSTEP] convert denseRange_pure.equalizer (g.continuous.comp hh) f.continuous _ -- Porting note: We need to get the coercions to functions under control. -- The next two lines should not be needed. [GOAL] case h.a X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toTop := Ultrafilter.extend t hh : Continuous h ⊢ (↑g ∘ h) ∘ pure = ↑f ∘ pure [PROOFSTEP] let g'' : ContinuousMap Y Z := g [GOAL] case h.a X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toTop := Ultrafilter.extend t hh : Continuous h g'' : C(↑Y.toTop, ↑Z.toTop) := g ⊢ (↑g ∘ h) ∘ pure = ↑f ∘ pure [PROOFSTEP] have : g'' ∘ g' = id := hg'.comp_eq_id [GOAL] case h.a X : Type u_1 Y Z : CompHaus f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget CompHaus).obj Z → (forget CompHaus).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toTop := Ultrafilter.extend t hh : Continuous h g'' : C(↑Y.toTop, ↑Z.toTop) := g this : ↑g'' ∘ g' = id ⊢ (↑g ∘ h) ∘ pure = ↑f ∘ pure [PROOFSTEP] rw [comp.assoc, ultrafilter_extend_extends, ← comp.assoc, this, comp.left_id]
{"mathlib_filename": "Mathlib.Topology.Category.CompHaus.Projective", "llama_tokens": 2071}
[GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B ⊢ fst f g ≫ f = snd f g ≫ g [PROOFSTEP] ext ⟨_, h⟩ [GOAL] case w.mk X Y B : CompHaus f : X ⟶ B g : Y ⟶ B val✝ : ↑X.toTop × ↑Y.toTop h : val✝ ∈ {xy | ↑f xy.fst = ↑g xy.snd} ⊢ ↑(fst f g ≫ f) { val := val✝, property := h } = ↑(snd f g ≫ g) { val := val✝, property := h } [PROOFSTEP] exact h [GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a : Z ⟶ X b : Z ⟶ Y w : a ≫ f = b ≫ g z : ↑Z.toTop ⊢ (↑a z, ↑b z) ∈ {xy | ↑f xy.fst = ↑g xy.snd} [PROOFSTEP] apply_fun (fun q => q z) at w [GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a : Z ⟶ X b : Z ⟶ Y z : ↑Z.toTop w : ↑(a ≫ f) z = ↑(b ≫ g) z ⊢ (↑a z, ↑b z) ∈ {xy | ↑f xy.fst = ↑g xy.snd} [PROOFSTEP] exact w [GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a : Z ⟶ X b : Z ⟶ Y w : a ≫ f = b ≫ g ⊢ Continuous fun z => { val := (↑a z, ↑b z), property := (_ : ↑(a ≫ f) z = ↑(b ≫ g) z) } [PROOFSTEP] apply Continuous.subtype_mk [GOAL] case h X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a : Z ⟶ X b : Z ⟶ Y w : a ≫ f = b ≫ g ⊢ Continuous fun x => (↑a x, ↑b x) [PROOFSTEP] rw [continuous_prod_mk] [GOAL] case h X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a : Z ⟶ X b : Z ⟶ Y w : a ≫ f = b ≫ g ⊢ (Continuous fun x => ↑a x) ∧ Continuous fun x => ↑b x [PROOFSTEP] exact ⟨a.continuous, b.continuous⟩ [GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a b : Z ⟶ pullback f g hfst : a ≫ fst f g = b ≫ fst f g hsnd : a ≫ snd f g = b ≫ snd f g ⊢ a = b [PROOFSTEP] ext z [GOAL] case w X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a b : Z ⟶ pullback f g hfst : a ≫ fst f g = b ≫ fst f g hsnd : a ≫ snd f g = b ≫ snd f g z : (forget CompHaus).obj Z ⊢ ↑a z = ↑b z [PROOFSTEP] apply_fun (fun q => q z) at hfst hsnd [GOAL] case w X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a b : Z ⟶ pullback f g z : (forget CompHaus).obj Z hfst : ↑(a ≫ fst f g) z = ↑(b ≫ fst f g) z hsnd : ↑(a ≫ snd f g) z = ↑(b ≫ snd f g) z ⊢ ↑a z = ↑b z [PROOFSTEP] apply Subtype.ext [GOAL] case w.a X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a b : Z ⟶ pullback f g z : (forget CompHaus).obj Z hfst : ↑(a ≫ fst f g) z = ↑(b ≫ fst f g) z hsnd : ↑(a ≫ snd f g) z = ↑(b ≫ snd f g) z ⊢ ↑(↑a z) = ↑(↑b z) [PROOFSTEP] apply Prod.ext [GOAL] case w.a.h₁ X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a b : Z ⟶ pullback f g z : (forget CompHaus).obj Z hfst : ↑(a ≫ fst f g) z = ↑(b ≫ fst f g) z hsnd : ↑(a ≫ snd f g) z = ↑(b ≫ snd f g) z ⊢ (↑(↑a z)).fst = (↑(↑b z)).fst [PROOFSTEP] exact hfst [GOAL] case w.a.h₂ X Y B : CompHaus f : X ⟶ B g : Y ⟶ B Z : CompHaus a b : Z ⟶ pullback f g z : (forget CompHaus).obj Z hfst : ↑(a ≫ fst f g) z = ↑(b ≫ fst f g) z hsnd : ↑(a ≫ snd f g) z = ↑(b ≫ snd f g) z ⊢ (↑(↑a z)).snd = (↑(↑b z)).snd [PROOFSTEP] exact hsnd [GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B ⊢ pullback.fst f g = (pullbackIsoPullback f g).hom ≫ Limits.pullback.fst [PROOFSTEP] dsimp [pullbackIsoPullback] [GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B ⊢ pullback.fst f g = (Limits.IsLimit.conePointUniqueUpToIso (pullback.isLimit f g) (Limits.limit.isLimit (Limits.cospan f g))).hom ≫ Limits.pullback.fst [PROOFSTEP] simp only [Limits.limit.conePointUniqueUpToIso_hom_comp, pullback.cone_pt, pullback.cone_π] [GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B ⊢ pullback.snd f g = (pullbackIsoPullback f g).hom ≫ Limits.pullback.snd [PROOFSTEP] dsimp [pullbackIsoPullback] [GOAL] X Y B : CompHaus f : X ⟶ B g : Y ⟶ B ⊢ pullback.snd f g = (Limits.IsLimit.conePointUniqueUpToIso (pullback.isLimit f g) (Limits.limit.isLimit (Limits.cospan f g))).hom ≫ Limits.pullback.snd [PROOFSTEP] simp only [Limits.limit.conePointUniqueUpToIso_hom_comp, pullback.cone_pt, pullback.cone_π] [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus e : (a : α) → X a ⟶ B ⊢ Continuous fun x => match x with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] apply continuous_sigma [GOAL] case hf α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus e : (a : α) → X a ⟶ B ⊢ ∀ (i : α), Continuous fun a => match { fst := i, snd := a } with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] intro a [GOAL] case hf α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus e : (a : α) → X a ⟶ B a : α ⊢ Continuous fun a_1 => match { fst := a, snd := a_1 } with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] exact (e a).continuous [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus f g : finiteCoproduct X ⟶ B h : ∀ (a : α), ι X a ≫ f = ι X a ≫ g ⊢ f = g [PROOFSTEP] ext ⟨a, x⟩ [GOAL] case w.mk α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus f g : finiteCoproduct X ⟶ B h : ∀ (a : α), ι X a ≫ f = ι X a ≫ g a : α x : ↑(X a).toTop ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] specialize h a [GOAL] case w.mk α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus f g : finiteCoproduct X ⟶ B a : α x : ↑(X a).toTop h : ι X a ≫ f = ι X a ≫ g ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] apply_fun (fun q => q x) at h [GOAL] case w.mk α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus f g : finiteCoproduct X ⟶ B a : α x : ↑(X a).toTop h : ↑(ι X a ≫ f) x = ↑(ι X a ≫ g) x ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] exact h [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus s : Limits.Cocone (Discrete.functor X) m : (cocone X).pt ⟶ s.pt hm : ∀ (j : Discrete α), NatTrans.app (cocone X).ι j ≫ m = NatTrans.app s.ι j a : α ⊢ ι (fun a => X a) a ≫ m = ι (fun a => X a) a ≫ (fun s => desc (fun a => X a) fun a => NatTrans.app s.ι { as := a }) s [PROOFSTEP] specialize hm ⟨a⟩ [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus s : Limits.Cocone (Discrete.functor X) m : (cocone X).pt ⟶ s.pt a : α hm : NatTrans.app (cocone X).ι { as := a } ≫ m = NatTrans.app s.ι { as := a } ⊢ ι (fun a => X a) a ≫ m = ι (fun a => X a) a ≫ (fun s => desc (fun a => X a) fun a => NatTrans.app s.ι { as := a }) s [PROOFSTEP] ext t [GOAL] case w α : Type inst✝ : Fintype α X : α → CompHaus s : Limits.Cocone (Discrete.functor X) m : (cocone X).pt ⟶ s.pt a : α hm : NatTrans.app (cocone X).ι { as := a } ≫ m = NatTrans.app s.ι { as := a } t : (forget CompHaus).obj (X a) ⊢ ↑(ι (fun a => X a) a ≫ m) t = ↑(ι (fun a => X a) a ≫ (fun s => desc (fun a => X a) fun a => NatTrans.app s.ι { as := a }) s) t [PROOFSTEP] apply_fun (fun q => q t) at hm [GOAL] case w α : Type inst✝ : Fintype α X : α → CompHaus s : Limits.Cocone (Discrete.functor X) m : (cocone X).pt ⟶ s.pt a : α t : (forget CompHaus).obj (X a) hm : ↑(NatTrans.app (cocone X).ι { as := a } ≫ m) t = ↑(NatTrans.app s.ι { as := a }) t ⊢ ↑(ι (fun a => X a) a ≫ m) t = ↑(ι (fun a => X a) a ≫ (fun s => desc (fun a => X a) fun a => NatTrans.app s.ι { as := a }) s) t [PROOFSTEP] exact hm [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus a : α ⊢ Limits.Sigma.ι X a ≫ (coproductIsoCoproduct X).inv = finiteCoproduct.ι X a [PROOFSTEP] dsimp [coproductIsoCoproduct] [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus a : α ⊢ Limits.Sigma.ι X a ≫ (Limits.IsColimit.coconePointUniqueUpToIso (finiteCoproduct.isColimit X) (Limits.colimit.isColimit (Discrete.functor X))).inv = finiteCoproduct.ι X a [PROOFSTEP] simp only [Limits.colimit.comp_coconePointUniqueUpToIso_inv, finiteCoproduct.cocone_pt, finiteCoproduct.cocone_ι, Discrete.natTrans_app] [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus a : α ⊢ Function.Injective ↑(ι X a) [PROOFSTEP] intro x y hxy [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus a : α x y : (forget CompHaus).obj (X a) hxy : ↑(ι X a) x = ↑(ι X a) y ⊢ x = y [PROOFSTEP] exact eq_of_heq (Sigma.ext_iff.mp hxy).2 [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus π : (a : α) → X a ⟶ B a : α ⊢ ∀ (x : (forget CompHaus).obj (X a)), ↑(desc X π) (↑(ι X a) x) = ↑(π a) x [PROOFSTEP] intro x [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus π : (a : α) → X a ⟶ B a : α x : (forget CompHaus).obj (X a) ⊢ ↑(desc X π) (↑(ι X a) x) = ↑(π a) x [PROOFSTEP] change (ι X a ≫ desc X π) _ = _ [GOAL] α : Type inst✝ : Fintype α X : α → CompHaus B : CompHaus π : (a : α) → X a ⟶ B a : α x : (forget CompHaus).obj (X a) ⊢ ↑(ι X a ≫ desc X π) x = ↑(π a) x [PROOFSTEP] simp only [ι_desc] -- `elementwise` should work here, but doesn't
{"mathlib_filename": "Mathlib.Topology.Category.CompHaus.Limits", "llama_tokens": 4380}
[GOAL] X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Epi g ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] rw [epi_iff_surjective] at hg [GOAL] X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] obtain ⟨g', hg'⟩ := hg.hasRightInverse [GOAL] case intro X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] let t : X → Y := g' ∘ f ∘ (pure : X → Ultrafilter X) [GOAL] case intro X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] let h : Ultrafilter X → Y := Ultrafilter.extend t [GOAL] case intro X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toCompHaus.toTop := Ultrafilter.extend t ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] have hh : Continuous h := continuous_ultrafilter_extend _ [GOAL] case intro X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toCompHaus.toTop := Ultrafilter.extend t hh : Continuous h ⊢ ∃ f', f' ≫ g = f [PROOFSTEP] use⟨h, hh⟩ [GOAL] case h X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toCompHaus.toTop := Ultrafilter.extend t hh : Continuous h ⊢ ContinuousMap.mk h ≫ g = f [PROOFSTEP] apply Faithful.map_injective (F := forget Profinite) [GOAL] case h.a X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toCompHaus.toTop := Ultrafilter.extend t hh : Continuous h ⊢ (forget Profinite).map (ContinuousMap.mk h ≫ g) = (forget Profinite).map f [PROOFSTEP] simp only [ContinuousMap.coe_mk, coe_comp] [GOAL] case h.a X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toCompHaus.toTop := Ultrafilter.extend t hh : Continuous h ⊢ (forget Profinite).map (ContinuousMap.mk (Ultrafilter.extend (g' ∘ ↑f ∘ pure)) ≫ g) = (forget Profinite).map f [PROOFSTEP] convert denseRange_pure.equalizer (g.continuous.comp hh) f.continuous _ -- Porting note: same fix as in `Topology.Category.CompHaus.Projective` [GOAL] case h.a X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toCompHaus.toTop := Ultrafilter.extend t hh : Continuous h ⊢ (↑g ∘ h) ∘ pure = ↑f ∘ pure [PROOFSTEP] let g'' : ContinuousMap Y Z := g [GOAL] case h.a X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toCompHaus.toTop := Ultrafilter.extend t hh : Continuous h g'' : C(↑Y.toCompHaus.toTop, ↑Z.toCompHaus.toTop) := g ⊢ (↑g ∘ h) ∘ pure = ↑f ∘ pure [PROOFSTEP] have : g'' ∘ g' = id := hg'.comp_eq_id [GOAL] case h.a X : Type u Y Z : Profinite f : of (Ultrafilter X) ⟶ Z g : Y ⟶ Z hg : Surjective ↑g g' : (forget Profinite).obj Z → (forget Profinite).obj Y hg' : Function.RightInverse g' ↑g t : X → ↑Y.toCompHaus.toTop := g' ∘ ↑f ∘ pure h : Ultrafilter X → ↑Y.toCompHaus.toTop := Ultrafilter.extend t hh : Continuous h g'' : C(↑Y.toCompHaus.toTop, ↑Z.toCompHaus.toTop) := g this : ↑g'' ∘ g' = id ⊢ (↑g ∘ h) ∘ pure = ↑f ∘ pure [PROOFSTEP] rw [comp.assoc, ultrafilter_extend_extends, ← comp.assoc, this, comp.left_id]
{"mathlib_filename": "Mathlib.Topology.Category.Profinite.Projective", "llama_tokens": 2091}
[GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f g : α →C₀ β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β g : α →C₀ β toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ zero_at_infty'✝ : Tendsto (ContinuousMap.mk toFun✝).toFun (cocompact α) (𝓝 0) h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, zero_at_infty' := zero_at_infty'✝ } = (fun f => f.toFun) g ⊢ { toContinuousMap := ContinuousMap.mk toFun✝, zero_at_infty' := zero_at_infty'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β toFun✝¹ : α → β continuous_toFun✝¹ : Continuous toFun✝¹ zero_at_infty'✝¹ : Tendsto (ContinuousMap.mk toFun✝¹).toFun (cocompact α) (𝓝 0) toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ zero_at_infty'✝ : Tendsto (ContinuousMap.mk toFun✝).toFun (cocompact α) (𝓝 0) h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝¹, zero_at_infty' := zero_at_infty'✝¹ } = (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, zero_at_infty' := zero_at_infty'✝ } ⊢ { toContinuousMap := ContinuousMap.mk toFun✝¹, zero_at_infty' := zero_at_infty'✝¹ } = { toContinuousMap := ContinuousMap.mk toFun✝, zero_at_infty' := zero_at_infty'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : α →C₀ β f' : α → β h : f' = ↑f ⊢ Continuous f' [PROOFSTEP] rw [h] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : α →C₀ β f' : α → β h : f' = ↑f ⊢ Continuous ↑f [PROOFSTEP] exact f.continuous_toFun [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : α →C₀ β f' : α → β h : f' = ↑f ⊢ Tendsto (ContinuousMap.mk f').toFun (cocompact α) (𝓝 0) [PROOFSTEP] simp_rw [h] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : α →C₀ β f' : α → β h : f' = ↑f ⊢ Tendsto (↑f) (cocompact α) (𝓝 0) [PROOFSTEP] exact f.zero_at_infty' [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : Zero β inst✝¹ : ZeroAtInftyContinuousMapClass F α β inst✝ : CompactSpace α f : C(α, β) ⊢ Tendsto (ContinuousMap.mk ↑f).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : Zero β inst✝¹ : ZeroAtInftyContinuousMapClass F α β inst✝ : CompactSpace α f : C(α, β) ⊢ (fun f => ↑f) ((fun f => { toContinuousMap := ContinuousMap.mk ↑f, zero_at_infty' := (_ : Tendsto (↑f) (cocompact α) (𝓝 0)) }) f) = f [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : Zero β inst✝¹ : ZeroAtInftyContinuousMapClass F α β inst✝ : CompactSpace α f : C(α, β) a✝ : α ⊢ ↑((fun f => ↑f) ((fun f => { toContinuousMap := ContinuousMap.mk ↑f, zero_at_infty' := (_ : Tendsto (↑f) (cocompact α) (𝓝 0)) }) f)) a✝ = ↑f a✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : Zero β inst✝¹ : ZeroAtInftyContinuousMapClass F α β inst✝ : CompactSpace α f : α →C₀ β ⊢ (fun f => { toContinuousMap := ContinuousMap.mk ↑f, zero_at_infty' := (_ : Tendsto (↑f) (cocompact α) (𝓝 0)) }) ((fun f => ↑f) f) = f [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : Zero β inst✝¹ : ZeroAtInftyContinuousMapClass F α β inst✝ : CompactSpace α f : α →C₀ β x✝ : α ⊢ ↑((fun f => { toContinuousMap := ContinuousMap.mk ↑f, zero_at_infty' := (_ : Tendsto (↑f) (cocompact α) (𝓝 0)) }) ((fun f => ↑f) f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β inst✝³ : Zero β inst✝² : ZeroAtInftyContinuousMapClass F α β G : Type u_2 inst✝¹ : ContinuousMapClass G α β inst✝ : CompactSpace α ⊢ ∀ (f : G), Tendsto (↑f) (cocompact α) (𝓝 0) [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : MulZeroClass β inst✝ : ContinuousMul β f g : α →C₀ β ⊢ Tendsto (↑f * ↑g).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simpa only [mul_zero] using (zero_at_infty f).mul (zero_at_infty g) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddZeroClass β inst✝ : ContinuousAdd β f g : α →C₀ β ⊢ Tendsto (↑f + ↑g).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simpa only [add_zero] using (zero_at_infty f).add (zero_at_infty g) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddMonoid β inst✝ : ContinuousAdd β f g : α →C₀ β ⊢ ↑(nsmulRec 0 f) = 0 • ↑f [PROOFSTEP] rw [nsmulRec, zero_smul, coe_zero] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddMonoid β inst✝ : ContinuousAdd β f g : α →C₀ β n : ℕ ⊢ ↑(nsmulRec (n + 1) f) = (n + 1) • ↑f [PROOFSTEP] rw [nsmulRec, succ_nsmul, coe_add, coe_nsmulRec n] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddMonoid β inst✝ : ContinuousAdd β f✝ g : α →C₀ β n : ℕ f : α →C₀ β ⊢ Tendsto (n • ↑f).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simpa [coe_nsmulRec] using zero_at_infty (nsmulRec n f) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddGroup β inst✝ : TopologicalAddGroup β f✝ g f : α →C₀ β ⊢ Tendsto (-↑f).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simpa only [neg_zero] using (zero_at_infty f).neg [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddGroup β inst✝ : TopologicalAddGroup β f✝ g✝ f g : α →C₀ β ⊢ Tendsto (↑f - ↑g).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simpa only [sub_zero] using (zero_at_infty f).sub (zero_at_infty g) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddGroup β inst✝ : TopologicalAddGroup β f g : α →C₀ β n : ℕ ⊢ ↑(zsmulRec (Int.ofNat n) f) = Int.ofNat n • ↑f [PROOFSTEP] rw [zsmulRec, Int.ofNat_eq_coe, coe_nsmulRec, coe_nat_zsmul] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddGroup β inst✝ : TopologicalAddGroup β f g : α →C₀ β n : ℕ ⊢ ↑(zsmulRec (Int.negSucc n) f) = Int.negSucc n • ↑f [PROOFSTEP] rw [zsmulRec, negSucc_zsmul, coe_neg, coe_nsmulRec] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β x : α inst✝¹ : AddGroup β inst✝ : TopologicalAddGroup β f✝ g : α →C₀ β n : ℤ f : α →C₀ β ⊢ Tendsto (ContinuousMap.mk (n • ↑f)).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simpa using zero_at_infty (zsmulRec n f) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁵ : TopologicalSpace α inst✝⁴ : TopologicalSpace β x : α inst✝³ : Zero β R : Type u_2 inst✝² : Zero R inst✝¹ : SMulWithZero R β inst✝ : ContinuousConstSMul R β r : R f : α →C₀ β ⊢ Tendsto (ContinuousMap.mk (r • ↑f)).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simpa [smul_zero] using (zero_at_infty f).const_smul r [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β x : α R : Type u_2 inst✝⁵ : Semiring R inst✝⁴ : NonUnitalNonAssocSemiring β inst✝³ : TopologicalSemiring β inst✝² : Module R β inst✝¹ : ContinuousConstSMul R β inst✝ : IsScalarTower R β β r : R f g : α →C₀ β ⊢ (r • f) • g = r • f • g [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β x : α R : Type u_2 inst✝⁵ : Semiring R inst✝⁴ : NonUnitalNonAssocSemiring β inst✝³ : TopologicalSemiring β inst✝² : Module R β inst✝¹ : ContinuousConstSMul R β inst✝ : IsScalarTower R β β r : R f g : α →C₀ β x✝ : α ⊢ ↑((r • f) • g) x✝ = ↑(r • f • g) x✝ [PROOFSTEP] simp only [smul_eq_mul, coe_mul, coe_smul, Pi.mul_apply, Pi.smul_apply] [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β x : α R : Type u_2 inst✝⁵ : Semiring R inst✝⁴ : NonUnitalNonAssocSemiring β inst✝³ : TopologicalSemiring β inst✝² : Module R β inst✝¹ : ContinuousConstSMul R β inst✝ : IsScalarTower R β β r : R f g : α →C₀ β x✝ : α ⊢ r • ↑f x✝ * ↑g x✝ = r • (↑f x✝ * ↑g x✝) [PROOFSTEP] rw [← smul_eq_mul, ← smul_eq_mul, smul_assoc] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β x : α R : Type u_2 inst✝⁵ : Semiring R inst✝⁴ : NonUnitalNonAssocSemiring β inst✝³ : TopologicalSemiring β inst✝² : Module R β inst✝¹ : ContinuousConstSMul R β inst✝ : SMulCommClass R β β r : R f g : α →C₀ β ⊢ r • f • g = f • r • g [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β x : α R : Type u_2 inst✝⁵ : Semiring R inst✝⁴ : NonUnitalNonAssocSemiring β inst✝³ : TopologicalSemiring β inst✝² : Module R β inst✝¹ : ContinuousConstSMul R β inst✝ : SMulCommClass R β β r : R f g : α →C₀ β x✝ : α ⊢ ↑(r • f • g) x✝ = ↑(f • r • g) x✝ [PROOFSTEP] simp only [smul_eq_mul, coe_smul, coe_mul, Pi.smul_apply, Pi.mul_apply] [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β x : α R : Type u_2 inst✝⁵ : Semiring R inst✝⁴ : NonUnitalNonAssocSemiring β inst✝³ : TopologicalSemiring β inst✝² : Module R β inst✝¹ : ContinuousConstSMul R β inst✝ : SMulCommClass R β β r : R f g : α →C₀ β x✝ : α ⊢ r • (↑f x✝ * ↑g x✝) = ↑f x✝ * r • ↑g x✝ [PROOFSTEP] rw [← smul_eq_mul, ← smul_eq_mul, smul_comm] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F ⊢ ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C [PROOFSTEP] obtain ⟨K : Set α, hK₁, hK₂⟩ := mem_cocompact.mp (tendsto_def.mp (zero_at_infty (f : F)) _ (closedBall_mem_nhds (0 : β) zero_lt_one)) [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F K : Set α hK₁ : IsCompact K hK₂ : Kᶜ ⊆ ↑f ⁻¹' closedBall 0 1 ⊢ ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C [PROOFSTEP] obtain ⟨C, hC⟩ := (hK₁.image (map_continuous f)).bounded.subset_ball (0 : β) [GOAL] case intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F K : Set α hK₁ : IsCompact K hK₂ : Kᶜ ⊆ ↑f ⁻¹' closedBall 0 1 C : ℝ hC : ↑f '' K ⊆ closedBall 0 C ⊢ ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C [PROOFSTEP] refine' ⟨max C 1 + max C 1, fun x y => _⟩ [GOAL] case intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F K : Set α hK₁ : IsCompact K hK₂ : Kᶜ ⊆ ↑f ⁻¹' closedBall 0 1 C : ℝ hC : ↑f '' K ⊆ closedBall 0 C x y : α ⊢ dist (↑f x) (↑f y) ≤ max C 1 + max C 1 [PROOFSTEP] have : ∀ x, f x ∈ closedBall (0 : β) (max C 1) := by intro x by_cases hx : x ∈ K · exact (mem_closedBall.mp <| hC ⟨x, hx, rfl⟩).trans (le_max_left _ _) · exact (mem_closedBall.mp <| mem_preimage.mp (hK₂ hx)).trans (le_max_right _ _) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F K : Set α hK₁ : IsCompact K hK₂ : Kᶜ ⊆ ↑f ⁻¹' closedBall 0 1 C : ℝ hC : ↑f '' K ⊆ closedBall 0 C x y : α ⊢ ∀ (x : α), ↑f x ∈ closedBall 0 (max C 1) [PROOFSTEP] intro x [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F K : Set α hK₁ : IsCompact K hK₂ : Kᶜ ⊆ ↑f ⁻¹' closedBall 0 1 C : ℝ hC : ↑f '' K ⊆ closedBall 0 C x✝ y x : α ⊢ ↑f x ∈ closedBall 0 (max C 1) [PROOFSTEP] by_cases hx : x ∈ K [GOAL] case pos F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F K : Set α hK₁ : IsCompact K hK₂ : Kᶜ ⊆ ↑f ⁻¹' closedBall 0 1 C : ℝ hC : ↑f '' K ⊆ closedBall 0 C x✝ y x : α hx : x ∈ K ⊢ ↑f x ∈ closedBall 0 (max C 1) [PROOFSTEP] exact (mem_closedBall.mp <| hC ⟨x, hx, rfl⟩).trans (le_max_left _ _) [GOAL] case neg F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F K : Set α hK₁ : IsCompact K hK₂ : Kᶜ ⊆ ↑f ⁻¹' closedBall 0 1 C : ℝ hC : ↑f '' K ⊆ closedBall 0 C x✝ y x : α hx : ¬x ∈ K ⊢ ↑f x ∈ closedBall 0 (max C 1) [PROOFSTEP] exact (mem_closedBall.mp <| mem_preimage.mp (hK₂ hx)).trans (le_max_right _ _) [GOAL] case intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f : F K : Set α hK₁ : IsCompact K hK₂ : Kᶜ ⊆ ↑f ⁻¹' closedBall 0 1 C : ℝ hC : ↑f '' K ⊆ closedBall 0 C x y : α this : ∀ (x : α), ↑f x ∈ closedBall 0 (max C 1) ⊢ dist (↑f x) (↑f y) ≤ max C 1 + max C 1 [PROOFSTEP] exact (dist_triangle (f x) 0 (f y)).trans (add_le_add (mem_closedBall.mp <| this x) (mem_closedBall'.mp <| this y)) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f g : α →C₀ β h : toBcf f = toBcf g ⊢ f = g [PROOFSTEP] ext x [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β f g : α →C₀ β h : toBcf f = toBcf g x : α ⊢ ↑f x = ↑g x [PROOFSTEP] simpa only using FunLike.congr_fun h x [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F✝ α β C : ℝ f✝ g : α →C₀ β ι : Type u_2 F : ι → α →C₀ β f : α →C₀ β l : Filter ι ⊢ Tendsto F l (𝓝 f) ↔ TendstoUniformly (fun i => ↑(F i)) (↑f) l [PROOFSTEP] simpa only [Metric.tendsto_nhds] using @BoundedContinuousFunction.tendsto_iff_tendstoUniformly _ _ _ _ _ (fun i => (F i).toBcf) f.toBcf l [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f g : α →C₀ β ⊢ Isometry toBcf [PROOFSTEP] tauto [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f g : α →C₀ β ⊢ IsClosed (range toBcf) [PROOFSTEP] refine' isClosed_iff_clusterPt.mpr fun f hf => _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f✝ g : α →C₀ β f : α →ᵇ β hf : ClusterPt f (𝓟 (range toBcf)) ⊢ f ∈ range toBcf [PROOFSTEP] rw [clusterPt_principal_iff] at hf [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f✝ g : α →C₀ β f : α →ᵇ β hf : ∀ (U : Set (α →ᵇ β)), U ∈ 𝓝 f → Set.Nonempty (U ∩ range toBcf) ⊢ f ∈ range toBcf [PROOFSTEP] have : Tendsto f (cocompact α) (𝓝 0) := by refine' Metric.tendsto_nhds.mpr fun ε hε => _ obtain ⟨_, hg, g, rfl⟩ := hf (ball f (ε / 2)) (ball_mem_nhds f <| half_pos hε) refine' (Metric.tendsto_nhds.mp (zero_at_infty g) (ε / 2) (half_pos hε)).mp (eventually_of_forall fun x hx => _) calc dist (f x) 0 ≤ dist (g.toBcf x) (f x) + dist (g x) 0 := dist_triangle_left _ _ _ _ < dist g.toBcf f + ε / 2 := (add_lt_add_of_le_of_lt (dist_coe_le_dist x) hx) _ < ε := by simpa [add_halves ε] using add_lt_add_right (mem_ball.1 hg) (ε / 2) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f✝ g : α →C₀ β f : α →ᵇ β hf : ∀ (U : Set (α →ᵇ β)), U ∈ 𝓝 f → Set.Nonempty (U ∩ range toBcf) ⊢ Tendsto (↑f) (cocompact α) (𝓝 0) [PROOFSTEP] refine' Metric.tendsto_nhds.mpr fun ε hε => _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f✝ g : α →C₀ β f : α →ᵇ β hf : ∀ (U : Set (α →ᵇ β)), U ∈ 𝓝 f → Set.Nonempty (U ∩ range toBcf) ε : ℝ hε : ε > 0 ⊢ ∀ᶠ (x : α) in cocompact α, dist (↑f x) 0 < ε [PROOFSTEP] obtain ⟨_, hg, g, rfl⟩ := hf (ball f (ε / 2)) (ball_mem_nhds f <| half_pos hε) [GOAL] case intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f✝ g✝ : α →C₀ β f : α →ᵇ β hf : ∀ (U : Set (α →ᵇ β)), U ∈ 𝓝 f → Set.Nonempty (U ∩ range toBcf) ε : ℝ hε : ε > 0 g : α →C₀ β hg : toBcf g ∈ ball f (ε / 2) ⊢ ∀ᶠ (x : α) in cocompact α, dist (↑f x) 0 < ε [PROOFSTEP] refine' (Metric.tendsto_nhds.mp (zero_at_infty g) (ε / 2) (half_pos hε)).mp (eventually_of_forall fun x hx => _) [GOAL] case intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f✝ g✝ : α →C₀ β f : α →ᵇ β hf : ∀ (U : Set (α →ᵇ β)), U ∈ 𝓝 f → Set.Nonempty (U ∩ range toBcf) ε : ℝ hε : ε > 0 g : α →C₀ β hg : toBcf g ∈ ball f (ε / 2) x : α hx : dist (↑g x) 0 < ε / 2 ⊢ dist (↑f x) 0 < ε [PROOFSTEP] calc dist (f x) 0 ≤ dist (g.toBcf x) (f x) + dist (g x) 0 := dist_triangle_left _ _ _ _ < dist g.toBcf f + ε / 2 := (add_lt_add_of_le_of_lt (dist_coe_le_dist x) hx) _ < ε := by simpa [add_halves ε] using add_lt_add_right (mem_ball.1 hg) (ε / 2) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f✝ g✝ : α →C₀ β f : α →ᵇ β hf : ∀ (U : Set (α →ᵇ β)), U ∈ 𝓝 f → Set.Nonempty (U ∩ range toBcf) ε : ℝ hε : ε > 0 g : α →C₀ β hg : toBcf g ∈ ball f (ε / 2) x : α hx : dist (↑g x) 0 < ε / 2 ⊢ dist (toBcf g) f + ε / 2 < ε [PROOFSTEP] simpa [add_halves ε] using add_lt_add_right (mem_ball.1 hg) (ε / 2) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : MetricSpace β inst✝¹ : Zero β inst✝ : ZeroAtInftyContinuousMapClass F α β C : ℝ f✝ g : α →C₀ β f : α →ᵇ β hf : ∀ (U : Set (α →ᵇ β)), U ∈ 𝓝 f → Set.Nonempty (U ∩ range toBcf) this : Tendsto (↑f) (cocompact α) (𝓝 0) ⊢ f ∈ range toBcf [PROOFSTEP] exact ⟨⟨f.toContinuousMap, this⟩, rfl⟩ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : AddMonoid β inst✝¹ : StarAddMonoid β inst✝ : ContinuousStar β f : α →C₀ β ⊢ Tendsto (ContinuousMap.mk fun x => star (↑f x)).toFun (cocompact α) (𝓝 0) [PROOFSTEP] simpa only [star_zero] using (continuous_star.tendsto (0 : β)).comp (zero_at_infty f)
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.ZeroAtInfty", "llama_tokens": 10509}
[GOAL] X Y : TopCat f : X ⟶ Y ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] suffices Epi f ↔ Epi ((forget TopCat).map f) by rw [this, CategoryTheory.epi_iff_surjective] rfl [GOAL] X Y : TopCat f : X ⟶ Y this : Epi f ↔ Epi ((forget TopCat).map f) ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] rw [this, CategoryTheory.epi_iff_surjective] [GOAL] X Y : TopCat f : X ⟶ Y this : Epi f ↔ Epi ((forget TopCat).map f) ⊢ Function.Surjective ((forget TopCat).map f) ↔ Function.Surjective ↑f [PROOFSTEP] rfl [GOAL] X Y : TopCat f : X ⟶ Y ⊢ Epi f ↔ Epi ((forget TopCat).map f) [PROOFSTEP] constructor [GOAL] case mp X Y : TopCat f : X ⟶ Y ⊢ Epi f → Epi ((forget TopCat).map f) [PROOFSTEP] intro [GOAL] case mp X Y : TopCat f : X ⟶ Y a✝ : Epi f ⊢ Epi ((forget TopCat).map f) [PROOFSTEP] infer_instance [GOAL] case mpr X Y : TopCat f : X ⟶ Y ⊢ Epi ((forget TopCat).map f) → Epi f [PROOFSTEP] apply Functor.epi_of_epi_map [GOAL] X Y : TopCat f : X ⟶ Y ⊢ Mono f ↔ Function.Injective ↑f [PROOFSTEP] suffices Mono f ↔ Mono ((forget TopCat).map f) by rw [this, CategoryTheory.mono_iff_injective] rfl [GOAL] X Y : TopCat f : X ⟶ Y this : Mono f ↔ Mono ((forget TopCat).map f) ⊢ Mono f ↔ Function.Injective ↑f [PROOFSTEP] rw [this, CategoryTheory.mono_iff_injective] [GOAL] X Y : TopCat f : X ⟶ Y this : Mono f ↔ Mono ((forget TopCat).map f) ⊢ Function.Injective ((forget TopCat).map f) ↔ Function.Injective ↑f [PROOFSTEP] rfl [GOAL] X Y : TopCat f : X ⟶ Y ⊢ Mono f ↔ Mono ((forget TopCat).map f) [PROOFSTEP] constructor [GOAL] case mp X Y : TopCat f : X ⟶ Y ⊢ Mono f → Mono ((forget TopCat).map f) [PROOFSTEP] intro [GOAL] case mp X Y : TopCat f : X ⟶ Y a✝ : Mono f ⊢ Mono ((forget TopCat).map f) [PROOFSTEP] infer_instance [GOAL] case mpr X Y : TopCat f : X ⟶ Y ⊢ Mono ((forget TopCat).map f) → Mono f [PROOFSTEP] apply Functor.mono_of_mono_map
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.EpiMono", "llama_tokens": 876}
[GOAL] X : Profinite X✝ Y✝ Z✝ : DiscreteQuotient ↑X.toCompHaus.toTop x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ ⊢ { obj := fun S => FintypeCat.of (Quotient S.toSetoid), map := fun {X_1 Y} f => DiscreteQuotient.ofLE (_ : X_1 ≤ Y) }.map (x✝¹ ≫ x✝) = { obj := fun S => FintypeCat.of (Quotient S.toSetoid), map := fun {X_1 Y} f => DiscreteQuotient.ofLE (_ : X_1 ≤ Y) }.map x✝¹ ≫ { obj := fun S => FintypeCat.of (Quotient S.toSetoid), map := fun {X_1 Y} f => DiscreteQuotient.ofLE (_ : X_1 ≤ Y) }.map x✝ [PROOFSTEP] ext [GOAL] case h X : Profinite X✝ Y✝ Z✝ : DiscreteQuotient ↑X.toCompHaus.toTop x✝² : X✝ ⟶ Y✝ x✝¹ : Y✝ ⟶ Z✝ x✝ : ↑({ obj := fun S => FintypeCat.of (Quotient S.toSetoid), map := fun {X_1 Y} f => DiscreteQuotient.ofLE (_ : X_1 ≤ Y) }.obj X✝) ⊢ { obj := fun S => FintypeCat.of (Quotient S.toSetoid), map := fun {X_1 Y} f => DiscreteQuotient.ofLE (_ : X_1 ≤ Y) }.map (x✝² ≫ x✝¹) x✝ = ({ obj := fun S => FintypeCat.of (Quotient S.toSetoid), map := fun {X_1 Y} f => DiscreteQuotient.ofLE (_ : X_1 ≤ Y) }.map x✝² ≫ { obj := fun S => FintypeCat.of (Quotient S.toSetoid), map := fun {X_1 Y} f => DiscreteQuotient.ofLE (_ : X_1 ≤ Y) }.map x✝¹) x✝ [PROOFSTEP] aesop_cat [GOAL] X : Profinite ⊢ Function.Bijective ↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) [PROOFSTEP] refine' ⟨fun a b h => _, fun a => _⟩ [GOAL] case refine'_1 X : Profinite a b : (forget Profinite).obj (asLimitCone X).pt h : ↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) a = ↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) b ⊢ a = b [PROOFSTEP] refine' DiscreteQuotient.eq_of_forall_proj_eq fun S => _ [GOAL] case refine'_1 X : Profinite a b : (forget Profinite).obj (asLimitCone X).pt h : ↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) a = ↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) b S : DiscreteQuotient ((forget Profinite).obj (asLimitCone X).pt) ⊢ DiscreteQuotient.proj S a = DiscreteQuotient.proj S b [PROOFSTEP] apply_fun fun f : (limitCone X.diagram).pt => f.val S at h [GOAL] case refine'_1 X : Profinite a b : (forget Profinite).obj (asLimitCone X).pt S : DiscreteQuotient ((forget Profinite).obj (asLimitCone X).pt) h : ↑(↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) a) S = ↑(↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) b) S ⊢ DiscreteQuotient.proj S a = DiscreteQuotient.proj S b [PROOFSTEP] exact h [GOAL] case refine'_2 X : Profinite a : (forget Profinite).obj (limitCone (diagram X)).pt ⊢ ∃ a_1, ↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) a_1 = a [PROOFSTEP] obtain ⟨b, hb⟩ := DiscreteQuotient.exists_of_compat (fun S => a.val S) fun _ _ h => a.prop (homOfLE h) [GOAL] case refine'_2.intro X : Profinite a : (forget Profinite).obj (limitCone (diagram X)).pt b : ↑X.toCompHaus.toTop hb : ∀ (Q : DiscreteQuotient ↑X.toCompHaus.toTop), DiscreteQuotient.proj Q b = ↑a Q ⊢ ∃ a_1, ↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) a_1 = a [PROOFSTEP] use b [GOAL] case h X : Profinite a : (forget Profinite).obj (limitCone (diagram X)).pt b : ↑X.toCompHaus.toTop hb : ∀ (Q : DiscreteQuotient ↑X.toCompHaus.toTop), DiscreteQuotient.proj Q b = ↑a Q ⊢ ↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) b = a [PROOFSTEP] apply Subtype.ext [GOAL] case h.a X : Profinite a : (forget Profinite).obj (limitCone (diagram X)).pt b : ↑X.toCompHaus.toTop hb : ∀ (Q : DiscreteQuotient ↑X.toCompHaus.toTop), DiscreteQuotient.proj Q b = ↑a Q ⊢ ↑(↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) b) = ↑a [PROOFSTEP] apply funext [GOAL] case h.a.h X : Profinite a : (forget Profinite).obj (limitCone (diagram X)).pt b : ↑X.toCompHaus.toTop hb : ∀ (Q : DiscreteQuotient ↑X.toCompHaus.toTop), DiscreteQuotient.proj Q b = ↑a Q ⊢ ∀ (x : DiscreteQuotient ↑X.toCompHaus.toTop), ↑(↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) b) x = ↑a x [PROOFSTEP] rintro S [GOAL] case h.a.h X : Profinite a : (forget Profinite).obj (limitCone (diagram X)).pt b : ↑X.toCompHaus.toTop hb : ∀ (Q : DiscreteQuotient ↑X.toCompHaus.toTop), DiscreteQuotient.proj Q b = ↑a Q S : DiscreteQuotient ↑X.toCompHaus.toTop ⊢ ↑(↑(Limits.IsLimit.lift (limitConeIsLimit (diagram X)) (asLimitCone X)) b) S = ↑a S [PROOFSTEP] apply hb
{"mathlib_filename": "Mathlib.Topology.Category.Profinite.AsLimit", "llama_tokens": 2095}
[GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B ⊢ fst f g ≫ f = snd f g ≫ g [PROOFSTEP] ext ⟨_, h⟩ [GOAL] case w.mk X Y B : Profinite f : X ⟶ B g : Y ⟶ B val✝ : ↑X.toCompHaus.toTop × ↑Y.toCompHaus.toTop h : val✝ ∈ {xy | ↑f xy.fst = ↑g xy.snd} ⊢ ↑(fst f g ≫ f) { val := val✝, property := h } = ↑(snd f g ≫ g) { val := val✝, property := h } [PROOFSTEP] exact h [GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a : Z ⟶ X b : Z ⟶ Y w : a ≫ f = b ≫ g z : ↑Z.toCompHaus.toTop ⊢ (↑a z, ↑b z) ∈ {xy | ↑f xy.fst = ↑g xy.snd} [PROOFSTEP] apply_fun (· z) at w [GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a : Z ⟶ X b : Z ⟶ Y z : ↑Z.toCompHaus.toTop w : ↑(a ≫ f) z = ↑(b ≫ g) z ⊢ (↑a z, ↑b z) ∈ {xy | ↑f xy.fst = ↑g xy.snd} [PROOFSTEP] exact w [GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a : Z ⟶ X b : Z ⟶ Y w : a ≫ f = b ≫ g ⊢ Continuous fun z => { val := (↑a z, ↑b z), property := (_ : ↑(a ≫ f) z = ↑(b ≫ g) z) } [PROOFSTEP] apply Continuous.subtype_mk [GOAL] case h X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a : Z ⟶ X b : Z ⟶ Y w : a ≫ f = b ≫ g ⊢ Continuous fun x => (↑a x, ↑b x) [PROOFSTEP] rw [continuous_prod_mk] [GOAL] case h X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a : Z ⟶ X b : Z ⟶ Y w : a ≫ f = b ≫ g ⊢ (Continuous fun x => ↑a x) ∧ Continuous fun x => ↑b x [PROOFSTEP] exact ⟨a.continuous, b.continuous⟩ [GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a b : Z ⟶ pullback f g hfst : a ≫ fst f g = b ≫ fst f g hsnd : a ≫ snd f g = b ≫ snd f g ⊢ a = b [PROOFSTEP] ext z [GOAL] case w X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a b : Z ⟶ pullback f g hfst : a ≫ fst f g = b ≫ fst f g hsnd : a ≫ snd f g = b ≫ snd f g z : (forget Profinite).obj Z ⊢ ↑a z = ↑b z [PROOFSTEP] apply_fun (· z) at hfst hsnd [GOAL] case w X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a b : Z ⟶ pullback f g z : (forget Profinite).obj Z hfst : ↑(a ≫ fst f g) z = ↑(b ≫ fst f g) z hsnd : ↑(a ≫ snd f g) z = ↑(b ≫ snd f g) z ⊢ ↑a z = ↑b z [PROOFSTEP] apply Subtype.ext [GOAL] case w.a X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a b : Z ⟶ pullback f g z : (forget Profinite).obj Z hfst : ↑(a ≫ fst f g) z = ↑(b ≫ fst f g) z hsnd : ↑(a ≫ snd f g) z = ↑(b ≫ snd f g) z ⊢ ↑(↑a z) = ↑(↑b z) [PROOFSTEP] apply Prod.ext [GOAL] case w.a.h₁ X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a b : Z ⟶ pullback f g z : (forget Profinite).obj Z hfst : ↑(a ≫ fst f g) z = ↑(b ≫ fst f g) z hsnd : ↑(a ≫ snd f g) z = ↑(b ≫ snd f g) z ⊢ (↑(↑a z)).fst = (↑(↑b z)).fst [PROOFSTEP] exact hfst [GOAL] case w.a.h₂ X Y B : Profinite f : X ⟶ B g : Y ⟶ B Z : Profinite a b : Z ⟶ pullback f g z : (forget Profinite).obj Z hfst : ↑(a ≫ fst f g) z = ↑(b ≫ fst f g) z hsnd : ↑(a ≫ snd f g) z = ↑(b ≫ snd f g) z ⊢ (↑(↑a z)).snd = (↑(↑b z)).snd [PROOFSTEP] exact hsnd [GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B ⊢ pullback.fst f g = (pullbackIsoPullback f g).hom ≫ Limits.pullback.fst [PROOFSTEP] dsimp [pullbackIsoPullback] [GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B ⊢ pullback.fst f g = (Limits.IsLimit.conePointUniqueUpToIso (pullback.isLimit f g) (Limits.limit.isLimit (Limits.cospan f g))).hom ≫ Limits.pullback.fst [PROOFSTEP] simp only [Limits.limit.conePointUniqueUpToIso_hom_comp, pullback.cone_pt, pullback.cone_π] [GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B ⊢ pullback.snd f g = (pullbackIsoPullback f g).hom ≫ Limits.pullback.snd [PROOFSTEP] dsimp [pullbackIsoPullback] [GOAL] X Y B : Profinite f : X ⟶ B g : Y ⟶ B ⊢ pullback.snd f g = (Limits.IsLimit.conePointUniqueUpToIso (pullback.isLimit f g) (Limits.limit.isLimit (Limits.cospan f g))).hom ≫ Limits.pullback.snd [PROOFSTEP] simp only [Limits.limit.conePointUniqueUpToIso_hom_comp, pullback.cone_pt, pullback.cone_π] [GOAL] α : Type inst✝ : Fintype α X : α → Profinite B : Profinite e : (a : α) → X a ⟶ B ⊢ Continuous fun x => match x with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] apply continuous_sigma [GOAL] case hf α : Type inst✝ : Fintype α X : α → Profinite B : Profinite e : (a : α) → X a ⟶ B ⊢ ∀ (i : α), Continuous fun a => match { fst := i, snd := a } with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] intro a [GOAL] case hf α : Type inst✝ : Fintype α X : α → Profinite B : Profinite e : (a : α) → X a ⟶ B a : α ⊢ Continuous fun a_1 => match { fst := a, snd := a_1 } with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] exact (e a).continuous [GOAL] α : Type inst✝ : Fintype α X : α → Profinite B : Profinite f g : finiteCoproduct X ⟶ B h : ∀ (a : α), ι X a ≫ f = ι X a ≫ g ⊢ f = g [PROOFSTEP] ext ⟨a, x⟩ [GOAL] case w.mk α : Type inst✝ : Fintype α X : α → Profinite B : Profinite f g : finiteCoproduct X ⟶ B h : ∀ (a : α), ι X a ≫ f = ι X a ≫ g a : α x : ↑(X a).toCompHaus.toTop ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] specialize h a [GOAL] case w.mk α : Type inst✝ : Fintype α X : α → Profinite B : Profinite f g : finiteCoproduct X ⟶ B a : α x : ↑(X a).toCompHaus.toTop h : ι X a ≫ f = ι X a ≫ g ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] apply_fun (· x) at h [GOAL] case w.mk α : Type inst✝ : Fintype α X : α → Profinite B : Profinite f g : finiteCoproduct X ⟶ B a : α x : ↑(X a).toCompHaus.toTop h : ↑(ι X a ≫ f) x = ↑(ι X a ≫ g) x ⊢ ↑f { fst := a, snd := x } = ↑g { fst := a, snd := x } [PROOFSTEP] exact h [GOAL] α : Type inst✝ : Fintype α X : α → Profinite s : Limits.Cocone (Discrete.functor X) m : (cocone X).pt ⟶ s.pt hm : ∀ (j : Discrete α), NatTrans.app (cocone X).ι j ≫ m = NatTrans.app s.ι j a : α ⊢ ι (fun a => X a) a ≫ m = ι (fun a => X a) a ≫ (fun s => desc (fun a => X a) fun a => NatTrans.app s.ι { as := a }) s [PROOFSTEP] specialize hm ⟨a⟩ [GOAL] α : Type inst✝ : Fintype α X : α → Profinite s : Limits.Cocone (Discrete.functor X) m : (cocone X).pt ⟶ s.pt a : α hm : NatTrans.app (cocone X).ι { as := a } ≫ m = NatTrans.app s.ι { as := a } ⊢ ι (fun a => X a) a ≫ m = ι (fun a => X a) a ≫ (fun s => desc (fun a => X a) fun a => NatTrans.app s.ι { as := a }) s [PROOFSTEP] ext t [GOAL] case w α : Type inst✝ : Fintype α X : α → Profinite s : Limits.Cocone (Discrete.functor X) m : (cocone X).pt ⟶ s.pt a : α hm : NatTrans.app (cocone X).ι { as := a } ≫ m = NatTrans.app s.ι { as := a } t : (forget Profinite).obj (X a) ⊢ ↑(ι (fun a => X a) a ≫ m) t = ↑(ι (fun a => X a) a ≫ (fun s => desc (fun a => X a) fun a => NatTrans.app s.ι { as := a }) s) t [PROOFSTEP] apply_fun (· t) at hm [GOAL] case w α : Type inst✝ : Fintype α X : α → Profinite s : Limits.Cocone (Discrete.functor X) m : (cocone X).pt ⟶ s.pt a : α t : (forget Profinite).obj (X a) hm : ↑(NatTrans.app (cocone X).ι { as := a } ≫ m) t = ↑(NatTrans.app s.ι { as := a }) t ⊢ ↑(ι (fun a => X a) a ≫ m) t = ↑(ι (fun a => X a) a ≫ (fun s => desc (fun a => X a) fun a => NatTrans.app s.ι { as := a }) s) t [PROOFSTEP] exact hm [GOAL] α : Type inst✝ : Fintype α X : α → Profinite a : α ⊢ Limits.Sigma.ι X a ≫ (coproductIsoCoproduct X).inv = finiteCoproduct.ι X a [PROOFSTEP] simp only [coproductIsoCoproduct, Limits.colimit.comp_coconePointUniqueUpToIso_inv, finiteCoproduct.cocone_pt, finiteCoproduct.cocone_ι, Discrete.natTrans_app] [GOAL] α : Type inst✝ : Fintype α X : α → Profinite a : α ⊢ Function.Injective ↑(ι X a) [PROOFSTEP] intro x y hxy [GOAL] α : Type inst✝ : Fintype α X : α → Profinite a : α x y : (forget Profinite).obj (X a) hxy : ↑(ι X a) x = ↑(ι X a) y ⊢ x = y [PROOFSTEP] exact eq_of_heq (Sigma.ext_iff.mp hxy).2 [GOAL] α : Type inst✝ : Fintype α X : α → Profinite B : Profinite π : (a : α) → X a ⟶ B a : α ⊢ ∀ (x : (forget Profinite).obj (X a)), ↑(desc X π) (↑(ι X a) x) = ↑(π a) x [PROOFSTEP] intro x [GOAL] α : Type inst✝ : Fintype α X : α → Profinite B : Profinite π : (a : α) → X a ⟶ B a : α x : (forget Profinite).obj (X a) ⊢ ↑(desc X π) (↑(ι X a) x) = ↑(π a) x [PROOFSTEP] change (ι X a ≫ desc X π) _ = _ [GOAL] α : Type inst✝ : Fintype α X : α → Profinite B : Profinite π : (a : α) → X a ⟶ B a : α x : (forget Profinite).obj (X a) ⊢ ↑(ι X a ≫ desc X π) x = ↑(π a) x [PROOFSTEP] simp only [ι_desc]
{"mathlib_filename": "Mathlib.Topology.Category.Profinite.Limits", "llama_tokens": 4201}
[GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat P Q : Presheaf C X f g : P ⟶ Q w : ∀ (U : Opens ↑X), NatTrans.app f (op U) = NatTrans.app g (op U) ⊢ f = g [PROOFSTEP] apply NatTrans.ext [GOAL] case app C : Type u inst✝ : Category.{v, u} C X : TopCat P Q : Presheaf C X f g : P ⟶ Q w : ∀ (U : Opens ↑X), NatTrans.app f (op U) = NatTrans.app g (op U) ⊢ f.app = g.app [PROOFSTEP] ext U [GOAL] case app.h C : Type u inst✝ : Category.{v, u} C X : TopCat P Q : Presheaf C X f g : P ⟶ Q w : ∀ (U : Opens ↑X), NatTrans.app f (op U) = NatTrans.app g (op U) U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app f U = NatTrans.app g U [PROOFSTEP] induction U with | _ U => ?_ [GOAL] case app.h C : Type u inst✝ : Category.{v, u} C X : TopCat P Q : Presheaf C X f g : P ⟶ Q w : ∀ (U : Opens ↑X), NatTrans.app f (op U) = NatTrans.app g (op U) U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app f U = NatTrans.app g U [PROOFSTEP] induction U with | _ U => ?_ [GOAL] case app.h.h C : Type u inst✝ : Category.{v, u} C X : TopCat P Q : Presheaf C X f g : P ⟶ Q w : ∀ (U : Opens ↑X), NatTrans.app f (op U) = NatTrans.app g (op U) U : Opens ↑X ⊢ NatTrans.app f (op U) = NatTrans.app g (op U) [PROOFSTEP] apply w [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat v w x y z : Opens ↑X h₀ : v ≤ x h₁ : x ≤ z ⊓ w h₂ : x ≤ y ⊓ z ⊢ v ≤ y [PROOFSTEP] restrict_tac [GOAL] C✝ : Type u inst✝² : Category.{v, u} C✝ X : TopCat C : Type u_1 inst✝¹ : Category.{u_3, u_1} C inst✝ : ConcreteCategory C F : Presheaf C X U V W : Opens ↑X e₁ : U ≤ V e₂ : V ≤ W x : (forget C).obj (F.obj (op W)) ⊢ x |_ V |_ U = x |_ U [PROOFSTEP] delta restrictOpen restrict [GOAL] C✝ : Type u inst✝² : Category.{v, u} C✝ X : TopCat C : Type u_1 inst✝¹ : Category.{u_3, u_1} C inst✝ : ConcreteCategory C F : Presheaf C X U V W : Opens ↑X e₁ : U ≤ V e₂ : V ≤ W x : (forget C).obj (F.obj (op W)) ⊢ ↑(F.map (homOfLE (_ : ∀ ⦃a : ↑X⦄, a ∈ ↑U → a ∈ ↑V)).op) (↑(F.map (homOfLE (_ : ∀ ⦃a : ↑X⦄, a ∈ ↑V → a ∈ ↑W)).op) x) = ↑(F.map (homOfLE (_ : ∀ ⦃a : ↑X⦄, a ∈ ↑U → a ∈ ↑W)).op) x [PROOFSTEP] rw [← comp_apply, ← Functor.map_comp] [GOAL] C✝ : Type u inst✝² : Category.{v, u} C✝ X : TopCat C : Type u_1 inst✝¹ : Category.{u_3, u_1} C inst✝ : ConcreteCategory C F : Presheaf C X U V W : Opens ↑X e₁ : U ≤ V e₂ : V ≤ W x : (forget C).obj (F.obj (op W)) ⊢ ↑(F.map ((homOfLE (_ : ∀ ⦃a : ↑X⦄, a ∈ ↑V → a ∈ ↑W)).op ≫ (homOfLE (_ : ∀ ⦃a : ↑X⦄, a ∈ ↑U → a ∈ ↑V)).op)) x = ↑(F.map (homOfLE (_ : ∀ ⦃a : ↑X⦄, a ∈ ↑U → a ∈ ↑W)).op) x [PROOFSTEP] rfl [GOAL] C✝ : Type u inst✝² : Category.{v, u} C✝ X : TopCat C : Type u_1 inst✝¹ : Category.{u_3, u_1} C inst✝ : ConcreteCategory C F G : Presheaf C X e : F ⟶ G U V : Opens ↑X h : U ≤ V x : (forget C).obj (F.obj (op V)) ⊢ ↑(NatTrans.app e (op U)) (x |_ U) = ↑(NatTrans.app e (op V)) x |_ U [PROOFSTEP] delta restrictOpen restrict [GOAL] C✝ : Type u inst✝² : Category.{v, u} C✝ X : TopCat C : Type u_1 inst✝¹ : Category.{u_3, u_1} C inst✝ : ConcreteCategory C F G : Presheaf C X e : F ⟶ G U V : Opens ↑X h : U ≤ V x : (forget C).obj (F.obj (op V)) ⊢ ↑(NatTrans.app e (op U)) (↑(F.map (homOfLE (_ : ∀ ⦃a : ↑X⦄, a ∈ ↑U → a ∈ ↑V)).op) x) = ↑(G.map (homOfLE (_ : ∀ ⦃a : ↑X⦄, a ∈ ↑U → a ∈ ↑V)).op) (↑(NatTrans.app e (op V)) x) [PROOFSTEP] rw [← comp_apply, NatTrans.naturality, comp_apply] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X ⊢ f _* ℱ = g _* ℱ [PROOFSTEP] rw [h] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X U : (Opens ↑Y)ᵒᵖ ⊢ (Opens.map f).op.obj U ⟶ (Opens.map g).op.obj U [PROOFSTEP] dsimp [Functor.op] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X U : (Opens ↑Y)ᵒᵖ ⊢ op ((Opens.map f).obj U.unop) ⟶ op ((Opens.map g).obj U.unop) [PROOFSTEP] apply Quiver.Hom.op [GOAL] case f C : Type u inst✝ : Category.{v, u} C X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X U : (Opens ↑Y)ᵒᵖ ⊢ (Opens.map g).obj U.unop ⟶ (Opens.map f).obj U.unop [PROOFSTEP] apply eqToHom [GOAL] case f.p C : Type u inst✝ : Category.{v, u} C X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X U : (Opens ↑Y)ᵒᵖ ⊢ (Opens.map g).obj U.unop = (Opens.map f).obj U.unop [PROOFSTEP] rw [h] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X U : (Opens ↑Y)ᵒᵖ ⊢ NatTrans.app (pushforwardEq h ℱ).hom U = ℱ.map (id (eqToHom (_ : (Opens.map g).obj U.unop = (Opens.map f).obj U.unop)).op) [PROOFSTEP] simp [pushforwardEq] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X U : (Opens ↑Y)ᵒᵖ ⊢ (Opens.map f).op.obj U = (Opens.map g).op.obj U [PROOFSTEP] rw [h] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f g : X ⟶ Y h : f = g ℱ : Presheaf C X U : (Opens ↑Y)ᵒᵖ ⊢ NatTrans.app (eqToHom (_ : f _* ℱ = g _* ℱ)) U = ℱ.map (eqToHom (_ : (Opens.map f).op.obj U = (Opens.map g).op.obj U)) [PROOFSTEP] rw [eqToHom_app, eqToHom_map] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C X U : Opens ↑Y ⊢ NatTrans.app (pushforwardEq (_ : f = f) ℱ).hom (op U) = 𝟙 ((f _* ℱ).obj (op U)) [PROOFSTEP] dsimp [pushforwardEq] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C X U : Opens ↑Y ⊢ ℱ.map (𝟙 (op ((Opens.map f).obj U))) = 𝟙 (ℱ.obj (op ((Opens.map f).obj U))) [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X ⊢ 𝟙 X _* ℱ = ℱ [PROOFSTEP] unfold pushforwardObj [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X ⊢ (Opens.map (𝟙 X)).op ⋙ ℱ = ℱ [PROOFSTEP] rw [Opens.map_id_eq] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X ⊢ (𝟭 (Opens ↑X)).op ⋙ ℱ = ℱ [PROOFSTEP] erw [Functor.id_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X U : Set ↑X p : IsOpen U ⊢ NatTrans.app (id ℱ).hom (op { carrier := U, is_open' := p }) = ℱ.map (𝟙 (op { carrier := U, is_open' := p })) [PROOFSTEP] dsimp [id] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X U : Set ↑X p : IsOpen U ⊢ NatTrans.app (whiskerRight (NatTrans.op (Opens.mapId X).inv) ℱ ≫ (Functor.leftUnitor ℱ).hom) (op { carrier := U, is_open' := p }) = ℱ.map (𝟙 (op { carrier := U, is_open' := p })) [PROOFSTEP] simp [CategoryStruct.comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (id ℱ).hom U = ℱ.map (eqToHom (_ : (Opens.map (𝟙 X)).op.obj U = U)) [PROOFSTEP] induction U [GOAL] case h C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X X✝ : Opens ↑X ⊢ NatTrans.app (id ℱ).hom (op X✝) = ℱ.map (eqToHom (_ : (Opens.map (𝟙 X)).op.obj (op X✝) = op X✝)) [PROOFSTEP] apply id_hom_app' [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X U : Set ↑X p : IsOpen U ⊢ NatTrans.app (id ℱ).inv (op { carrier := U, is_open' := p }) = ℱ.map (𝟙 (op { carrier := U, is_open' := p })) [PROOFSTEP] dsimp [id] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X U : Set ↑X p : IsOpen U ⊢ NatTrans.app ((Functor.leftUnitor ℱ).inv ≫ whiskerRight (NatTrans.op (Opens.mapId X).hom) ℱ) (op { carrier := U, is_open' := p }) = ℱ.map (𝟙 (op { carrier := U, is_open' := p })) [PROOFSTEP] simp [CategoryStruct.comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z U : (Opens ↑Z)ᵒᵖ ⊢ NatTrans.app (comp ℱ f g).hom U = 𝟙 (((f ≫ g) _* ℱ).obj U) [PROOFSTEP] simp [comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ℱ : Presheaf C X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z U : (Opens ↑Z)ᵒᵖ ⊢ NatTrans.app (comp ℱ f g).inv U = 𝟙 ((g _* (f _* ℱ)).obj U) [PROOFSTEP] simp [comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ℱ 𝒢 : Presheaf C X α : ℱ ⟶ 𝒢 x✝¹ x✝ : (Opens ↑Y)ᵒᵖ i : x✝¹ ⟶ x✝ ⊢ (f _* ℱ).map i ≫ (fun U => NatTrans.app α ((Opens.map f).op.obj U)) x✝ = (fun U => NatTrans.app α ((Opens.map f).op.obj U)) x✝¹ ≫ (f _* 𝒢).map i [PROOFSTEP] erw [α.naturality] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat f : X ⟶ Y ℱ 𝒢 : Presheaf C X α : ℱ ⟶ 𝒢 x✝¹ x✝ : (Opens ↑Y)ᵒᵖ i : x✝¹ ⟶ x✝ ⊢ NatTrans.app α ((Opens.map f).op.obj x✝¹) ≫ 𝒢.map ((Opens.map f).op.map i) = (fun U => NatTrans.app α ((Opens.map f).op.obj U)) x✝¹ ≫ (f _* 𝒢).map i [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) ⊢ (pullbackObj f ℱ).obj (op U) ≅ ℱ.obj (op { carrier := ↑f '' ↑U, is_open' := H }) [PROOFSTEP] let x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (@homOfLE _ _ _ ((Opens.map f).obj ⟨_, H⟩) (Set.image_preimage.le_u_l _)).op [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op ⊢ (pullbackObj f ℱ).obj (op U) ≅ ℱ.obj (op { carrier := ↑f '' ↑U, is_open' := H }) [PROOFSTEP] have hx : IsTerminal x := { lift := fun s ↦ by fapply CostructuredArrow.homMk change op (unop _) ⟶ op (⟨_, H⟩ : Opens _) · refine' (homOfLE _).op apply (Set.image_subset f s.pt.hom.unop.le).trans exact Set.image_preimage.l_u_le (SetLike.coe s.pt.left.unop) · simp -- porting note : add `fac`, `uniq` manually fac := fun _ _ => by ext; simp uniq := fun _ _ _ => by ext; simp } [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op s : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) ⊢ s.pt ⟶ (asEmptyCone x).pt [PROOFSTEP] fapply CostructuredArrow.homMk [GOAL] case g C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op s : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) ⊢ s.pt.left ⟶ (asEmptyCone x).pt.left case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op s : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) ⊢ autoParam ((Opens.map f).op.map ?g ≫ (asEmptyCone x).pt.hom = s.pt.hom) _auto✝ [PROOFSTEP] change op (unop _) ⟶ op (⟨_, H⟩ : Opens _) [GOAL] case g C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op s : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) ⊢ op s.pt.1.unop ⟶ op { carrier := ↑f '' ↑U, is_open' := H } [PROOFSTEP] refine' (homOfLE _).op [GOAL] case g C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op s : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) ⊢ { carrier := ↑f '' ↑U, is_open' := H } ≤ s.pt.1.unop [PROOFSTEP] apply (Set.image_subset f s.pt.hom.unop.le).trans [GOAL] case g C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op s : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) ⊢ ↑f '' ↑((Opens.map f).op.obj s.pt.left).unop ⊆ ↑s.pt.1.unop [PROOFSTEP] exact Set.image_preimage.l_u_le (SetLike.coe s.pt.left.unop) [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op s : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) ⊢ autoParam ((Opens.map f).op.map (let_fun this := (homOfLE (_ : ↑f '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op; this) ≫ (asEmptyCone x).pt.hom = s.pt.hom) _auto✝ [PROOFSTEP] simp -- porting note : add `fac`, `uniq` manually [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op x✝¹ : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) x✝ : Discrete PEmpty ⊢ (fun s => CostructuredArrow.homMk (let_fun this := (homOfLE (_ : ↑f '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op; this)) x✝¹ ≫ NatTrans.app (asEmptyCone x).π x✝ = NatTrans.app x✝¹.π x✝ [PROOFSTEP] ext [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op x✝¹ : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) x✝ : Discrete PEmpty ⊢ ((fun s => CostructuredArrow.homMk (let_fun this := (homOfLE (_ : ↑f '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op; this)) x✝¹ ≫ NatTrans.app (asEmptyCone x).π x✝).left = (NatTrans.app x✝¹.π x✝).left [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op x✝² : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) x✝¹ : x✝².pt ⟶ (asEmptyCone x).pt x✝ : ∀ (j : Discrete PEmpty), x✝¹ ≫ NatTrans.app (asEmptyCone x).π j = NatTrans.app x✝².π j ⊢ x✝¹ = (fun s => CostructuredArrow.homMk (let_fun this := (homOfLE (_ : ↑f '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op; this)) x✝² [PROOFSTEP] ext [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op x✝² : Cone (Functor.empty (CostructuredArrow (Opens.map f).op (op U))) x✝¹ : x✝².pt ⟶ (asEmptyCone x).pt x✝ : ∀ (j : Discrete PEmpty), x✝¹ ≫ NatTrans.app (asEmptyCone x).π j = NatTrans.app x✝².π j ⊢ x✝¹.left = ((fun s => CostructuredArrow.homMk (let_fun this := (homOfLE (_ : ↑f '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op; this)) x✝²).left [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat f : X ⟶ Y ℱ : Presheaf C Y U : Opens ↑X H : IsOpen (↑f '' ↑U) x : CostructuredArrow (Opens.map f).op (op U) := CostructuredArrow.mk (homOfLE (_ : ↑U ≤ (fun a => ↑f a) ⁻¹' ((fun a => ↑f a) '' ↑U))).op hx : IsTerminal x ⊢ (pullbackObj f ℱ).obj (op U) ≅ ℱ.obj (op { carrier := ↑f '' ↑U, is_open' := H }) [PROOFSTEP] exact IsColimit.coconePointUniqueUpToIso (colimit.isColimit _) (colimitOfDiagramTerminal hx _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : (Opens ↑Y)ᵒᵖ ⊢ IsOpen (↑(𝟙 Y) '' ↑U.unop) [PROOFSTEP] simpa using U.unop.2 [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : (Opens ↑Y)ᵒᵖ ⊢ op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U V : (Opens ↑Y)ᵒᵖ i : U ⟶ V ⊢ (pullbackObj (𝟙 Y) ℱ).map i ≫ ((fun U => pullbackObjObjOfImageOpen (𝟙 Y) ℱ U.unop (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) ≪≫ ℱ.mapIso (eqToIso (_ : op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U))) V).hom = ((fun U => pullbackObjObjOfImageOpen (𝟙 Y) ℱ U.unop (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) ≪≫ ℱ.mapIso (eqToIso (_ : op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U))) U).hom ≫ ℱ.map i [PROOFSTEP] simp only [pullbackObj_obj] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U V : (Opens ↑Y)ᵒᵖ i : U ⟶ V ⊢ (pullbackObj (𝟙 Y) ℱ).map i ≫ (pullbackObjObjOfImageOpen (𝟙 Y) ℱ V.unop (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop)) ≪≫ ℱ.mapIso (eqToIso (_ : op { carrier := ↑(𝟙 Y) '' ↑V.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop)) } = V))).hom = (pullbackObjObjOfImageOpen (𝟙 Y) ℱ U.unop (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) ≪≫ ℱ.mapIso (eqToIso (_ : op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U))).hom ≫ ℱ.map i [PROOFSTEP] ext [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U V : (Opens ↑Y)ᵒᵖ i : U ⟶ V j✝ : CostructuredArrow (Opens.map (𝟙 Y)).op U ⊢ colimit.ι (Lan.diagram (Opens.map (𝟙 Y)).op ℱ U) j✝ ≫ (pullbackObj (𝟙 Y) ℱ).map i ≫ (pullbackObjObjOfImageOpen (𝟙 Y) ℱ V.unop (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop)) ≪≫ ℱ.mapIso (eqToIso (_ : op { carrier := ↑(𝟙 Y) '' ↑V.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop)) } = V))).hom = colimit.ι (Lan.diagram (Opens.map (𝟙 Y)).op ℱ U) j✝ ≫ (pullbackObjObjOfImageOpen (𝟙 Y) ℱ U.unop (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) ≪≫ ℱ.mapIso (eqToIso (_ : op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U))).hom ≫ ℱ.map i [PROOFSTEP] simp only [Functor.comp_obj, CostructuredArrow.proj_obj, pullbackObj_map, Iso.trans_hom, Functor.mapIso_hom, eqToIso.hom, Category.assoc] [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U V : (Opens ↑Y)ᵒᵖ i : U ⟶ V j✝ : CostructuredArrow (Opens.map (𝟙 Y)).op U ⊢ colimit.ι (Lan.diagram (Opens.map (𝟙 Y)).op ℱ U) j✝ ≫ colimit.pre (Lan.diagram (Opens.map (𝟙 Y)).op ℱ V) (CostructuredArrow.map i) ≫ (pullbackObjObjOfImageOpen (𝟙 Y) ℱ V.unop (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop))).hom ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑V.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop)) } = V)) = colimit.ι (Lan.diagram (Opens.map (𝟙 Y)).op ℱ U) j✝ ≫ (pullbackObjObjOfImageOpen (𝟙 Y) ℱ U.unop (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop))).hom ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U)) ≫ ℱ.map i [PROOFSTEP] erw [colimit.pre_desc_assoc, colimit.ι_desc_assoc, colimit.ι_desc_assoc] [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U V : (Opens ↑Y)ᵒᵖ i : U ⟶ V j✝ : CostructuredArrow (Opens.map (𝟙 Y)).op U ⊢ NatTrans.app (Cocone.whisker (CostructuredArrow.map i) (coconeOfDiagramTerminal (IsLimit.mk fun s => CostructuredArrow.homMk (let_fun this := (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op V.unop)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op; this)) (Lan.diagram (Opens.map (𝟙 Y)).op ℱ (op V.unop)))).ι j✝ ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑V.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop)) } = V)) = NatTrans.app (coconeOfDiagramTerminal (IsLimit.mk fun s => CostructuredArrow.homMk (let_fun this := (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op U.unop)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op; this)) (Lan.diagram (Opens.map (𝟙 Y)).op ℱ (op U.unop))).ι j✝ ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U)) ≫ ℱ.map i [PROOFSTEP] dsimp [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U V : (Opens ↑Y)ᵒᵖ i : U ⟶ V j✝ : CostructuredArrow (Opens.map (𝟙 Y)).op U ⊢ ℱ.map (IsTerminal.from (IsLimit.mk fun s => CostructuredArrow.homMk (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op V.unop)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op) ((CostructuredArrow.map i).obj j✝)).left ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑V.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop)) } = V)) = ℱ.map (IsTerminal.from (IsLimit.mk fun s => CostructuredArrow.homMk (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op U.unop)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op) j✝).left ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U)) ≫ ℱ.map i [PROOFSTEP] simp only [← ℱ.map_comp] -- Porting note : `congr` does not work, but `congr 1` does [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U V : (Opens ↑Y)ᵒᵖ i : U ⟶ V j✝ : CostructuredArrow (Opens.map (𝟙 Y)).op U ⊢ ℱ.map ((IsTerminal.from (IsLimit.mk fun s => CostructuredArrow.homMk (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op V.unop)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op) ((CostructuredArrow.map i).obj j✝)).left ≫ eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑V.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑V.unop)) } = V)) = ℱ.map ((IsTerminal.from (IsLimit.mk fun s => CostructuredArrow.homMk (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op U.unop)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op) j✝).left ≫ eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑U.unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑U.unop)) } = U) ≫ i) [PROOFSTEP] congr 1 [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : Opens ↑Y ⊢ (Opens.map (𝟙 Y)).op.obj (op U) = op U [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : Opens ↑Y ⊢ NatTrans.app (id ℱ).inv (op U) = colimit.ι (Lan.diagram (Opens.map (𝟙 Y)).op ℱ (op U)) (CostructuredArrow.mk (eqToHom (_ : (Opens.map (𝟙 Y)).op.obj (op U) = op U))) [PROOFSTEP] rw [← Category.id_comp ((id ℱ).inv.app (op U)), ← NatIso.app_inv, Iso.comp_inv_eq] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : Opens ↑Y ⊢ 𝟙 (ℱ.obj (op U)) = colimit.ι (Lan.diagram (Opens.map (𝟙 Y)).op ℱ (op U)) (CostructuredArrow.mk (eqToHom (_ : (Opens.map (𝟙 Y)).op.obj (op U) = op U))) ≫ ((id ℱ).app (op U)).hom [PROOFSTEP] dsimp [id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : Opens ↑Y ⊢ 𝟙 (ℱ.obj (op U)) = colimit.ι (Lan.diagram (Opens.map (𝟙 Y)).op ℱ (op U)) (CostructuredArrow.mk (𝟙 (op ((Opens.map (𝟙 Y)).obj U)))) ≫ colimit.desc (Lan.diagram (Opens.map (𝟙 Y)).op ℱ (op U)) (coconeOfDiagramTerminal (IsLimit.mk fun s => CostructuredArrow.homMk (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op) (Lan.diagram (Opens.map (𝟙 Y)).op ℱ (op U))) ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑(op U).unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑(op U).unop)) } = op U)) [PROOFSTEP] erw [colimit.ι_desc_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : Opens ↑Y ⊢ 𝟙 (ℱ.obj (op U)) = NatTrans.app (coconeOfDiagramTerminal (IsLimit.mk fun s => CostructuredArrow.homMk (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op) (Lan.diagram (Opens.map (𝟙 Y)).op ℱ (op U))).ι (CostructuredArrow.mk (𝟙 (op ((Opens.map (𝟙 Y)).obj U)))) ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑(op U).unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑(op U).unop)) } = op U)) [PROOFSTEP] dsimp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : Opens ↑Y ⊢ 𝟙 (ℱ.obj (op U)) = ℱ.map (IsTerminal.from (IsLimit.mk fun s => CostructuredArrow.homMk (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op) (CostructuredArrow.mk (𝟙 (op ((Opens.map (𝟙 Y)).obj U))))).left ≫ ℱ.map (eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑(op U).unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑(op U).unop)) } = op U)) [PROOFSTEP] rw [← ℱ.map_comp, ← ℱ.map_id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y : TopCat ℱ : Presheaf C Y U : Opens ↑Y ⊢ ℱ.map (𝟙 (op U)) = ℱ.map ((IsTerminal.from (IsLimit.mk fun s => CostructuredArrow.homMk (homOfLE (_ : ↑(𝟙 Y) '' ↑((Functor.fromPUnit (op U)).obj s.pt.right).unop ⊆ ↑s.pt.1.unop)).op) (CostructuredArrow.mk (𝟙 (op ((Opens.map (𝟙 Y)).obj U))))).left ≫ eqToHom (_ : op { carrier := ↑(𝟙 Y) '' ↑(op U).unop, is_open' := (_ : IsOpen (↑(𝟙 Y) '' ↑(op U).unop)) } = op U)) [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ⊢ pushforward C (𝟙 X) = 𝟭 (Presheaf C X) [PROOFSTEP] apply CategoryTheory.Functor.ext [GOAL] case h_map C : Type u inst✝ : Category.{v, u} C X : TopCat ⊢ autoParam (∀ (X_1 Y : Presheaf C X) (f : X_1 ⟶ Y), (pushforward C (𝟙 X)).map f = eqToHom (_ : ?F.obj X_1 = ?G.obj X_1) ≫ (𝟭 (Presheaf C X)).map f ≫ eqToHom (_ : (𝟭 (Presheaf C X)).obj Y = (pushforward C (𝟙 X)).obj Y)) _auto✝ [PROOFSTEP] intros a b f [GOAL] case h_map C : Type u inst✝ : Category.{v, u} C X : TopCat a b : Presheaf C X f : a ⟶ b ⊢ (pushforward C (𝟙 X)).map f = eqToHom (_ : ?F.obj a = ?G.obj a) ≫ (𝟭 (Presheaf C X)).map f ≫ eqToHom (_ : (𝟭 (Presheaf C X)).obj b = (pushforward C (𝟙 X)).obj b) [PROOFSTEP] ext U [GOAL] case h_map.w C : Type u inst✝ : Category.{v, u} C X : TopCat a b : Presheaf C X f : a ⟶ b U : Opens ↑X ⊢ NatTrans.app ((pushforward C (𝟙 X)).map f) (op U) = NatTrans.app (eqToHom (_ : ?F.obj a = ?G.obj a) ≫ (𝟭 (Presheaf C X)).map f ≫ eqToHom (_ : (𝟭 (Presheaf C X)).obj b = (pushforward C (𝟙 X)).obj b)) (op U) [PROOFSTEP] erw [NatTrans.congr f (Opens.op_map_id_obj (op U))] [GOAL] case h_map.w C : Type u inst✝ : Category.{v, u} C X : TopCat a b : Presheaf C X f : a ⟶ b U : Opens ↑X ⊢ a.map (eqToHom (_ : (Opens.map (𝟙 X)).op.obj (op U) = op U)) ≫ NatTrans.app f (op U) ≫ b.map (eqToHom (_ : op U = (Opens.map (𝟙 X)).op.obj (op U))) = NatTrans.app (eqToHom (_ : ?F.obj a = ?G.obj a) ≫ (𝟭 (Presheaf C X)).map f ≫ eqToHom (_ : (𝟭 (Presheaf C X)).obj b = (pushforward C (𝟙 X)).obj b)) (op U) case h_obj C : Type u inst✝ : Category.{v, u} C X : TopCat ⊢ ∀ (X_1 : Presheaf C X), (pushforward C (𝟙 X)).obj X_1 = (𝟭 (Presheaf C X)).obj X_1 [PROOFSTEP] simp only [Functor.op_obj, eqToHom_refl, CategoryTheory.Functor.map_id, Category.comp_id, Category.id_comp, Functor.id_obj, Functor.id_map] [GOAL] case h_obj C : Type u inst✝ : Category.{v, u} C X : TopCat ⊢ ∀ (X_1 : Presheaf C X), (pushforward C (𝟙 X)).obj X_1 = (𝟭 (Presheaf C X)).obj X_1 [PROOFSTEP] apply Pushforward.id_eq [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat H₁ : X ≅ Y ℱ : Presheaf C X 𝒢 : Presheaf C Y H₂ : H₁.hom _* ℱ ⟶ 𝒢 U : (Opens ↑X)ᵒᵖ ⊢ U = (Opens.map H₁.hom).op.obj (op ((Opens.map H₁.inv).obj U.unop)) [PROOFSTEP] simp [Opens.map, Set.preimage_preimage] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat H₁ : X ≅ Y ℱ : Presheaf C X 𝒢 : Presheaf C Y H₂ : H₁.hom _* ℱ ⟶ 𝒢 U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (toPushforwardOfIso H₁ H₂) U = ℱ.map (eqToHom (_ : U = op { carrier := ↑H₁.hom ⁻¹' ↑(op { carrier := ↑H₁.inv ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑H₁.inv ⁻¹' ↑U.unop)) }).unop, is_open' := (_ : IsOpen (↑H₁.hom ⁻¹' ↑(op { carrier := ↑H₁.inv ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑H₁.inv ⁻¹' ↑U.unop)) }).unop)) })) ≫ NatTrans.app H₂ (op ((Opens.map H₁.inv).obj U.unop)) [PROOFSTEP] delta toPushforwardOfIso [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat H₁ : X ≅ Y ℱ : Presheaf C X 𝒢 : Presheaf C Y H₂ : H₁.hom _* ℱ ⟶ 𝒢 U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (↑(Adjunction.homEquiv (Equivalence.toAdjunction (presheafEquivOfIso C H₁)) ℱ 𝒢) H₂) U = ℱ.map (eqToHom (_ : U = op { carrier := ↑H₁.hom ⁻¹' ↑(op { carrier := ↑H₁.inv ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑H₁.inv ⁻¹' ↑U.unop)) }).unop, is_open' := (_ : IsOpen (↑H₁.hom ⁻¹' ↑(op { carrier := ↑H₁.inv ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑H₁.inv ⁻¹' ↑U.unop)) }).unop)) })) ≫ NatTrans.app H₂ (op ((Opens.map H₁.inv).obj U.unop)) [PROOFSTEP] simp only [pushforwardObj_obj, Functor.op_obj, Equivalence.toAdjunction, Adjunction.homEquiv_unit, Functor.id_obj, Functor.comp_obj, Adjunction.mkOfUnitCounit_unit, unop_op, eqToHom_map] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat H₁ : X ≅ Y ℱ : Presheaf C X 𝒢 : Presheaf C Y H₂ : H₁.hom _* ℱ ⟶ 𝒢 U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (NatTrans.app (Equivalence.unit (presheafEquivOfIso C H₁)) ℱ ≫ (presheafEquivOfIso C H₁).inverse.map H₂) U = eqToHom (_ : ℱ.obj U = ℱ.obj (op ((Opens.map H₁.hom).obj ((Opens.map H₁.inv).obj U.unop)))) ≫ NatTrans.app H₂ (op ((Opens.map H₁.inv).obj U.unop)) [PROOFSTEP] rw [NatTrans.comp_app, presheafEquivOfIso_inverse_map_app, Equivalence.Equivalence_mk'_unit] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat H₁ : X ≅ Y ℱ : Presheaf C X 𝒢 : Presheaf C Y H₂ : H₁.hom _* ℱ ⟶ 𝒢 U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (NatTrans.app (presheafEquivOfIso C H₁).unitIso.hom ℱ) U ≫ NatTrans.app H₂ (op ((Opens.map H₁.inv).obj U.unop)) = eqToHom (_ : ℱ.obj U = ℱ.obj (op ((Opens.map H₁.hom).obj ((Opens.map H₁.inv).obj U.unop)))) ≫ NatTrans.app H₂ (op ((Opens.map H₁.inv).obj U.unop)) [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u inst✝ : Category.{v, u} C X Y : TopCat H₁ : X ≅ Y ℱ : Presheaf C X 𝒢 : Presheaf C Y H₂ : H₁.hom _* ℱ ⟶ 𝒢 U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (NatTrans.app (presheafEquivOfIso C H₁).unitIso.hom ℱ) U = eqToHom (_ : ℱ.obj U = ℱ.obj (op ((Opens.map H₁.hom).obj ((Opens.map H₁.inv).obj U.unop)))) [PROOFSTEP] simp only [Equivalence.unit, Equivalence.op, CategoryTheory.Equivalence.symm, Opens.mapMapIso, Functor.id_obj, Functor.comp_obj, Iso.symm_hom, NatIso.op_inv, Iso.symm_inv, NatTrans.op_app, NatIso.ofComponents_hom_app, eqToIso.hom, eqToHom_op, Equivalence.Equivalence_mk'_unitInv, Equivalence.Equivalence_mk'_counitInv, NatIso.op_hom, unop_op, op_unop, eqToIso.inv, NatIso.ofComponents_inv_app, eqToHom_unop, ← ℱ.map_comp, eqToHom_trans, eqToHom_map, presheafEquivOfIso_unitIso_hom_app_app] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat H₁ : X ≅ Y ℱ : Presheaf C Y 𝒢 : Presheaf C X H₂ : ℱ ⟶ H₁.hom _* 𝒢 U : (Opens ↑X)ᵒᵖ ⊢ (Opens.map H₁.hom).op.obj (op ((Opens.map H₁.inv).obj U.unop)) = U [PROOFSTEP] simp [Opens.map, Set.preimage_preimage] [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : TopCat H₁ : X ≅ Y ℱ : Presheaf C Y 𝒢 : Presheaf C X H₂ : ℱ ⟶ H₁.hom _* 𝒢 U : (Opens ↑X)ᵒᵖ ⊢ NatTrans.app (pushforwardToOfIso H₁ H₂) U = NatTrans.app H₂ (op ((Opens.map H₁.inv).obj U.unop)) ≫ 𝒢.map (eqToHom (_ : op { carrier := ↑H₁.hom ⁻¹' ↑(op { carrier := ↑H₁.inv ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑H₁.inv ⁻¹' ↑U.unop)) }).unop, is_open' := (_ : IsOpen (↑H₁.hom ⁻¹' ↑(op { carrier := ↑H₁.inv ⁻¹' ↑U.unop, is_open' := (_ : IsOpen (↑H₁.inv ⁻¹' ↑U.unop)) }).unop)) } = U)) [PROOFSTEP] simp [pushforwardToOfIso, Equivalence.toAdjunction, CategoryStruct.comp]
{"mathlib_filename": "Mathlib.Topology.Sheaves.Presheaf", "llama_tokens": 17455}
[GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ _root_.Equivalence fun a b => ∃ Z z fst snd, fst ≫ π a.fst = snd ≫ π b.fst ∧ ↑fst z = a.snd ∧ ↑snd z = b.snd [PROOFSTEP] constructor [GOAL] case refl α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ (x : ↑(finiteCoproduct X).toTop), ∃ Z z fst snd, fst ≫ π x.fst = snd ≫ π x.fst ∧ ↑fst z = x.snd ∧ ↑snd z = x.snd [PROOFSTEP] rintro ⟨a, x⟩ [GOAL] case refl.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop ⊢ ∃ Z z fst snd, fst ≫ π { fst := a, snd := x }.fst = snd ≫ π { fst := a, snd := x }.fst ∧ ↑fst z = { fst := a, snd := x }.snd ∧ ↑snd z = { fst := a, snd := x }.snd [PROOFSTEP] refine ⟨X a, x, 𝟙 _, 𝟙 _, by simp, rfl, rfl⟩ [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop ⊢ 𝟙 (X a) ≫ π { fst := a, snd := x }.fst = 𝟙 (X a) ≫ π { fst := a, snd := x }.fst [PROOFSTEP] simp [GOAL] case symm α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ {x y : ↑(finiteCoproduct X).toTop}, (∃ Z z fst snd, fst ≫ π x.fst = snd ≫ π y.fst ∧ ↑fst z = x.snd ∧ ↑snd z = y.snd) → ∃ Z z fst snd, fst ≫ π y.fst = snd ≫ π x.fst ∧ ↑fst z = y.snd ∧ ↑snd z = x.snd [PROOFSTEP] rintro ⟨a, x⟩ ⟨b, y⟩ ⟨Z, z, fst, snd, w, h1, h2⟩ [GOAL] case symm.mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ X { fst := a, snd := x }.fst snd : Z ⟶ X { fst := b, snd := y }.fst w : fst ≫ π { fst := a, snd := x }.fst = snd ≫ π { fst := b, snd := y }.fst h1 : ↑fst z = { fst := a, snd := x }.snd h2 : ↑snd z = { fst := b, snd := y }.snd ⊢ ∃ Z z fst snd, fst ≫ π { fst := b, snd := y }.fst = snd ≫ π { fst := a, snd := x }.fst ∧ ↑fst z = { fst := b, snd := y }.snd ∧ ↑snd z = { fst := a, snd := x }.snd [PROOFSTEP] exact ⟨Z, z, snd, fst, w.symm, h2, h1⟩ [GOAL] case trans α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ {x y z : ↑(finiteCoproduct X).toTop}, (∃ Z z fst snd, fst ≫ π x.fst = snd ≫ π y.fst ∧ ↑fst z = x.snd ∧ ↑snd z = y.snd) → (∃ Z z_1 fst snd, fst ≫ π y.fst = snd ≫ π z.fst ∧ ↑fst z_1 = y.snd ∧ ↑snd z_1 = z.snd) → ∃ Z z_1 fst snd, fst ≫ π x.fst = snd ≫ π z.fst ∧ ↑fst z_1 = x.snd ∧ ↑snd z_1 = z.snd [PROOFSTEP] rintro ⟨a, x⟩ ⟨b, y⟩ ⟨z, c⟩ ⟨Z, z, fstZ, sndZ, hZ, hZ1, hZ2⟩ ⟨W, w, fstW, sndW, hW, hW1, hW2⟩ [GOAL] case trans.mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π { fst := a, snd := x }.fst = sndZ ≫ π { fst := b, snd := y }.fst hZ1 : ↑fstZ z = { fst := a, snd := x }.snd hZ2 : ↑sndZ z = { fst := b, snd := y }.snd W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π { fst := b, snd := y }.fst = sndW ≫ π { fst := z✝, snd := c }.fst hW1 : ↑fstW w = { fst := b, snd := y }.snd hW2 : ↑sndW w = { fst := z✝, snd := c }.snd ⊢ ∃ Z z fst snd, fst ≫ π { fst := a, snd := x }.fst = snd ≫ π { fst := z✝, snd := c }.fst ∧ ↑fst z = { fst := a, snd := x }.snd ∧ ↑snd z = { fst := z✝, snd := c }.snd [PROOFSTEP] refine ⟨pullback sndZ fstW, ⟨⟨z, w⟩, by dsimp; rw [hZ2, hW1]⟩, pullback.fst _ _ ≫ fstZ, pullback.snd _ _ ≫ sndW, ?_, hZ1, hW2⟩ [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π { fst := a, snd := x }.fst = sndZ ≫ π { fst := b, snd := y }.fst hZ1 : ↑fstZ z = { fst := a, snd := x }.snd hZ2 : ↑sndZ z = { fst := b, snd := y }.snd W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π { fst := b, snd := y }.fst = sndW ≫ π { fst := z✝, snd := c }.fst hW1 : ↑fstW w = { fst := b, snd := y }.snd hW2 : ↑sndW w = { fst := z✝, snd := c }.snd ⊢ (z, w) ∈ {xy | ↑sndZ xy.fst = ↑fstW xy.snd} [PROOFSTEP] dsimp [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π { fst := a, snd := x }.fst = sndZ ≫ π { fst := b, snd := y }.fst hZ1 : ↑fstZ z = { fst := a, snd := x }.snd hZ2 : ↑sndZ z = { fst := b, snd := y }.snd W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π { fst := b, snd := y }.fst = sndW ≫ π { fst := z✝, snd := c }.fst hW1 : ↑fstW w = { fst := b, snd := y }.snd hW2 : ↑sndW w = { fst := z✝, snd := c }.snd ⊢ ↑sndZ z = ↑fstW w [PROOFSTEP] rw [hZ2, hW1] [GOAL] case trans.mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π { fst := a, snd := x }.fst = sndZ ≫ π { fst := b, snd := y }.fst hZ1 : ↑fstZ z = { fst := a, snd := x }.snd hZ2 : ↑sndZ z = { fst := b, snd := y }.snd W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π { fst := b, snd := y }.fst = sndW ≫ π { fst := z✝, snd := c }.fst hW1 : ↑fstW w = { fst := b, snd := y }.snd hW2 : ↑sndW w = { fst := z✝, snd := c }.snd ⊢ (pullback.fst sndZ fstW ≫ fstZ) ≫ π { fst := a, snd := x }.fst = (pullback.snd sndZ fstW ≫ sndW) ≫ π { fst := z✝, snd := c }.fst [PROOFSTEP] dsimp at * [GOAL] case trans.mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π a = sndZ ≫ π b hZ1 : ↑fstZ z = x hZ2 : ↑sndZ z = y W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π b = sndW ≫ π z✝ hW1 : ↑fstW w = y hW2 : ↑sndW w = c ⊢ (pullback.fst sndZ fstW ≫ fstZ) ≫ π a = (pullback.snd sndZ fstW ≫ sndW) ≫ π z✝ [PROOFSTEP] simp only [Category.assoc, hZ, ← hW] [GOAL] case trans.mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π a = sndZ ≫ π b hZ1 : ↑fstZ z = x hZ2 : ↑sndZ z = y W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π b = sndW ≫ π z✝ hW1 : ↑fstW w = y hW2 : ↑sndW w = c ⊢ pullback.fst sndZ fstW ≫ sndZ ≫ π b = pullback.snd sndZ fstW ≫ fstW ≫ π b [PROOFSTEP] apply ContinuousMap.ext [GOAL] case trans.mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.h α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π a = sndZ ≫ π b hZ1 : ↑fstZ z = x hZ2 : ↑sndZ z = y W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π b = sndW ≫ π z✝ hW1 : ↑fstW w = y hW2 : ↑sndW w = c ⊢ ∀ (a : ↑(pullback sndZ fstW).toTop), ↑(pullback.fst sndZ fstW ≫ sndZ ≫ π b) a = ↑(pullback.snd sndZ fstW ≫ fstW ≫ π b) a [PROOFSTEP] rintro ⟨⟨u, v⟩, h⟩ [GOAL] case trans.mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π a = sndZ ≫ π b hZ1 : ↑fstZ z = x hZ2 : ↑sndZ z = y W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π b = sndW ≫ π z✝ hW1 : ↑fstW w = y hW2 : ↑sndW w = c u : ↑Z.toTop v : ↑W.toTop h : (u, v) ∈ {xy | ↑sndZ xy.fst = ↑fstW xy.snd} ⊢ ↑(pullback.fst sndZ fstW ≫ sndZ ≫ π b) { val := (u, v), property := h } = ↑(pullback.snd sndZ fstW ≫ fstW ≫ π b) { val := (u, v), property := h } [PROOFSTEP] change π b (sndZ u) = π b (fstW v) [GOAL] case trans.mk.mk.mk.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.h.mk.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑(X a).toTop b : α y : ↑(X b).toTop z✝ : α c : ↑(X z✝).toTop Z : CompHaus z : ↑Z.toTop fstZ : Z ⟶ X { fst := a, snd := x }.fst sndZ : Z ⟶ X { fst := b, snd := y }.fst hZ : fstZ ≫ π a = sndZ ≫ π b hZ1 : ↑fstZ z = x hZ2 : ↑sndZ z = y W : CompHaus w : ↑W.toTop fstW : W ⟶ X { fst := b, snd := y }.fst sndW : W ⟶ X { fst := z✝, snd := c }.fst hW : fstW ≫ π b = sndW ≫ π z✝ hW1 : ↑fstW w = y hW2 : ↑sndW w = c u : ↑Z.toTop v : ↑W.toTop h : (u, v) ∈ {xy | ↑sndZ xy.fst = ↑fstW xy.snd} ⊢ ↑(π b) (↑sndZ u) = ↑(π b) (↑fstW v) [PROOFSTEP] rw [h] [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ (a b : ↑(finiteCoproduct fun a => X a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(π a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(π a) x) b [PROOFSTEP] rintro ⟨a, x⟩ ⟨b, y⟩ ⟨Z, z, fst, snd, h, hx, hy⟩ [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑((fun a => X a) a).toTop b : α y : ↑((fun a => X a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => X a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => X a) { fst := b, snd := y }.fst h : fst ≫ π { fst := a, snd := x }.fst = snd ≫ π { fst := b, snd := y }.fst hx : ↑fst z = { fst := a, snd := x }.snd hy : ↑snd z = { fst := b, snd := y }.snd ⊢ (fun x => match x with | { fst := a, snd := x } => ↑(π a) x) { fst := a, snd := x } = (fun x => match x with | { fst := a, snd := x } => ↑(π a) x) { fst := b, snd := y } [PROOFSTEP] dsimp at * [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑((fun a => X a) a).toTop b : α y : ↑((fun a => X a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => X a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => X a) { fst := b, snd := y }.fst h : fst ≫ π a = snd ≫ π b hx : ↑fst z = x hy : ↑snd z = y ⊢ ↑(π a) x = ↑(π b) y [PROOFSTEP] rw [← hx, ← hy] [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑((fun a => X a) a).toTop b : α y : ↑((fun a => X a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => X a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => X a) { fst := b, snd := y }.fst h : fst ≫ π a = snd ≫ π b hx : ↑fst z = x hy : ↑snd z = y ⊢ ↑(π a) (↑fst z) = ↑(π b) (↑snd z) [PROOFSTEP] apply_fun (fun t => t z) at h [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x : ↑((fun a => X a) a).toTop b : α y : ↑((fun a => X a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => X a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => X a) { fst := b, snd := y }.fst hx : ↑fst z = x hy : ↑snd z = y h : ↑(fst ≫ π a) z = ↑(snd ≫ π b) z ⊢ ↑(π a) (↑fst z) = ↑(π b) (↑snd z) [PROOFSTEP] exact h [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ Continuous (ιFun π) [PROOFSTEP] apply Continuous.quotient_lift [GOAL] case h α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ Continuous fun x => match x with | { fst := a, snd := x } => ↑(π a) x [PROOFSTEP] apply continuous_sigma [GOAL] case h.hf α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ (i : α), Continuous fun a => match { fst := i, snd := a } with | { fst := a, snd := x } => ↑(π a) x [PROOFSTEP] intro a [GOAL] case h.hf α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α ⊢ Continuous fun a_1 => match { fst := a, snd := a_1 } with | { fst := a, snd := x } => ↑(π a) x [PROOFSTEP] exact (π a).continuous [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ Function.Injective (ιFun π) [PROOFSTEP] rintro ⟨⟨a, x⟩⟩ ⟨⟨b, y⟩⟩ (h : π _ _ = π _ _) [GOAL] case mk.mk.mk.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a₁✝ : Quotient (relation π) a : α x : ↑((fun a => X a) a).toTop a₂✝ : Quotient (relation π) b : α y : ↑((fun a => X a) b).toTop h : ↑(π a) x = ↑(π b) y ⊢ Quot.mk Setoid.r { fst := a, snd := x } = Quot.mk Setoid.r { fst := b, snd := y } [PROOFSTEP] apply Quotient.sound' [GOAL] case mk.mk.mk.mk.a α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a₁✝ : Quotient (relation π) a : α x : ↑((fun a => X a) a).toTop a₂✝ : Quotient (relation π) b : α y : ↑((fun a => X a) b).toTop h : ↑(π a) x = ↑(π b) y ⊢ Setoid.r { fst := a, snd := x } { fst := b, snd := y } [PROOFSTEP] refine ⟨pullback (π a) (π b), ⟨⟨x, y⟩, h⟩, pullback.fst _ _, pullback.snd _ _, ?_, rfl, rfl⟩ [GOAL] case mk.mk.mk.mk.a α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a₁✝ : Quotient (relation π) a : α x : ↑((fun a => X a) a).toTop a₂✝ : Quotient (relation π) b : α y : ↑((fun a => X a) b).toTop h : ↑(π a) x = ↑(π b) y ⊢ pullback.fst (π a) (π b) ≫ π { fst := a, snd := x }.fst = pullback.snd (π a) (π b) ≫ π { fst := b, snd := y }.fst [PROOFSTEP] ext ⟨_, h⟩ [GOAL] case mk.mk.mk.mk.a.w.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a₁✝ : Quotient (relation π) a : α x : ↑((fun a => X a) a).toTop a₂✝ : Quotient (relation π) b : α y : ↑((fun a => X a) b).toTop h✝ : ↑(π a) x = ↑(π b) y val✝ : ↑(X a).toTop × ↑(X b).toTop h : val✝ ∈ {xy | ↑(π a) xy.fst = ↑(π b) xy.snd} ⊢ ↑(pullback.fst (π a) (π b) ≫ π { fst := a, snd := x }.fst) { val := val✝, property := h } = ↑(pullback.snd (π a) (π b) ≫ π { fst := b, snd := y }.fst) { val := val✝, property := h } [PROOFSTEP] exact h [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ IsIso (ιHom π) [PROOFSTEP] apply isIso_of_bijective [GOAL] case bij α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ Function.Bijective ↑(ιHom π) [PROOFSTEP] refine ⟨ιFun_injective _, ?_⟩ [GOAL] case bij α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ Function.Surjective ↑(ιHom π) [PROOFSTEP] intro b [GOAL] case bij α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b b : (forget CompHaus).obj B ⊢ ∃ a, ↑(ιHom π) a = b [PROOFSTEP] obtain ⟨a, x, h⟩ := surj b [GOAL] case bij.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b b : (forget CompHaus).obj B a : α x : ↑(X a).toTop h : ↑(π a) x = b ⊢ ∃ a, ↑(ιHom π) a = b [PROOFSTEP] refine ⟨Quotient.mk _ ⟨a, x⟩, h⟩ [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α ⊢ Continuous fun x => Quotient.mk (relation π) { fst := a, snd := x } [PROOFSTEP] apply Continuous.comp [GOAL] case hg α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α ⊢ Continuous (Quot.mk Setoid.r) case hf α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α ⊢ Continuous fun x => { fst := a, snd := x } [PROOFSTEP] apply continuous_quot_mk [GOAL] case hf α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α ⊢ Continuous fun x => { fst := a, snd := x } [PROOFSTEP] apply continuous_sigmaMk (σ := fun a => X a) [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ ⊢ ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b [PROOFSTEP] rintro ⟨a, x⟩ ⟨b, y⟩ ⟨Z, z, fst, snd, hh, hx, hy⟩ [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hh : fst ≫ π { fst := a, snd := x }.fst = snd ≫ π { fst := b, snd := y }.fst hx : ↑fst z = { fst := a, snd := x }.snd hy : ↑snd z = { fst := b, snd := y }.snd ⊢ (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) { fst := a, snd := x } = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) { fst := b, snd := y } [PROOFSTEP] dsimp at * [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hh : fst ≫ π a = snd ≫ π b hx : ↑fst z = x hy : ↑snd z = y ⊢ ↑(e a) x = ↑(e b) y [PROOFSTEP] rw [← hx, ← hy] [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hh : fst ≫ π a = snd ≫ π b hx : ↑fst z = x hy : ↑snd z = y ⊢ ↑(e a) (↑fst z) = ↑(e b) (↑snd z) [PROOFSTEP] specialize h _ _ fst snd ?_ [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hh : fst ≫ π a = snd ≫ π b hx : ↑fst z = x hy : ↑snd z = y ⊢ fst ≫ π' π { fst := a, snd := x }.fst = snd ≫ π' π { fst := b, snd := y }.fst [PROOFSTEP] ext z [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro.w α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z✝ : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hh : fst ≫ π a = snd ≫ π b hx : ↑fst z✝ = x hy : ↑snd z✝ = y z : (forget CompHaus).obj Z ⊢ ↑(fst ≫ π' π { fst := a, snd := x }.fst) z = ↑(snd ≫ π' π { fst := b, snd := y }.fst) z [PROOFSTEP] apply ιFun_injective [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro.w.a α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z✝ : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hh : fst ≫ π a = snd ≫ π b hx : ↑fst z✝ = x hy : ↑snd z✝ = y z : (forget CompHaus).obj Z ⊢ ιFun π (↑(fst ≫ π' π { fst := a, snd := x }.fst) z) = ιFun π (↑(snd ≫ π' π { fst := b, snd := y }.fst) z) [PROOFSTEP] apply_fun (fun q => q z) at hh [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro.w.a α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z✝ : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hx : ↑fst z✝ = x hy : ↑snd z✝ = y z : (forget CompHaus).obj Z hh : ↑(fst ≫ π a) z = ↑(snd ≫ π b) z ⊢ ιFun π (↑(fst ≫ π' π { fst := a, snd := x }.fst) z) = ιFun π (↑(snd ≫ π' π { fst := b, snd := y }.fst) z) [PROOFSTEP] exact hh [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hh : fst ≫ π a = snd ≫ π b hx : ↑fst z = x hy : ↑snd z = y h : fst ≫ e { fst := a, snd := x }.fst = snd ≫ e { fst := b, snd := y }.fst ⊢ ↑(e a) (↑fst z) = ↑(e b) (↑snd z) [PROOFSTEP] apply_fun (fun q => q z) at h [GOAL] case mk.mk.intro.intro.intro.intro.intro.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W a : α x : ↑((fun a => (fun a => X a) a) a).toTop b : α y : ↑((fun a => (fun a => X a) a) b).toTop Z : CompHaus z : ↑Z.toTop fst : Z ⟶ (fun a => (fun a => X a) a) { fst := a, snd := x }.fst snd : Z ⟶ (fun a => (fun a => X a) a) { fst := b, snd := y }.fst hh : fst ≫ π a = snd ≫ π b hx : ↑fst z = x hy : ↑snd z = y h : ↑(fst ≫ e { fst := a, snd := x }.fst) z = ↑(snd ≫ e { fst := b, snd := y }.fst) z ⊢ ↑(e a) (↑fst z) = ↑(e b) (↑snd z) [PROOFSTEP] exact h [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ ⊢ Continuous (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b)) [PROOFSTEP] apply Continuous.quotient_lift [GOAL] case h α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ ⊢ Continuous fun x => match x with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] apply continuous_sigma [GOAL] case h.hf α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ ⊢ ∀ (i : α), Continuous fun a => match { fst := i, snd := a } with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] intro a [GOAL] case h.hf α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α ⊢ Continuous fun a_1 => match { fst := a, snd := a_1 } with | { fst := a, snd := x } => ↑(e a) x [PROOFSTEP] exact (e a).continuous [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ {W : CompHaus} (e : (a : α) → X a ⟶ W) (h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) (a : α), π' π a ≫ (fun {W} e h => ContinuousMap.mk (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b))) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) = e a [PROOFSTEP] intro Z e h a [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b Z : CompHaus e : (a : α) → X a ⟶ Z h : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α ⊢ π' π a ≫ (fun {W} e h => ContinuousMap.mk (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b))) e (_ : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) = e a [PROOFSTEP] ext [GOAL] case w α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b Z : CompHaus e : (a : α) → X a ⟶ Z h : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α x✝ : (forget CompHaus).obj (X a) ⊢ ↑(π' π a ≫ (fun {W} e h => ContinuousMap.mk (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b))) e (_ : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂)) x✝ = ↑(e a) x✝ [PROOFSTEP] rfl [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ {W : CompHaus} (e : (a : α) → X a ⟶ W) (h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) (m : QB π ⟶ W), (∀ (a : α), π' π a ≫ m = e a) → m = (fun {W} e h => ContinuousMap.mk (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b))) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) [PROOFSTEP] intro Z e h m hm [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b Z : CompHaus e : (a : α) → X a ⟶ Z h : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : QB π ⟶ Z hm : ∀ (a : α), π' π a ≫ m = e a ⊢ m = (fun {W} e h => ContinuousMap.mk (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b))) e (_ : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) [PROOFSTEP] ext ⟨⟨a, x⟩⟩ [GOAL] case w.mk.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b Z : CompHaus e : (a : α) → X a ⟶ Z h : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : QB π ⟶ Z hm : ∀ (a : α), π' π a ≫ m = e a x✝ : (forget CompHaus).obj (QB π) a : α x : ↑((fun a => (fun a => X a) a) a).toTop ⊢ ↑m (Quot.mk Setoid.r { fst := a, snd := x }) = ↑((fun {W} e h => ContinuousMap.mk (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b))) e (_ : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂)) (Quot.mk Setoid.r { fst := a, snd := x }) [PROOFSTEP] specialize hm a [GOAL] case w.mk.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b Z : CompHaus e : (a : α) → X a ⟶ Z h : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : QB π ⟶ Z x✝ : (forget CompHaus).obj (QB π) a : α x : ↑((fun a => (fun a => X a) a) a).toTop hm : π' π a ≫ m = e a ⊢ ↑m (Quot.mk Setoid.r { fst := a, snd := x }) = ↑((fun {W} e h => ContinuousMap.mk (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b))) e (_ : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂)) (Quot.mk Setoid.r { fst := a, snd := x }) [PROOFSTEP] apply_fun (fun q => q x) at hm [GOAL] case w.mk.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b Z : CompHaus e : (a : α) → X a ⟶ Z h : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : QB π ⟶ Z x✝ : (forget CompHaus).obj (QB π) a : α x : ↑((fun a => (fun a => X a) a) a).toTop hm : ↑(π' π a ≫ m) x = ↑(e a) x ⊢ ↑m (Quot.mk Setoid.r { fst := a, snd := x }) = ↑((fun {W} e h => ContinuousMap.mk (Quotient.lift (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) (_ : ∀ (a b : ↑(finiteCoproduct fun a => (fun a => X a) a).toTop), a ≈ b → (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) a = (fun x => match x with | { fst := a, snd := x } => ↑(e a) x) b))) e (_ : ∀ {Z_1 : CompHaus} (a₁ a₂ : α) (g₁ : Z_1 ⟶ X a₁) (g₂ : Z_1 ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂)) (Quot.mk Setoid.r { fst := a, snd := x }) [PROOFSTEP] exact hm [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α ⊢ π' π a ≫ (ι (fun a => π a) surj).hom = π a [PROOFSTEP] ext [GOAL] case w α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α x✝ : (forget CompHaus).obj (X a) ⊢ ↑(π' π a ≫ (ι (fun a => π a) surj).hom) x✝ = ↑(π a) x✝ [PROOFSTEP] rfl [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α ⊢ π a ≫ (ι (fun a => π a) surj).inv = π' π a [PROOFSTEP] rw [Iso.comp_inv_eq] [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b a : α ⊢ π a = π' π a ≫ (ι (fun a => π a) surj).hom [PROOFSTEP] exact π'_comp_ι_hom _ surj _ -- TODO: Make a general construction for transferring such structs along isomorphisms. [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ Z : CompHaus a₁ a₂ : α g₁ : Z ⟶ X a₁ g₂ : Z ⟶ X a₂ hh : g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ ⊢ g₁ ≫ e a₁ = g₂ ≫ e a₂ [PROOFSTEP] apply h [GOAL] case a α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ Z : CompHaus a₁ a₂ : α g₁ : Z ⟶ X a₁ g₂ : Z ⟶ X a₂ hh : g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ ⊢ g₁ ≫ π a₁ = g₂ ≫ π a₂ [PROOFSTEP] rw [← cancel_mono (ι _ surj).inv] [GOAL] case a α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ Z : CompHaus a₁ a₂ : α g₁ : Z ⟶ X a₁ g₂ : Z ⟶ X a₂ hh : g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ ⊢ (g₁ ≫ π a₁) ≫ (ι (fun a => π a) surj).inv = (g₂ ≫ π a₂) ≫ (ι (fun a => π a) surj).inv [PROOFSTEP] simpa only [Category.assoc, π_comp_ι_inv] [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ {W : CompHaus} (e : (a : α) → X a ⟶ W) (h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) (a : α), π a ≫ (fun {W} e h => (ι π surj).inv ≫ EffectiveEpiFamilyStruct.desc (structAux π) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂)) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) = e a [PROOFSTEP] intro W e h a [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ a : α ⊢ π a ≫ (fun {W} e h => (ι π surj).inv ≫ EffectiveEpiFamilyStruct.desc (structAux π) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂)) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) = e a [PROOFSTEP] simp only [Eq.ndrec, id_eq, eq_mpr_eq_cast, π_comp_ι_inv_assoc, (structAux π).fac] [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ ∀ {W : CompHaus} (e : (a : α) → X a ⟶ W) (h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) (m : B ⟶ W), (∀ (a : α), π a ≫ m = e a) → m = (fun {W} e h => (ι π surj).inv ≫ EffectiveEpiFamilyStruct.desc (structAux π) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂)) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) [PROOFSTEP] intro W e h m hm [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : B ⟶ W hm : ∀ (a : α), π a ≫ m = e a ⊢ m = (fun {W} e h => (ι π surj).inv ≫ EffectiveEpiFamilyStruct.desc (structAux π) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂)) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) [PROOFSTEP] dsimp [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : B ⟶ W hm : ∀ (a : α), π a ≫ m = e a ⊢ m = (ι π surj).inv ≫ EffectiveEpiFamilyStruct.desc (structAux π) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) [PROOFSTEP] rw [Iso.eq_inv_comp] [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : B ⟶ W hm : ∀ (a : α), π a ≫ m = e a ⊢ (ι π surj).hom ≫ m = EffectiveEpiFamilyStruct.desc (structAux π) e (_ : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π' π a₁ = g₂ ≫ π' π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂) [PROOFSTEP] apply (structAux π).uniq [GOAL] case a α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : B ⟶ W hm : ∀ (a : α), π a ≫ m = e a ⊢ ∀ (a : α), π' π a ≫ (ι π surj).hom ≫ m = e a [PROOFSTEP] intro a [GOAL] case a α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B surj : ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b W : CompHaus e : (a : α) → X a ⟶ W h : ∀ {Z : CompHaus} (a₁ a₂ : α) (g₁ : Z ⟶ X a₁) (g₂ : Z ⟶ X a₂), g₁ ≫ π a₁ = g₂ ≫ π a₂ → g₁ ≫ e a₁ = g₂ ≫ e a₂ m : B ⟶ W hm : ∀ (a : α), π a ≫ m = e a a : α ⊢ π' π a ≫ (ι π surj).hom ≫ m = e a [PROOFSTEP] simpa using hm a [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B ⊢ TFAE [EffectiveEpiFamily X π, Epi (Sigma.desc π), ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b] [PROOFSTEP] tfae_have 1 → 2 [GOAL] case tfae_1_to_2 α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B ⊢ EffectiveEpiFamily X π → Epi (Sigma.desc π) [PROOFSTEP] intro [GOAL] case tfae_1_to_2 α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B ✝ : EffectiveEpiFamily X π ⊢ Epi (Sigma.desc π) [PROOFSTEP] infer_instance [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) ⊢ TFAE [EffectiveEpiFamily X π, Epi (Sigma.desc π), ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b] [PROOFSTEP] tfae_have 2 → 3 [GOAL] case tfae_2_to_3 α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) ⊢ Epi (Sigma.desc π) → ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b [PROOFSTEP] intro e [GOAL] case tfae_2_to_3 α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Epi (Sigma.desc π) ⊢ ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b [PROOFSTEP] rw [epi_iff_surjective] at e [GOAL] case tfae_2_to_3 α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) ⊢ ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b [PROOFSTEP] let i : ∐ X ≅ finiteCoproduct X := (colimit.isColimit _).coconePointUniqueUpToIso (finiteCoproduct.isColimit _) [GOAL] case tfae_2_to_3 α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) ⊢ ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b [PROOFSTEP] intro b [GOAL] case tfae_2_to_3 α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) b : ↑B.toTop ⊢ ∃ a x, ↑(π a) x = b [PROOFSTEP] obtain ⟨t, rfl⟩ := e b [GOAL] case tfae_2_to_3.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) ⊢ ∃ a x, ↑(π a) x = ↑(Sigma.desc π) t [PROOFSTEP] let q := i.hom t [GOAL] case tfae_2_to_3.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t ⊢ ∃ a x, ↑(π a) x = ↑(Sigma.desc π) t [PROOFSTEP] refine ⟨q.1, q.2, ?_⟩ [GOAL] case tfae_2_to_3.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t ⊢ ↑(π q.fst) q.snd = ↑(Sigma.desc π) t [PROOFSTEP] have : t = i.inv (i.hom t) := show t = (i.hom ≫ i.inv) t by simp only [i.hom_inv_id]; rfl [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t ⊢ t = ↑(i.hom ≫ i.inv) t [PROOFSTEP] simp only [i.hom_inv_id] [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t ⊢ t = ↑(𝟙 (∐ X)) t [PROOFSTEP] rfl [GOAL] case tfae_2_to_3.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) ⊢ ↑(π q.fst) q.snd = ↑(Sigma.desc π) t [PROOFSTEP] rw [this] [GOAL] case tfae_2_to_3.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) ⊢ ↑(π q.fst) q.snd = ↑(Sigma.desc π) (↑i.inv (↑i.hom t)) [PROOFSTEP] show _ = (i.inv ≫ Sigma.desc π) (i.hom t) [GOAL] case tfae_2_to_3.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) ⊢ ↑(π q.fst) q.snd = ↑(i.inv ≫ Sigma.desc π) (↑i.hom t) [PROOFSTEP] suffices i.inv ≫ Sigma.desc π = finiteCoproduct.desc X π by rw [this]; rfl [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this✝ : t = ↑i.inv (↑i.hom t) this : i.inv ≫ Sigma.desc π = finiteCoproduct.desc X π ⊢ ↑(π q.fst) q.snd = ↑(i.inv ≫ Sigma.desc π) (↑i.hom t) [PROOFSTEP] rw [this] [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this✝ : t = ↑i.inv (↑i.hom t) this : i.inv ≫ Sigma.desc π = finiteCoproduct.desc X π ⊢ ↑(π q.fst) q.snd = ↑(finiteCoproduct.desc X π) (↑i.hom t) [PROOFSTEP] rfl [GOAL] case tfae_2_to_3.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) ⊢ i.inv ≫ Sigma.desc π = finiteCoproduct.desc X π [PROOFSTEP] rw [Iso.inv_comp_eq] [GOAL] case tfae_2_to_3.intro α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) ⊢ Sigma.desc π = i.hom ≫ finiteCoproduct.desc X π [PROOFSTEP] apply colimit.hom_ext [GOAL] case tfae_2_to_3.intro.w α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) ⊢ ∀ (j : Discrete α), colimit.ι (Discrete.functor X) j ≫ Sigma.desc π = colimit.ι (Discrete.functor X) j ≫ i.hom ≫ finiteCoproduct.desc X π [PROOFSTEP] rintro ⟨a⟩ [GOAL] case tfae_2_to_3.intro.w.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) a : α ⊢ colimit.ι (Discrete.functor X) { as := a } ≫ Sigma.desc π = colimit.ι (Discrete.functor X) { as := a } ≫ i.hom ≫ finiteCoproduct.desc X π [PROOFSTEP] simp only [Discrete.functor_obj, colimit.ι_desc, Cofan.mk_pt, Cofan.mk_ι_app, colimit.comp_coconePointUniqueUpToIso_hom_assoc] [GOAL] case tfae_2_to_3.intro.w.mk α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) a : α ⊢ π a = NatTrans.app (finiteCoproduct.cocone X).ι { as := a } ≫ finiteCoproduct.desc X π [PROOFSTEP] ext [GOAL] case tfae_2_to_3.intro.w.mk.w α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) e : Function.Surjective ↑(Sigma.desc π) i : ∐ X ≅ finiteCoproduct X := IsColimit.coconePointUniqueUpToIso (colimit.isColimit (Discrete.functor X)) (finiteCoproduct.isColimit X) t : (forget CompHaus).obj (∐ fun b => X b) q : (fun x => (forget CompHaus).obj (finiteCoproduct X)) t := ↑i.hom t this : t = ↑i.inv (↑i.hom t) a : α x✝ : (forget CompHaus).obj (X a) ⊢ ↑(π a) x✝ = ↑(NatTrans.app (finiteCoproduct.cocone X).ι { as := a } ≫ finiteCoproduct.desc X π) x✝ [PROOFSTEP] rfl [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) tfae_2_to_3 : Epi (Sigma.desc π) → ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ TFAE [EffectiveEpiFamily X π, Epi (Sigma.desc π), ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b] [PROOFSTEP] tfae_have 3 → 1 [GOAL] case tfae_3_to_1 α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) tfae_2_to_3 : Epi (Sigma.desc π) → ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b ⊢ (∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b) → EffectiveEpiFamily X π [PROOFSTEP] apply effectiveEpiFamily_of_jointly_surjective [GOAL] α : Type inst✝ : Fintype α B : CompHaus X : α → CompHaus π : (a : α) → X a ⟶ B tfae_1_to_2 : EffectiveEpiFamily X π → Epi (Sigma.desc π) tfae_2_to_3 : Epi (Sigma.desc π) → ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b tfae_3_to_1 : (∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b) → EffectiveEpiFamily X π ⊢ TFAE [EffectiveEpiFamily X π, Epi (Sigma.desc π), ∀ (b : ↑B.toTop), ∃ a x, ↑(π a) x = b] [PROOFSTEP] tfae_finish [GOAL] ⊢ Precoherent CompHaus [PROOFSTEP] constructor [GOAL] case pullback ⊢ ∀ {B₁ B₂ : CompHaus} (f : B₂ ⟶ B₁) (α : Type) [inst : Fintype α] (X₁ : α → CompHaus) (π₁ : (a : α) → X₁ a ⟶ B₁), EffectiveEpiFamily X₁ π₁ → ∃ β x X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : β), ι b ≫ π₁ (i b) = π₂ b ≫ f [PROOFSTEP] intro B₁ B₂ f α _ X₁ π₁ h₁ [GOAL] case pullback B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : EffectiveEpiFamily X₁ π₁ ⊢ ∃ β x X₂ π₂, EffectiveEpiFamily X₂ π₂ ∧ ∃ i ι, ∀ (b : β), ι b ≫ π₁ (i b) = π₂ b ≫ f [PROOFSTEP] refine ⟨α, inferInstance, fun a => pullback f (π₁ a), fun a => pullback.fst _ _, ?_, id, fun a => pullback.snd _ _, ?_⟩ [GOAL] case pullback.refine_1 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : EffectiveEpiFamily X₁ π₁ ⊢ EffectiveEpiFamily (fun a => pullback f (π₁ a)) fun a => pullback.fst f (π₁ a) [PROOFSTEP] have := (effectiveEpiFamily_tfae _ π₁).out 0 2 [GOAL] case pullback.refine_1 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : EffectiveEpiFamily X₁ π₁ this : EffectiveEpiFamily (fun a => X₁ a) π₁ ↔ ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b ⊢ EffectiveEpiFamily (fun a => pullback f (π₁ a)) fun a => pullback.fst f (π₁ a) [PROOFSTEP] rw [this] at h₁ [GOAL] case pullback.refine_1 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b this : EffectiveEpiFamily (fun a => X₁ a) π₁ ↔ ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b ⊢ EffectiveEpiFamily (fun a => pullback f (π₁ a)) fun a => pullback.fst f (π₁ a) [PROOFSTEP] clear this [GOAL] case pullback.refine_1 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b ⊢ EffectiveEpiFamily (fun a => pullback f (π₁ a)) fun a => pullback.fst f (π₁ a) [PROOFSTEP] have := (effectiveEpiFamily_tfae _ (fun a => pullback.fst f (π₁ a))).out 0 2 [GOAL] case pullback.refine_1 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b this : (EffectiveEpiFamily (fun a => pullback f (π₁ a)) fun a => pullback.fst f (π₁ a)) ↔ ∀ (b : ↑B₂.toTop), ∃ a x, ↑(pullback.fst f (π₁ a)) x = b ⊢ EffectiveEpiFamily (fun a => pullback f (π₁ a)) fun a => pullback.fst f (π₁ a) [PROOFSTEP] rw [this] [GOAL] case pullback.refine_1 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b this : (EffectiveEpiFamily (fun a => pullback f (π₁ a)) fun a => pullback.fst f (π₁ a)) ↔ ∀ (b : ↑B₂.toTop), ∃ a x, ↑(pullback.fst f (π₁ a)) x = b ⊢ ∀ (b : ↑B₂.toTop), ∃ a x, ↑(pullback.fst f (π₁ a)) x = b [PROOFSTEP] clear this [GOAL] case pullback.refine_1 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b ⊢ ∀ (b : ↑B₂.toTop), ∃ a x, ↑(pullback.fst f (π₁ a)) x = b [PROOFSTEP] intro b₂ [GOAL] case pullback.refine_1 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b b₂ : ↑B₂.toTop ⊢ ∃ a x, ↑(pullback.fst f (π₁ a)) x = b₂ [PROOFSTEP] obtain ⟨a, x, h⟩ := h₁ (f b₂) [GOAL] case pullback.refine_1.intro.intro B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : ∀ (b : ↑B₁.toTop), ∃ a x, ↑(π₁ a) x = b b₂ : ↑B₂.toTop a : α x : ↑(X₁ a).toTop h : ↑(π₁ a) x = ↑f b₂ ⊢ ∃ a x, ↑(pullback.fst f (π₁ a)) x = b₂ [PROOFSTEP] refine ⟨a, ⟨⟨b₂, x⟩, h.symm⟩, rfl⟩ [GOAL] case pullback.refine_2 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : EffectiveEpiFamily X₁ π₁ ⊢ ∀ (b : α), (fun a => pullback.snd f (π₁ a)) b ≫ π₁ (id b) = (fun a => pullback.fst f (π₁ a)) b ≫ f [PROOFSTEP] intro a [GOAL] case pullback.refine_2 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : EffectiveEpiFamily X₁ π₁ a : α ⊢ (fun a => pullback.snd f (π₁ a)) a ≫ π₁ (id a) = (fun a => pullback.fst f (π₁ a)) a ≫ f [PROOFSTEP] dsimp [GOAL] case pullback.refine_2 B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : EffectiveEpiFamily X₁ π₁ a : α ⊢ pullback.snd f (π₁ a) ≫ π₁ a = pullback.fst f (π₁ a) ≫ f [PROOFSTEP] ext ⟨⟨_, _⟩, h⟩ [GOAL] case pullback.refine_2.w.mk.mk B₁ B₂ : CompHaus f : B₂ ⟶ B₁ α : Type inst✝ : Fintype α X₁ : α → CompHaus π₁ : (a : α) → X₁ a ⟶ B₁ h₁ : EffectiveEpiFamily X₁ π₁ a : α fst✝ : ↑B₂.toTop snd✝ : ↑(X₁ a).toTop h : (fst✝, snd✝) ∈ {xy | ↑f xy.fst = ↑(π₁ a) xy.snd} ⊢ ↑(pullback.snd f (π₁ a) ≫ π₁ a) { val := (fst✝, snd✝), property := h } = ↑(pullback.fst f (π₁ a) ≫ f) { val := (fst✝, snd✝), property := h } [PROOFSTEP] exact h.symm
{"mathlib_filename": "Mathlib.Topology.Category.CompHaus.EffectiveEpi", "llama_tokens": 34078}
[GOAL] ⊢ ConcreteCategory TopCat [PROOFSTEP] dsimp [TopCat] [GOAL] ⊢ ConcreteCategory (Bundled TopologicalSpace) [PROOFSTEP] infer_instance [GOAL] X Y : TopCat f : ↑X ≃ₜ ↑Y ⊢ Homeomorph.toContinuousMap f ≫ Homeomorph.toContinuousMap (Homeomorph.symm f) = 𝟙 X [PROOFSTEP] ext [GOAL] case w X Y : TopCat f : ↑X ≃ₜ ↑Y x✝ : (forget TopCat).obj X ⊢ ↑(Homeomorph.toContinuousMap f ≫ Homeomorph.toContinuousMap (Homeomorph.symm f)) x✝ = ↑(𝟙 X) x✝ [PROOFSTEP] exact f.symm_apply_apply _ [GOAL] X Y : TopCat f : ↑X ≃ₜ ↑Y ⊢ Homeomorph.toContinuousMap (Homeomorph.symm f) ≫ Homeomorph.toContinuousMap f = 𝟙 Y [PROOFSTEP] ext [GOAL] case w X Y : TopCat f : ↑X ≃ₜ ↑Y x✝ : (forget TopCat).obj Y ⊢ ↑(Homeomorph.toContinuousMap (Homeomorph.symm f) ≫ Homeomorph.toContinuousMap f) x✝ = ↑(𝟙 Y) x✝ [PROOFSTEP] exact f.apply_symm_apply _ [GOAL] X Y : TopCat f : X ≅ Y x : ↑X ⊢ ↑f.inv (↑f.hom x) = x [PROOFSTEP] simp [GOAL] X Y : TopCat f : X ≅ Y x : ↑Y ⊢ ↑f.hom (↑f.inv x) = x [PROOFSTEP] simp [GOAL] X Y : TopCat f : ↑X ≃ₜ ↑Y ⊢ homeoOfIso (isoOfHomeo f) = f [PROOFSTEP] dsimp [homeoOfIso, isoOfHomeo] [GOAL] X Y : TopCat f : ↑X ≃ₜ ↑Y ⊢ Homeomorph.mk { toFun := ↑(Homeomorph.toContinuousMap f), invFun := ↑(Homeomorph.toContinuousMap (Homeomorph.symm f)), left_inv := (_ : ∀ (x : ↑X), ↑(Iso.mk (Homeomorph.toContinuousMap f) (Homeomorph.toContinuousMap (Homeomorph.symm f))).2 (↑(Iso.mk (Homeomorph.toContinuousMap f) (Homeomorph.toContinuousMap (Homeomorph.symm f))).1 x) = x), right_inv := (_ : ∀ (x : ↑Y), ↑(Iso.mk (Homeomorph.toContinuousMap f) (Homeomorph.toContinuousMap (Homeomorph.symm f))).1 (↑(Iso.mk (Homeomorph.toContinuousMap f) (Homeomorph.toContinuousMap (Homeomorph.symm f))).2 x) = x) } = f [PROOFSTEP] ext [GOAL] case H X Y : TopCat f : ↑X ≃ₜ ↑Y x✝ : ↑X ⊢ ↑(Homeomorph.mk { toFun := ↑(Homeomorph.toContinuousMap f), invFun := ↑(Homeomorph.toContinuousMap (Homeomorph.symm f)), left_inv := (_ : ∀ (x : ↑X), ↑(Iso.mk (Homeomorph.toContinuousMap f) (Homeomorph.toContinuousMap (Homeomorph.symm f))).2 (↑(Iso.mk (Homeomorph.toContinuousMap f) (Homeomorph.toContinuousMap (Homeomorph.symm f))).1 x) = x), right_inv := (_ : ∀ (x : ↑Y), ↑(Iso.mk (Homeomorph.toContinuousMap f) (Homeomorph.toContinuousMap (Homeomorph.symm f))).1 (↑(Iso.mk (Homeomorph.toContinuousMap f) (Homeomorph.toContinuousMap (Homeomorph.symm f))).2 x) = x) }) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] X Y : TopCat f : X ≅ Y ⊢ isoOfHomeo (homeoOfIso f) = f [PROOFSTEP] dsimp [homeoOfIso, isoOfHomeo] [GOAL] X Y : TopCat f : X ≅ Y ⊢ Iso.mk (Homeomorph.toContinuousMap (Homeomorph.mk { toFun := ↑f.hom, invFun := ↑f.inv, left_inv := (_ : ∀ (x : ↑X), ↑f.2 (↑f.1 x) = x), right_inv := (_ : ∀ (x : ↑Y), ↑f.1 (↑f.2 x) = x) })) (Homeomorph.toContinuousMap (Homeomorph.symm (Homeomorph.mk { toFun := ↑f.hom, invFun := ↑f.inv, left_inv := (_ : ∀ (x : ↑X), ↑f.2 (↑f.1 x) = x), right_inv := (_ : ∀ (x : ↑Y), ↑f.1 (↑f.2 x) = x) }))) = f [PROOFSTEP] ext [GOAL] case w.w X Y : TopCat f : X ≅ Y x✝ : (forget TopCat).obj X ⊢ ↑(Iso.mk (Homeomorph.toContinuousMap (Homeomorph.mk { toFun := ↑f.hom, invFun := ↑f.inv, left_inv := (_ : ∀ (x : ↑X), ↑f.2 (↑f.1 x) = x), right_inv := (_ : ∀ (x : ↑Y), ↑f.1 (↑f.2 x) = x) })) (Homeomorph.toContinuousMap (Homeomorph.symm (Homeomorph.mk { toFun := ↑f.hom, invFun := ↑f.inv, left_inv := (_ : ∀ (x : ↑X), ↑f.2 (↑f.1 x) = x), right_inv := (_ : ∀ (x : ↑Y), ↑f.1 (↑f.2 x) = x) })))).hom x✝ = ↑f.hom x✝ [PROOFSTEP] rfl [GOAL] X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso g ⊢ OpenEmbedding ((forget TopCat).map f ≫ (forget TopCat).map g) ↔ OpenEmbedding ↑f [PROOFSTEP] simp only [← Functor.map_comp] [GOAL] X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso g ⊢ OpenEmbedding ((forget TopCat).map (f ≫ g)) ↔ OpenEmbedding ↑f [PROOFSTEP] exact openEmbedding_iff_comp_isIso f g [GOAL] X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso f ⊢ OpenEmbedding ↑(f ≫ g) ↔ OpenEmbedding ↑g [PROOFSTEP] constructor [GOAL] case mp X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso f ⊢ OpenEmbedding ↑(f ≫ g) → OpenEmbedding ↑g [PROOFSTEP] intro h [GOAL] case mp X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso f h : OpenEmbedding ↑(f ≫ g) ⊢ OpenEmbedding ↑g [PROOFSTEP] convert h.comp (TopCat.homeoOfIso (asIso f).symm).openEmbedding [GOAL] case h.e'_5.h X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso f h : OpenEmbedding ↑(f ≫ g) e_1✝ : (forget TopCat).obj Y = ↑Y ⊢ ↑g = ↑(f ≫ g) ∘ ↑(homeoOfIso (asIso f).symm) [PROOFSTEP] exact congrArg _ (IsIso.inv_hom_id_assoc f g).symm [GOAL] case mpr X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso f ⊢ OpenEmbedding ↑g → OpenEmbedding ↑(f ≫ g) [PROOFSTEP] exact fun h => h.comp (TopCat.homeoOfIso (asIso f)).openEmbedding [GOAL] X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso f ⊢ OpenEmbedding ((forget TopCat).map f ≫ (forget TopCat).map g) ↔ OpenEmbedding ↑g [PROOFSTEP] simp only [← Functor.map_comp] [GOAL] X Y Z : TopCat f : X ⟶ Y g : Y ⟶ Z inst✝ : IsIso f ⊢ OpenEmbedding ((forget TopCat).map (f ≫ g)) ↔ OpenEmbedding ↑g [PROOFSTEP] exact openEmbedding_iff_isIso_comp f g
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.Basic", "llama_tokens": 2646}
[GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' ⊢ ContinuousOn (continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂') (e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet)) [PROOFSTEP] have h₁ := (compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)).continuous [GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) ⊢ ContinuousOn (continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂') (e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet)) [PROOFSTEP] have h₂ := (ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)).continuous [GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) ⊢ ContinuousOn (continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂') (e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet)) [PROOFSTEP] have h₃ := continuousOn_coordChange 𝕜₁ e₁' e₁ [GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) h₃ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) (e₁'.baseSet ∩ e₁.baseSet) ⊢ ContinuousOn (continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂') (e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet)) [PROOFSTEP] have h₄ := continuousOn_coordChange 𝕜₂ e₂ e₂' [GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) h₃ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) (e₁'.baseSet ∩ e₁.baseSet) h₄ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) (e₂.baseSet ∩ e₂'.baseSet) ⊢ ContinuousOn (continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂') (e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet)) [PROOFSTEP] refine' ((h₁.comp_continuousOn (h₄.mono _)).clm_comp (h₂.comp_continuousOn (h₃.mono _))).congr _ [GOAL] case refine'_1 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) h₃ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) (e₁'.baseSet ∩ e₁.baseSet) h₄ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) (e₂.baseSet ∩ e₂'.baseSet) ⊢ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊆ e₂.baseSet ∩ e₂'.baseSet [PROOFSTEP] mfld_set_tac [GOAL] case refine'_2 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) h₃ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) (e₁'.baseSet ∩ e₁.baseSet) h₄ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) (e₂.baseSet ∩ e₂'.baseSet) ⊢ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊆ e₁'.baseSet ∩ e₁.baseSet [PROOFSTEP] mfld_set_tac [GOAL] case refine'_3 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) h₃ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) (e₁'.baseSet ∩ e₁.baseSet) h₄ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) (e₂.baseSet ∩ e₂'.baseSet) ⊢ EqOn (continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂') (fun x => comp ((↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) ∘ fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) x) ((↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) ∘ fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) x)) (e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet)) [PROOFSTEP] intro b _ [GOAL] case refine'_3 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) h₃ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) (e₁'.baseSet ∩ e₁.baseSet) h₄ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) (e₂.baseSet ∩ e₂'.baseSet) b : B a✝ : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) ⊢ continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂' b = (fun x => comp ((↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) ∘ fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) x) ((↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) ∘ fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) x)) b [PROOFSTEP] ext L v [GOAL] case refine'_3.h.h 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) h₃ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) (e₁'.baseSet ∩ e₁.baseSet) h₄ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) (e₂.baseSet ∩ e₂'.baseSet) b : B a✝ : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) L : F₁ →SL[σ] F₂ v : F₁ ⊢ ↑(↑(continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂' b) L) v = ↑(↑((fun x => comp ((↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) ∘ fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) x) ((↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) ∘ fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) x)) b) L) v [PROOFSTEP] dsimp [continuousLinearMapCoordChange] [GOAL] case refine'_3.h.h 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : VectorBundle 𝕜₂ F₂ E₂ inst✝³ : MemTrivializationAtlas e₁ inst✝² : MemTrivializationAtlas e₁' inst✝¹ : MemTrivializationAtlas e₂ inst✝ : MemTrivializationAtlas e₂' h₁ : Continuous ↑(compSL F₁ F₂ F₂ σ (RingHom.id 𝕜₂)) h₂ : Continuous ↑(ContinuousLinearMap.flip (compSL F₁ F₁ F₂ (RingHom.id 𝕜₁) σ)) h₃ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b)) (e₁'.baseSet ∩ e₁.baseSet) h₄ : ContinuousOn (fun b => ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b)) (e₂.baseSet ∩ e₂'.baseSet) b : B a✝ : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) L : F₁ →SL[σ] F₂ v : F₁ ⊢ ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b) (↑L (↑(ContinuousLinearEquiv.symm (ContinuousLinearEquiv.symm (Trivialization.coordChangeL 𝕜₁ e₁' e₁ b))) v)) = ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b) (↑L (↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b) v)) [PROOFSTEP] rw [ContinuousLinearEquiv.symm_symm] [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : TotalSpace (F₁ →SL[σ] F₂) (Bundle.ContinuousLinearMap σ E₁ E₂) x : B L : Bundle.ContinuousLinearMap σ E₁ E₂ x x✝ : { proj := x, snd := L } ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) h₁ : { proj := x, snd := L }.proj ∈ e₁.baseSet h₂ : { proj := x, snd := L }.proj ∈ e₂.baseSet ⊢ (fun p => { proj := p.fst, snd := comp (Trivialization.symmL 𝕜₂ e₂ p.fst) (comp p.snd (Trivialization.continuousLinearMapAt 𝕜₁ e₁ p.fst)) }) ((fun p => (p.proj, comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ p.proj) (comp p.snd (Trivialization.symmL 𝕜₁ e₁ p.proj)))) { proj := x, snd := L }) = { proj := x, snd := L } [PROOFSTEP] simp only [TotalSpace.mk_inj] [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : TotalSpace (F₁ →SL[σ] F₂) (Bundle.ContinuousLinearMap σ E₁ E₂) x : B L : Bundle.ContinuousLinearMap σ E₁ E₂ x x✝ : { proj := x, snd := L } ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) h₁ : { proj := x, snd := L }.proj ∈ e₁.baseSet h₂ : { proj := x, snd := L }.proj ∈ e₂.baseSet ⊢ comp (Trivialization.symmL 𝕜₂ e₂ ((fun p => (p.proj, comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ p.proj) (comp p.snd (Trivialization.symmL 𝕜₁ e₁ p.proj)))) { proj := x, snd := L }).fst) (comp (comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ { proj := x, snd := L }.proj) (comp L (Trivialization.symmL 𝕜₁ e₁ { proj := x, snd := L }.proj))) (Trivialization.continuousLinearMapAt 𝕜₁ e₁ ((fun p => (p.proj, comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ p.proj) (comp p.snd (Trivialization.symmL 𝕜₁ e₁ p.proj)))) { proj := x, snd := L }).fst)) = L [PROOFSTEP] ext (v : E₁ x) [GOAL] case h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : TotalSpace (F₁ →SL[σ] F₂) (Bundle.ContinuousLinearMap σ E₁ E₂) x : B L : Bundle.ContinuousLinearMap σ E₁ E₂ x x✝ : { proj := x, snd := L } ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) h₁ : { proj := x, snd := L }.proj ∈ e₁.baseSet h₂ : { proj := x, snd := L }.proj ∈ e₂.baseSet v : E₁ x ⊢ ↑(comp (Trivialization.symmL 𝕜₂ e₂ ((fun p => (p.proj, comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ p.proj) (comp p.snd (Trivialization.symmL 𝕜₁ e₁ p.proj)))) { proj := x, snd := L }).fst) (comp (comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ { proj := x, snd := L }.proj) (comp L (Trivialization.symmL 𝕜₁ e₁ { proj := x, snd := L }.proj))) (Trivialization.continuousLinearMapAt 𝕜₁ e₁ ((fun p => (p.proj, comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ p.proj) (comp p.snd (Trivialization.symmL 𝕜₁ e₁ p.proj)))) { proj := x, snd := L }).fst))) v = ↑L v [PROOFSTEP] dsimp only [comp_apply] [GOAL] case h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : TotalSpace (F₁ →SL[σ] F₂) (Bundle.ContinuousLinearMap σ E₁ E₂) x : B L : Bundle.ContinuousLinearMap σ E₁ E₂ x x✝ : { proj := x, snd := L } ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) h₁ : { proj := x, snd := L }.proj ∈ e₁.baseSet h₂ : { proj := x, snd := L }.proj ∈ e₂.baseSet v : E₁ x ⊢ ↑(Trivialization.symmL 𝕜₂ e₂ x) (↑(Trivialization.continuousLinearMapAt 𝕜₂ e₂ x) (↑L (↑(Trivialization.symmL 𝕜₁ e₁ x) (↑(Trivialization.continuousLinearMapAt 𝕜₁ e₁ x) v)))) = ↑L v [PROOFSTEP] rw [Trivialization.symmL_continuousLinearMapAt, Trivialization.symmL_continuousLinearMapAt] [GOAL] case h.hb 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : TotalSpace (F₁ →SL[σ] F₂) (Bundle.ContinuousLinearMap σ E₁ E₂) x : B L : Bundle.ContinuousLinearMap σ E₁ E₂ x x✝ : { proj := x, snd := L } ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) h₁ : { proj := x, snd := L }.proj ∈ e₁.baseSet h₂ : { proj := x, snd := L }.proj ∈ e₂.baseSet v : E₁ x ⊢ x ∈ e₁.baseSet case h.hb 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : TotalSpace (F₁ →SL[σ] F₂) (Bundle.ContinuousLinearMap σ E₁ E₂) x : B L : Bundle.ContinuousLinearMap σ E₁ E₂ x x✝ : { proj := x, snd := L } ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) h₁ : { proj := x, snd := L }.proj ∈ e₁.baseSet h₂ : { proj := x, snd := L }.proj ∈ e₂.baseSet v : E₁ x ⊢ x ∈ e₂.baseSet [PROOFSTEP] exacts [h₁, h₂] [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : B × (F₁ →SL[σ] F₂) x : B f : F₁ →SL[σ] F₂ x✝ : (x, f) ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ h₁ : (x, f).fst ∈ e₁.baseSet h₂ : (x, f).fst ∈ e₂.baseSet right✝ : (x, f).snd ∈ univ ⊢ (fun p => (p.proj, comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ p.proj) (comp p.snd (Trivialization.symmL 𝕜₁ e₁ p.proj)))) ((fun p => { proj := p.fst, snd := comp (Trivialization.symmL 𝕜₂ e₂ p.fst) (comp p.snd (Trivialization.continuousLinearMapAt 𝕜₁ e₁ p.fst)) }) (x, f)) = (x, f) [PROOFSTEP] simp only [Prod.mk_inj_left] [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : B × (F₁ →SL[σ] F₂) x : B f : F₁ →SL[σ] F₂ x✝ : (x, f) ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ h₁ : (x, f).fst ∈ e₁.baseSet h₂ : (x, f).fst ∈ e₂.baseSet right✝ : (x, f).snd ∈ univ ⊢ comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ ((fun p => { proj := p.fst, snd := comp (Trivialization.symmL 𝕜₂ e₂ p.fst) (comp p.snd (Trivialization.continuousLinearMapAt 𝕜₁ e₁ p.fst)) }) (x, f)).proj) (comp (comp (Trivialization.symmL 𝕜₂ e₂ (x, f).fst) (comp f (Trivialization.continuousLinearMapAt 𝕜₁ e₁ (x, f).fst))) (Trivialization.symmL 𝕜₁ e₁ ((fun p => { proj := p.fst, snd := comp (Trivialization.symmL 𝕜₂ e₂ p.fst) (comp p.snd (Trivialization.continuousLinearMapAt 𝕜₁ e₁ p.fst)) }) (x, f)).proj)) = f [PROOFSTEP] ext v [GOAL] case h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : B × (F₁ →SL[σ] F₂) x : B f : F₁ →SL[σ] F₂ x✝ : (x, f) ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ h₁ : (x, f).fst ∈ e₁.baseSet h₂ : (x, f).fst ∈ e₂.baseSet right✝ : (x, f).snd ∈ univ v : F₁ ⊢ ↑(comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ ((fun p => { proj := p.fst, snd := comp (Trivialization.symmL 𝕜₂ e₂ p.fst) (comp p.snd (Trivialization.continuousLinearMapAt 𝕜₁ e₁ p.fst)) }) (x, f)).proj) (comp (comp (Trivialization.symmL 𝕜₂ e₂ (x, f).fst) (comp f (Trivialization.continuousLinearMapAt 𝕜₁ e₁ (x, f).fst))) (Trivialization.symmL 𝕜₁ e₁ ((fun p => { proj := p.fst, snd := comp (Trivialization.symmL 𝕜₂ e₂ p.fst) (comp p.snd (Trivialization.continuousLinearMapAt 𝕜₁ e₁ p.fst)) }) (x, f)).proj))) v = ↑f v [PROOFSTEP] dsimp only [comp_apply] [GOAL] case h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : B × (F₁ →SL[σ] F₂) x : B f : F₁ →SL[σ] F₂ x✝ : (x, f) ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ h₁ : (x, f).fst ∈ e₁.baseSet h₂ : (x, f).fst ∈ e₂.baseSet right✝ : (x, f).snd ∈ univ v : F₁ ⊢ ↑(Trivialization.continuousLinearMapAt 𝕜₂ e₂ x) (↑(Trivialization.symmL 𝕜₂ e₂ x) (↑f (↑(Trivialization.continuousLinearMapAt 𝕜₁ e₁ x) (↑(Trivialization.symmL 𝕜₁ e₁ x) v)))) = ↑f v [PROOFSTEP] rw [Trivialization.continuousLinearMapAt_symmL, Trivialization.continuousLinearMapAt_symmL] [GOAL] case h.hb 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : B × (F₁ →SL[σ] F₂) x : B f : F₁ →SL[σ] F₂ x✝ : (x, f) ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ h₁ : (x, f).fst ∈ e₁.baseSet h₂ : (x, f).fst ∈ e₂.baseSet right✝ : (x, f).snd ∈ univ v : F₁ ⊢ x ∈ e₁.baseSet case h.hb 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' x✝¹ : B × (F₁ →SL[σ] F₂) x : B f : F₁ →SL[σ] F₂ x✝ : (x, f) ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ h₁ : (x, f).fst ∈ e₁.baseSet h₂ : (x, f).fst ∈ e₂.baseSet right✝ : (x, f).snd ∈ univ v : F₁ ⊢ x ∈ e₂.baseSet [PROOFSTEP] exacts [h₁, h₂] [GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : Trivialization.IsLinear 𝕜₁ e₁ inst✝⁴ : Trivialization.IsLinear 𝕜₁ e₁' inst✝³ : Trivialization.IsLinear 𝕜₂ e₂ inst✝² : Trivialization.IsLinear 𝕜₂ e₂' inst✝¹ : ∀ (x : B), ContinuousAdd (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) x : B x✝ : x ∈ (continuousLinearMap σ e₁ e₂).baseSet L L' : Bundle.ContinuousLinearMap σ E₁ E₂ x ⊢ comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ x) (comp (L + L') (Trivialization.symmL 𝕜₁ e₁ x)) = (↑(continuousLinearMap σ e₁ e₂) { proj := x, snd := L }).snd + (↑(continuousLinearMap σ e₁ e₂) { proj := x, snd := L' }).snd [PROOFSTEP] simp_rw [add_comp, comp_add] [GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : Trivialization.IsLinear 𝕜₁ e₁ inst✝⁴ : Trivialization.IsLinear 𝕜₁ e₁' inst✝³ : Trivialization.IsLinear 𝕜₂ e₂ inst✝² : Trivialization.IsLinear 𝕜₂ e₂' inst✝¹ : ∀ (x : B), ContinuousAdd (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) x : B x✝ : x ∈ (continuousLinearMap σ e₁ e₂).baseSet L L' : Bundle.ContinuousLinearMap σ E₁ E₂ x ⊢ comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ x) (comp L (Trivialization.symmL 𝕜₁ e₁ x)) + comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ x) (comp L' (Trivialization.symmL 𝕜₁ e₁ x)) = (↑(continuousLinearMap σ e₁ e₂) { proj := x, snd := L }).snd + (↑(continuousLinearMap σ e₁ e₂) { proj := x, snd := L' }).snd [PROOFSTEP] rfl [GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : Trivialization.IsLinear 𝕜₁ e₁ inst✝⁴ : Trivialization.IsLinear 𝕜₁ e₁' inst✝³ : Trivialization.IsLinear 𝕜₂ e₂ inst✝² : Trivialization.IsLinear 𝕜₂ e₂' inst✝¹ : ∀ (x : B), ContinuousAdd (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) x : B x✝ : x ∈ (continuousLinearMap σ e₁ e₂).baseSet c : 𝕜₂ L : Bundle.ContinuousLinearMap σ E₁ E₂ x ⊢ comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ x) (comp (c • L) (Trivialization.symmL 𝕜₁ e₁ x)) = c • (↑(continuousLinearMap σ e₁ e₂) { proj := x, snd := L }).snd [PROOFSTEP] simp_rw [smul_comp, comp_smulₛₗ, RingHom.id_apply] [GOAL] 𝕜₁ : Type u_1 inst✝²² : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝²¹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝²⁰ : NormedAddCommGroup F₁ inst✝¹⁹ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁸ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁷ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁶ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹⁵ : NormedAddCommGroup F₂ inst✝¹⁴ : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹³ : (x : B) → AddCommGroup (E₂ x) inst✝¹² : (x : B) → Module 𝕜₂ (E₂ x) inst✝¹¹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝¹⁰ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁹ : (x : B) → TopologicalSpace (E₁ x) inst✝⁸ : FiberBundle F₁ E₁ inst✝⁷ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁶ : FiberBundle F₂ E₂ inst✝⁵ : Trivialization.IsLinear 𝕜₁ e₁ inst✝⁴ : Trivialization.IsLinear 𝕜₁ e₁' inst✝³ : Trivialization.IsLinear 𝕜₂ e₂ inst✝² : Trivialization.IsLinear 𝕜₂ e₂' inst✝¹ : ∀ (x : B), ContinuousAdd (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) x : B x✝ : x ∈ (continuousLinearMap σ e₁ e₂).baseSet c : 𝕜₂ L : Bundle.ContinuousLinearMap σ E₁ E₂ x ⊢ c • comp (Trivialization.continuousLinearMapAt 𝕜₂ e₂ x) (comp L (Trivialization.symmL 𝕜₁ e₁ x)) = c • (↑(continuousLinearMap σ e₁ e₂) { proj := x, snd := L }).snd [PROOFSTEP] rfl [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet L : F₁ →SL[σ] F₂ ⊢ Pretrivialization.symm (continuousLinearMap σ e₁ e₂) b L = comp (Trivialization.symmL 𝕜₂ e₂ b) (comp L (Trivialization.continuousLinearMapAt 𝕜₁ e₁ b)) [PROOFSTEP] rw [symm_apply] [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet L : F₁ →SL[σ] F₂ ⊢ cast (_ : Bundle.ContinuousLinearMap σ E₁ E₂ (↑(LocalEquiv.symm (continuousLinearMap σ e₁ e₂).toLocalEquiv) (b, L)).proj = Bundle.ContinuousLinearMap σ E₁ E₂ b) (↑(LocalEquiv.symm (continuousLinearMap σ e₁ e₂).toLocalEquiv) (b, L)).snd = comp (Trivialization.symmL 𝕜₂ e₂ b) (comp L (Trivialization.continuousLinearMapAt 𝕜₁ e₁ b)) case hb 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet L : F₁ →SL[σ] F₂ ⊢ b ∈ (continuousLinearMap σ e₁ e₂).baseSet [PROOFSTEP] rfl [GOAL] case hb 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet L : F₁ →SL[σ] F₂ ⊢ b ∈ (continuousLinearMap σ e₁ e₂).baseSet [PROOFSTEP] exact hb [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) L : F₁ →SL[σ] F₂ ⊢ ↑(continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂' b) L = (↑(continuousLinearMap σ e₁' e₂') { proj := b, snd := Pretrivialization.symm (continuousLinearMap σ e₁ e₂) b L }).snd [PROOFSTEP] ext v [GOAL] case h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) L : F₁ →SL[σ] F₂ v : F₁ ⊢ ↑(↑(continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂' b) L) v = ↑(↑(continuousLinearMap σ e₁' e₂') { proj := b, snd := Pretrivialization.symm (continuousLinearMap σ e₁ e₂) b L }).snd v [PROOFSTEP] simp_rw [continuousLinearMapCoordChange, ContinuousLinearEquiv.coe_coe, ContinuousLinearEquiv.arrowCongrSL_apply, continuousLinearMap_apply, continuousLinearMap_symm_apply' σ e₁ e₂ hb.1, comp_apply, ContinuousLinearEquiv.coe_coe, ContinuousLinearEquiv.symm_symm, Trivialization.continuousLinearMapAt_apply, Trivialization.symmL_apply] [GOAL] case h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) L : F₁ →SL[σ] F₂ v : F₁ ⊢ ↑(Trivialization.coordChangeL 𝕜₂ e₂ e₂' b) (↑L (↑(Trivialization.coordChangeL 𝕜₁ e₁' e₁ b) v)) = ↑(Trivialization.linearMapAt 𝕜₂ e₂' { proj := b, snd := Pretrivialization.symm (continuousLinearMap σ e₁ e₂) b L }.proj) (Trivialization.symm e₂ b (↑L (↑(Trivialization.linearMapAt 𝕜₁ e₁ b) (Trivialization.symm e₁' b v)))) [PROOFSTEP] rw [e₂.coordChangeL_apply e₂', e₁'.coordChangeL_apply e₁, e₁.coe_linearMapAt_of_mem hb.1.1, e₂'.coe_linearMapAt_of_mem hb.2.2] [GOAL] case h.hb 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) L : F₁ →SL[σ] F₂ v : F₁ ⊢ b ∈ e₁'.baseSet ∩ e₁.baseSet case h.hb 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : (x : B) → TopologicalSpace (E₂ x) ita : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝⁴ : FiberBundle F₂ E₂ inst✝³ : Trivialization.IsLinear 𝕜₁ e₁ inst✝² : Trivialization.IsLinear 𝕜₁ e₁' inst✝¹ : Trivialization.IsLinear 𝕜₂ e₂ inst✝ : Trivialization.IsLinear 𝕜₂ e₂' b : B hb : b ∈ e₁.baseSet ∩ e₂.baseSet ∩ (e₁'.baseSet ∩ e₂'.baseSet) L : F₁ →SL[σ] F₂ v : F₁ ⊢ b ∈ e₂.baseSet ∩ e₂'.baseSet [PROOFSTEP] exacts [⟨hb.2.1, hb.1.1⟩, ⟨hb.1.2, hb.2.2⟩] [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) ⊢ ∀ (e : Pretrivialization (F₁ →SL[σ] F₂) TotalSpace.proj), e ∈ {e | ∃ e₁ e₂ x x_1, e = continuousLinearMap σ e₁ e₂} → Pretrivialization.IsLinear 𝕜₂ e [PROOFSTEP] rintro _ ⟨e₁, he₁, e₂, he₂, rfl⟩ [GOAL] case intro.intro.intro.intro 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁✝ e₁' : Trivialization F₁ TotalSpace.proj e₂✝ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) e₁ : Trivialization F₁ TotalSpace.proj he₁ : Trivialization F₂ TotalSpace.proj e₂ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas he₁ ⊢ Pretrivialization.IsLinear 𝕜₂ (continuousLinearMap σ e₁ he₁) [PROOFSTEP] infer_instance [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) ⊢ ∀ (e : Pretrivialization (F₁ →SL[σ] F₂) TotalSpace.proj), e ∈ {e | ∃ e₁ e₂ x x_1, e = continuousLinearMap σ e₁ e₂} → ∀ (e' : Pretrivialization (F₁ →SL[σ] F₂) TotalSpace.proj), e' ∈ {e | ∃ e₁ e₂ x x_1, e = continuousLinearMap σ e₁ e₂} → ∃ f, ContinuousOn f (e.baseSet ∩ e'.baseSet) ∧ ∀ (b : B), b ∈ e.baseSet ∩ e'.baseSet → ∀ (v : F₁ →SL[σ] F₂), ↑(f b) v = (↑e' { proj := b, snd := Pretrivialization.symm e b v }).snd [PROOFSTEP] rintro _ ⟨e₁, e₂, he₁, he₂, rfl⟩ _ ⟨e₁', e₂', he₁', he₂', rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁✝ e₁'✝ : Trivialization F₁ TotalSpace.proj e₂✝ e₂'✝ : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ e₁' : Trivialization F₁ TotalSpace.proj e₂' : Trivialization F₂ TotalSpace.proj he₁' : MemTrivializationAtlas e₁' he₂' : MemTrivializationAtlas e₂' ⊢ ∃ f, ContinuousOn f ((continuousLinearMap σ e₁ e₂).baseSet ∩ (continuousLinearMap σ e₁' e₂').baseSet) ∧ ∀ (b : B), b ∈ (continuousLinearMap σ e₁ e₂).baseSet ∩ (continuousLinearMap σ e₁' e₂').baseSet → ∀ (v : F₁ →SL[σ] F₂), ↑(f b) v = (↑(continuousLinearMap σ e₁' e₂') { proj := b, snd := Pretrivialization.symm (continuousLinearMap σ e₁ e₂) b v }).snd [PROOFSTEP] exact ⟨continuousLinearMapCoordChange σ e₁ e₁' e₂ e₂', continuousOn_continuousLinearMapCoordChange, continuousLinearMapCoordChange_apply σ e₁ e₁' e₂ e₂'⟩ [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) ⊢ ∀ (b : B), Inducing (↑((fun x => continuousLinearMap σ (trivializationAt F₁ E₁ x) (trivializationAt F₂ E₂ x)) b) ∘ TotalSpace.mk b) [PROOFSTEP] intro b [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B ⊢ Inducing (↑((fun x => continuousLinearMap σ (trivializationAt F₁ E₁ x) (trivializationAt F₂ E₂ x)) b) ∘ TotalSpace.mk b) [PROOFSTEP] let L₁ : E₁ b ≃L[𝕜₁] F₁ := (trivializationAt F₁ E₁ b).continuousLinearEquivAt 𝕜₁ b (mem_baseSet_trivializationAt _ _ _) [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B L₁ : E₁ b ≃L[𝕜₁] F₁ := Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F₁ E₁ b) b (_ : b ∈ (trivializationAt F₁ E₁ b).baseSet) ⊢ Inducing (↑((fun x => continuousLinearMap σ (trivializationAt F₁ E₁ x) (trivializationAt F₂ E₂ x)) b) ∘ TotalSpace.mk b) [PROOFSTEP] let L₂ : E₂ b ≃L[𝕜₂] F₂ := (trivializationAt F₂ E₂ b).continuousLinearEquivAt 𝕜₂ b (mem_baseSet_trivializationAt _ _ _) [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B L₁ : E₁ b ≃L[𝕜₁] F₁ := Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F₁ E₁ b) b (_ : b ∈ (trivializationAt F₁ E₁ b).baseSet) L₂ : E₂ b ≃L[𝕜₂] F₂ := Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F₂ E₂ b) b (_ : b ∈ (trivializationAt F₂ E₂ b).baseSet) ⊢ Inducing (↑((fun x => continuousLinearMap σ (trivializationAt F₁ E₁ x) (trivializationAt F₂ E₂ x)) b) ∘ TotalSpace.mk b) [PROOFSTEP] let φ : (E₁ b →SL[σ] E₂ b) ≃L[𝕜₂] F₁ →SL[σ] F₂ := L₁.arrowCongrSL L₂ [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B L₁ : E₁ b ≃L[𝕜₁] F₁ := Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F₁ E₁ b) b (_ : b ∈ (trivializationAt F₁ E₁ b).baseSet) L₂ : E₂ b ≃L[𝕜₂] F₂ := Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F₂ E₂ b) b (_ : b ∈ (trivializationAt F₂ E₂ b).baseSet) φ : (E₁ b →SL[σ] E₂ b) ≃L[𝕜₂] F₁ →SL[σ] F₂ := ContinuousLinearEquiv.arrowCongrSL L₁ L₂ ⊢ Inducing (↑((fun x => continuousLinearMap σ (trivializationAt F₁ E₁ x) (trivializationAt F₂ E₂ x)) b) ∘ TotalSpace.mk b) [PROOFSTEP] have : Inducing fun x => (b, φ x) := inducing_const_prod.mpr φ.toHomeomorph.inducing [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B L₁ : E₁ b ≃L[𝕜₁] F₁ := Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F₁ E₁ b) b (_ : b ∈ (trivializationAt F₁ E₁ b).baseSet) L₂ : E₂ b ≃L[𝕜₂] F₂ := Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F₂ E₂ b) b (_ : b ∈ (trivializationAt F₂ E₂ b).baseSet) φ : (E₁ b →SL[σ] E₂ b) ≃L[𝕜₂] F₁ →SL[σ] F₂ := ContinuousLinearEquiv.arrowCongrSL L₁ L₂ this : Inducing fun x => (b, ↑φ x) ⊢ Inducing (↑((fun x => continuousLinearMap σ (trivializationAt F₁ E₁ x) (trivializationAt F₂ E₂ x)) b) ∘ TotalSpace.mk b) [PROOFSTEP] convert this [GOAL] case h.e'_5.h.h.e'_4 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B L₁ : E₁ b ≃L[𝕜₁] F₁ := Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F₁ E₁ b) b (_ : b ∈ (trivializationAt F₁ E₁ b).baseSet) L₂ : E₂ b ≃L[𝕜₂] F₂ := Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F₂ E₂ b) b (_ : b ∈ (trivializationAt F₂ E₂ b).baseSet) φ : (E₁ b →SL[σ] E₂ b) ≃L[𝕜₂] F₁ →SL[σ] F₂ := ContinuousLinearEquiv.arrowCongrSL L₁ L₂ this : Inducing fun x => (b, ↑φ x) x✝ : Bundle.ContinuousLinearMap σ E₁ E₂ b ⊢ ((↑((fun x => continuousLinearMap σ (trivializationAt F₁ E₁ x) (trivializationAt F₂ E₂ x)) b) ∘ TotalSpace.mk b) x✝).snd = ↑φ x✝ [PROOFSTEP] ext f [GOAL] case h.e'_5.h.h.e'_4.h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B L₁ : E₁ b ≃L[𝕜₁] F₁ := Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F₁ E₁ b) b (_ : b ∈ (trivializationAt F₁ E₁ b).baseSet) L₂ : E₂ b ≃L[𝕜₂] F₂ := Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F₂ E₂ b) b (_ : b ∈ (trivializationAt F₂ E₂ b).baseSet) φ : (E₁ b →SL[σ] E₂ b) ≃L[𝕜₂] F₁ →SL[σ] F₂ := ContinuousLinearEquiv.arrowCongrSL L₁ L₂ this : Inducing fun x => (b, ↑φ x) x✝ : Bundle.ContinuousLinearMap σ E₁ E₂ b f : F₁ ⊢ ↑((↑((fun x => continuousLinearMap σ (trivializationAt F₁ E₁ x) (trivializationAt F₂ E₂ x)) b) ∘ TotalSpace.mk b) x✝).snd f = ↑(↑φ x✝) f [PROOFSTEP] dsimp [Pretrivialization.continuousLinearMap_apply] [GOAL] case h.e'_5.h.h.e'_4.h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B L₁ : E₁ b ≃L[𝕜₁] F₁ := Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F₁ E₁ b) b (_ : b ∈ (trivializationAt F₁ E₁ b).baseSet) L₂ : E₂ b ≃L[𝕜₂] F₂ := Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F₂ E₂ b) b (_ : b ∈ (trivializationAt F₂ E₂ b).baseSet) φ : (E₁ b →SL[σ] E₂ b) ≃L[𝕜₂] F₁ →SL[σ] F₂ := ContinuousLinearEquiv.arrowCongrSL L₁ L₂ this : Inducing fun x => (b, ↑φ x) x✝ : Bundle.ContinuousLinearMap σ E₁ E₂ b f : F₁ ⊢ ↑(Trivialization.linearMapAt 𝕜₂ (trivializationAt F₂ E₂ b) b) (↑x✝ (Trivialization.symm (trivializationAt F₁ E₁ b) b f)) = (↑(trivializationAt F₂ E₂ b) { proj := b, snd := ↑x✝ (Trivialization.symm (trivializationAt F₁ E₁ b) b f) }).snd [PROOFSTEP] rw [Trivialization.linearMapAt_def_of_mem _ (mem_baseSet_trivializationAt _ _ _)] [GOAL] case h.e'_5.h.h.e'_4.h 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) b : B L₁ : E₁ b ≃L[𝕜₁] F₁ := Trivialization.continuousLinearEquivAt 𝕜₁ (trivializationAt F₁ E₁ b) b (_ : b ∈ (trivializationAt F₁ E₁ b).baseSet) L₂ : E₂ b ≃L[𝕜₂] F₂ := Trivialization.continuousLinearEquivAt 𝕜₂ (trivializationAt F₂ E₂ b) b (_ : b ∈ (trivializationAt F₂ E₂ b).baseSet) φ : (E₁ b →SL[σ] E₂ b) ≃L[𝕜₂] F₁ →SL[σ] F₂ := ContinuousLinearEquiv.arrowCongrSL L₁ L₂ this : Inducing fun x => (b, ↑φ x) x✝ : Bundle.ContinuousLinearMap σ E₁ E₂ b f : F₁ ⊢ ↑↑(Trivialization.linearEquivAt 𝕜₂ (trivializationAt F₂ E₂ b) b (_ : b ∈ (trivializationAt F₂ E₂ b).baseSet)) (↑x✝ (Trivialization.symm (trivializationAt F₁ E₁ b) b f)) = (↑(trivializationAt F₂ E₂ b) { proj := b, snd := ↑x✝ (Trivialization.symm (trivializationAt F₁ E₁ b) b f) }).snd [PROOFSTEP] rfl [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ ⊢ MemTrivializationAtlas e₁ [PROOFSTEP] infer_instance [GOAL] 𝕜₁ : Type u_1 inst✝²⁰ : NontriviallyNormedField 𝕜₁ 𝕜₂ : Type u_2 inst✝¹⁹ : NontriviallyNormedField 𝕜₂ σ : 𝕜₁ →+* 𝕜₂ iσ : RingHomIsometric σ B : Type u_3 F₁ : Type u_4 inst✝¹⁸ : NormedAddCommGroup F₁ inst✝¹⁷ : NormedSpace 𝕜₁ F₁ E₁ : B → Type u_5 inst✝¹⁶ : (x : B) → AddCommGroup (E₁ x) inst✝¹⁵ : (x : B) → Module 𝕜₁ (E₁ x) inst✝¹⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_6 inst✝¹³ : NormedAddCommGroup F₂ inst✝¹² : NormedSpace 𝕜₂ F₂ E₂ : B → Type u_7 inst✝¹¹ : (x : B) → AddCommGroup (E₂ x) inst✝¹⁰ : (x : B) → Module 𝕜₂ (E₂ x) inst✝⁹ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁸ : TopologicalSpace B e₁ e₁' : Trivialization F₁ TotalSpace.proj e₂ e₂' : Trivialization F₂ TotalSpace.proj inst✝⁷ : (x : B) → TopologicalSpace (E₁ x) inst✝⁶ : FiberBundle F₁ E₁ inst✝⁵ : VectorBundle 𝕜₁ F₁ E₁ inst✝⁴ : (x : B) → TopologicalSpace (E₂ x) inst✝³ : FiberBundle F₂ E₂ inst✝² : VectorBundle 𝕜₂ F₂ E₂ inst✝¹ : ∀ (x : B), TopologicalAddGroup (E₂ x) inst✝ : ∀ (x : B), ContinuousSMul 𝕜₂ (E₂ x) he₁ : MemTrivializationAtlas e₁ he₂ : MemTrivializationAtlas e₂ ⊢ MemTrivializationAtlas e₂ [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.VectorBundle.Hom", "llama_tokens": 38884}
[GOAL] X : Profinite ⊢ TopologicalSpace ((forget Profinite).obj X) [PROOFSTEP] change TopologicalSpace X [GOAL] X : Profinite ⊢ TopologicalSpace ↑X.toCompHaus.toTop [PROOFSTEP] exact inferInstance [GOAL] X : Profinite ⊢ TotallyDisconnectedSpace ((forget Profinite).obj X) [PROOFSTEP] change TotallyDisconnectedSpace X [GOAL] X : Profinite ⊢ TotallyDisconnectedSpace ↑X.toCompHaus.toTop [PROOFSTEP] exact inferInstance [GOAL] X : Profinite ⊢ CompactSpace ((forget Profinite).obj X) [PROOFSTEP] change CompactSpace X [GOAL] X : Profinite ⊢ CompactSpace ↑X.toCompHaus.toTop [PROOFSTEP] exact inferInstance [GOAL] X : Profinite ⊢ T2Space ((forget Profinite).obj X) [PROOFSTEP] change T2Space X [GOAL] X : Profinite ⊢ T2Space ↑X.toCompHaus.toTop [PROOFSTEP] exact inferInstance [GOAL] X✝ Y✝ : FintypeCat f : X✝ ⟶ Y✝ ⊢ Continuous f [PROOFSTEP] continuity [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ Profinite ⊢ TotallyDisconnectedSpace ↑(CompHaus.limitCone (F ⋙ profiniteToCompHaus)).pt.toTop [PROOFSTEP] change TotallyDisconnectedSpace ({u : ∀ j : J, F.obj j | _} : Type _) [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ Profinite ⊢ TotallyDisconnectedSpace ↑{u | ∀ {i j : J} (f : i ⟶ j), ↑(((F ⋙ profiniteToCompHaus) ⋙ compHausToTop).map f) (u i) = u j} [PROOFSTEP] exact Subtype.totallyDisconnectedSpace [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ Profinite ⊢ ∀ ⦃X Y : J⦄ (f : X ⟶ Y), ((Functor.const J).obj (mk (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).pt)).map f ≫ NatTrans.app (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).π Y = NatTrans.app (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).π X ≫ F.map f [PROOFSTEP] intro j k f [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ Profinite j k : J f : j ⟶ k ⊢ ((Functor.const J).obj (mk (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).pt)).map f ≫ NatTrans.app (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).π k = NatTrans.app (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).π j ≫ F.map f [PROOFSTEP] ext ⟨g, p⟩ [GOAL] case w.mk J : Type u inst✝ : SmallCategory J F : J ⥤ Profinite j k : J f : j ⟶ k g : (j : J) → ↑(((F ⋙ profiniteToCompHaus) ⋙ compHausToTop).obj j) p : g ∈ {u | ∀ {i j : J} (f : i ⟶ j), ↑(((F ⋙ profiniteToCompHaus) ⋙ compHausToTop).map f) (u i) = u j} ⊢ ↑(((Functor.const J).obj (mk (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).pt)).map f ≫ NatTrans.app (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).π k) { val := g, property := p } = ↑(NatTrans.app (CompHaus.limitCone (F ⋙ profiniteToCompHaus)).π j ≫ F.map f) { val := g, property := p } [PROOFSTEP] exact (p f).symm [GOAL] ⊢ Limits.PreservesLimits (forget Profinite) [PROOFSTEP] apply Limits.compPreservesLimits Profinite.toTopCat (forget TopCat) [GOAL] X Y : Profinite f : X ⟶ Y ⊢ ReflectsIsomorphisms (forget Profinite) [PROOFSTEP] constructor [GOAL] case reflects X Y : Profinite f : X ⟶ Y ⊢ ∀ {A B : Profinite} (f : A ⟶ B) [inst : IsIso ((forget Profinite).map f)], IsIso f [PROOFSTEP] intro A B f hf [GOAL] case reflects X Y : Profinite f✝ : X ⟶ Y A B : Profinite f : A ⟶ B hf : IsIso ((forget Profinite).map f) ⊢ IsIso f [PROOFSTEP] exact Profinite.isIso_of_bijective _ ((isIso_iff_bijective f).mp hf) [GOAL] X Y : Profinite f✝ : X ⟶ Y f : ↑X.toCompHaus.toTop ≃ₜ ↑Y.toCompHaus.toTop ⊢ ContinuousMap.mk ↑f ≫ ContinuousMap.mk ↑(Homeomorph.symm f) = 𝟙 X [PROOFSTEP] ext x [GOAL] case w X Y : Profinite f✝ : X ⟶ Y f : ↑X.toCompHaus.toTop ≃ₜ ↑Y.toCompHaus.toTop x : (forget Profinite).obj X ⊢ ↑(ContinuousMap.mk ↑f ≫ ContinuousMap.mk ↑(Homeomorph.symm f)) x = ↑(𝟙 X) x [PROOFSTEP] exact f.symm_apply_apply x [GOAL] X Y : Profinite f✝ : X ⟶ Y f : ↑X.toCompHaus.toTop ≃ₜ ↑Y.toCompHaus.toTop ⊢ ContinuousMap.mk ↑(Homeomorph.symm f) ≫ ContinuousMap.mk ↑f = 𝟙 Y [PROOFSTEP] ext x [GOAL] case w X Y : Profinite f✝ : X ⟶ Y f : ↑X.toCompHaus.toTop ≃ₜ ↑Y.toCompHaus.toTop x : (forget Profinite).obj Y ⊢ ↑(ContinuousMap.mk ↑(Homeomorph.symm f) ≫ ContinuousMap.mk ↑f) x = ↑(𝟙 Y) x [PROOFSTEP] exact f.apply_symm_apply x [GOAL] X Y : Profinite f✝ : X ⟶ Y f : X ≅ Y x : ↑X.toCompHaus.toTop ⊢ ↑f.inv (↑f.hom x) = x [PROOFSTEP] simp [GOAL] X Y : Profinite f✝ : X ⟶ Y f : X ≅ Y x : ↑Y.toCompHaus.toTop ⊢ ↑f.hom (↑f.inv x) = x [PROOFSTEP] simp [GOAL] X Y : Profinite f✝ : X ⟶ Y f : X ≅ Y ⊢ isoOfHomeo (homeoOfIso f) = f [PROOFSTEP] ext [GOAL] case w.w X Y : Profinite f✝ : X ⟶ Y f : X ≅ Y x✝ : (forget Profinite).obj X ⊢ ↑(isoOfHomeo (homeoOfIso f)).hom x✝ = ↑f.hom x✝ [PROOFSTEP] rfl [GOAL] X Y : Profinite f✝ : X ⟶ Y f : ↑X.toCompHaus.toTop ≃ₜ ↑Y.toCompHaus.toTop ⊢ homeoOfIso (isoOfHomeo f) = f [PROOFSTEP] ext [GOAL] case H X Y : Profinite f✝ : X ⟶ Y f : ↑X.toCompHaus.toTop ≃ₜ ↑Y.toCompHaus.toTop x✝ : ↑X.toCompHaus.toTop ⊢ ↑(homeoOfIso (isoOfHomeo f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] constructor [GOAL] case mp X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Epi f → Function.Surjective ↑f [PROOFSTEP] dsimp [Function.Surjective] [GOAL] case mp X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Epi f → ∀ (b : (forget Profinite).obj Y), ∃ a, ↑f a = b [PROOFSTEP] contrapose! [GOAL] case mp X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ (∃ b, ∀ (a : (forget Profinite).obj X), ↑f a ≠ b) → ¬Epi f [PROOFSTEP] rintro ⟨y, hy⟩ hf [GOAL] case mp.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f ⊢ False [PROOFSTEP] skip [GOAL] case mp.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f ⊢ False [PROOFSTEP] let C := Set.range f [GOAL] case mp.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f ⊢ False [PROOFSTEP] have hC : IsClosed C := (isCompact_range f.continuous).isClosed [GOAL] case mp.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C ⊢ False [PROOFSTEP] let U := Cᶜ [GOAL] case mp.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ ⊢ False [PROOFSTEP] have hyU : y ∈ U := by refine' Set.mem_compl _ rintro ⟨y', hy'⟩ exact hy y' hy' [GOAL] X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ ⊢ y ∈ U [PROOFSTEP] refine' Set.mem_compl _ [GOAL] X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ ⊢ ¬y ∈ C [PROOFSTEP] rintro ⟨y', hy'⟩ [GOAL] case intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ y' : (forget Profinite).obj X hy' : ↑f y' = y ⊢ False [PROOFSTEP] exact hy y' hy' [GOAL] case mp.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U ⊢ False [PROOFSTEP] have hUy : U ∈ 𝓝 y := hC.compl_mem_nhds hyU [GOAL] case mp.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y ⊢ False [PROOFSTEP] obtain ⟨V, hV, hyV, hVU⟩ := isTopologicalBasis_clopen.mem_nhds_iff.mp hUy [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U ⊢ False [PROOFSTEP] classical let Z := of (ULift.{u} <| Fin 2) let g : Y ⟶ Z := ⟨(LocallyConstant.ofClopen hV).map ULift.up, LocallyConstant.continuous _⟩ let h : Y ⟶ Z := ⟨fun _ => ⟨1⟩, continuous_const⟩ have H : h = g := by rw [← cancel_epi f] ext x apply ULift.ext dsimp [LocallyConstant.ofClopen] rw [comp_apply, ContinuousMap.coe_mk, comp_apply, ContinuousMap.coe_mk, Function.comp_apply, if_neg] refine' mt (fun α => hVU α) _ simp only [Set.mem_range_self, not_true, not_false_iff, Set.mem_compl_iff] apply_fun fun e => (e y).down at H dsimp [LocallyConstant.ofClopen] at H rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Function.comp_apply, if_pos hyV] at H exact top_ne_bot H [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U ⊢ False [PROOFSTEP] let Z := of (ULift.{u} <| Fin 2) [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) ⊢ False [PROOFSTEP] let g : Y ⟶ Z := ⟨(LocallyConstant.ofClopen hV).map ULift.up, LocallyConstant.continuous _⟩ [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) ⊢ False [PROOFSTEP] let h : Y ⟶ Z := ⟨fun _ => ⟨1⟩, continuous_const⟩ [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } ⊢ False [PROOFSTEP] have H : h = g := by rw [← cancel_epi f] ext x apply ULift.ext dsimp [LocallyConstant.ofClopen] rw [comp_apply, ContinuousMap.coe_mk, comp_apply, ContinuousMap.coe_mk, Function.comp_apply, if_neg] refine' mt (fun α => hVU α) _ simp only [Set.mem_range_self, not_true, not_false_iff, Set.mem_compl_iff] [GOAL] X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } ⊢ h = g [PROOFSTEP] rw [← cancel_epi f] [GOAL] X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } ⊢ f ≫ h = f ≫ g [PROOFSTEP] ext x [GOAL] case w X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } x : (forget Profinite).obj X ⊢ ↑(f ≫ h) x = ↑(f ≫ g) x [PROOFSTEP] apply ULift.ext [GOAL] case w.h X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } x : (forget Profinite).obj X ⊢ (↑(f ≫ h) x).down = (↑(f ≫ g) x).down [PROOFSTEP] dsimp [LocallyConstant.ofClopen] [GOAL] case w.h X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } x : (forget Profinite).obj X ⊢ (↑(f ≫ ContinuousMap.mk fun x => { down := 1 }) x).down = (↑(f ≫ ContinuousMap.mk (ULift.up ∘ fun x => if x ∈ V then 0 else 1)) x).down [PROOFSTEP] rw [comp_apply, ContinuousMap.coe_mk, comp_apply, ContinuousMap.coe_mk, Function.comp_apply, if_neg] [GOAL] case w.h.hnc X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } x : (forget Profinite).obj X ⊢ ¬↑f x ∈ V [PROOFSTEP] refine' mt (fun α => hVU α) _ [GOAL] case w.h.hnc X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } x : (forget Profinite).obj X ⊢ ¬↑f x ∈ U [PROOFSTEP] simp only [Set.mem_range_self, not_true, not_false_iff, Set.mem_compl_iff] [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } H : h = g ⊢ False [PROOFSTEP] apply_fun fun e => (e y).down at H [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } H : (↑h y).down = (↑g y).down ⊢ False [PROOFSTEP] dsimp [LocallyConstant.ofClopen] at H [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } H : (↑(ContinuousMap.mk fun x => { down := 1 }) y).down = (↑(ContinuousMap.mk (ULift.up ∘ fun x => if x ∈ V then 0 else 1)) y).down ⊢ False [PROOFSTEP] rw [ContinuousMap.coe_mk, ContinuousMap.coe_mk, Function.comp_apply, if_pos hyV] at H [GOAL] case mp.intro.intro.intro.intro X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y y : (forget Profinite).obj Y hy : ∀ (a : (forget Profinite).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget Profinite).obj Y) := Set.range ↑f hC : IsClosed C U : Set ((forget Profinite).obj Y) := Cᶜ hyU : y ∈ U hUy : U ∈ 𝓝 y V : Set ((forget Profinite).obj Y) hV : V ∈ {s | IsClopen s} hyV : y ∈ V hVU : V ⊆ U Z : Profinite := of (ULift (Fin 2)) g : Y ⟶ Z := ContinuousMap.mk ↑(LocallyConstant.map ULift.up (LocallyConstant.ofClopen hV)) h : Y ⟶ Z := ContinuousMap.mk fun x => { down := 1 } H : { down := 1 }.down = { down := 0 }.down ⊢ False [PROOFSTEP] exact top_ne_bot H [GOAL] case mpr X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Function.Surjective ↑f → Epi f [PROOFSTEP] rw [← CategoryTheory.epi_iff_surjective] [GOAL] case mpr X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Epi ↑f → Epi f [PROOFSTEP] apply (forget Profinite).epi_of_epi_map [GOAL] X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Mono f ↔ Function.Injective ↑f [PROOFSTEP] constructor [GOAL] case mp X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Mono f → Function.Injective ↑f [PROOFSTEP] intro h [GOAL] case mp X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y h : Mono f ⊢ Function.Injective ↑f [PROOFSTEP] haveI : Limits.PreservesLimits profiniteToCompHaus := inferInstance [GOAL] case mp X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y h : Mono f this : Limits.PreservesLimits profiniteToCompHaus ⊢ Function.Injective ↑f [PROOFSTEP] haveI : Mono (profiniteToCompHaus.map f) := inferInstance [GOAL] case mp X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y h : Mono f this✝ : Limits.PreservesLimits profiniteToCompHaus this : Mono (profiniteToCompHaus.map f) ⊢ Function.Injective ↑f [PROOFSTEP] rw [← CompHaus.mono_iff_injective] [GOAL] case mp X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y h : Mono f this✝ : Limits.PreservesLimits profiniteToCompHaus this : Mono (profiniteToCompHaus.map f) ⊢ Mono f [PROOFSTEP] assumption [GOAL] case mpr X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Function.Injective ↑f → Mono f [PROOFSTEP] rw [← CategoryTheory.mono_iff_injective] [GOAL] case mpr X✝ Y✝ : Profinite f✝ : X✝ ⟶ Y✝ X Y : Profinite f : X ⟶ Y ⊢ Mono ↑f → Mono f [PROOFSTEP] apply (forget Profinite).mono_of_mono_map
{"mathlib_filename": "Mathlib.Topology.Category.Profinite.Basic", "llama_tokens": 10710}
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.Adjunctions", "llama_tokens": 0}
[GOAL] X : Compactum x : X.A ⊢ str X (incl X x) = x [PROOFSTEP] change ((β).η.app _ ≫ X.a) _ = _ [GOAL] X : Compactum x : X.A ⊢ (NatTrans.app (Monad.η β) X.A ≫ X.a) x = x [PROOFSTEP] rw [Monad.Algebra.unit] [GOAL] X : Compactum x : X.A ⊢ 𝟙 X.A x = x [PROOFSTEP] rfl [GOAL] X Y : Compactum f : X ⟶ Y xs : Ultrafilter X.A ⊢ Monad.Algebra.Hom.f f (str X xs) = str Y (Ultrafilter.map f.f xs) [PROOFSTEP] change (X.a ≫ f.f) _ = _ [GOAL] X Y : Compactum f : X ⟶ Y xs : Ultrafilter X.A ⊢ (X.a ≫ f.f) xs = str Y (Ultrafilter.map f.f xs) [PROOFSTEP] rw [← f.h] [GOAL] X Y : Compactum f : X ⟶ Y xs : Ultrafilter X.A ⊢ (β.toFunctor.map f.f ≫ Y.a) xs = str Y (Ultrafilter.map f.f xs) [PROOFSTEP] rfl [GOAL] X : Compactum uux : Ultrafilter (Ultrafilter X.A) ⊢ str X (join X uux) = str X (Ultrafilter.map (str X) uux) [PROOFSTEP] change ((β).μ.app _ ≫ X.a) _ = _ [GOAL] X : Compactum uux : Ultrafilter (Ultrafilter X.A) ⊢ (NatTrans.app (Monad.μ β) X.A ≫ X.a) uux = str X (Ultrafilter.map (str X) uux) [PROOFSTEP] rw [Monad.Algebra.assoc] [GOAL] X : Compactum uux : Ultrafilter (Ultrafilter X.A) ⊢ (β.toFunctor.map X.a ≫ X.a) uux = str X (Ultrafilter.map (str X) uux) [PROOFSTEP] rfl [GOAL] X : Compactum S : Set X.A ⊢ IsClosed S ↔ ∀ (F : Ultrafilter X.A), S ∈ F → str X F ∈ S [PROOFSTEP] rw [← isOpen_compl_iff] [GOAL] X : Compactum S : Set X.A ⊢ IsOpen Sᶜ ↔ ∀ (F : Ultrafilter X.A), S ∈ F → str X F ∈ S [PROOFSTEP] constructor [GOAL] case mp X : Compactum S : Set X.A ⊢ IsOpen Sᶜ → ∀ (F : Ultrafilter X.A), S ∈ F → str X F ∈ S [PROOFSTEP] intro cond F h [GOAL] case mp X : Compactum S : Set X.A cond : IsOpen Sᶜ F : Ultrafilter X.A h : S ∈ F ⊢ str X F ∈ S [PROOFSTEP] by_contra c [GOAL] case mp X : Compactum S : Set X.A cond : IsOpen Sᶜ F : Ultrafilter X.A h : S ∈ F c : ¬str X F ∈ S ⊢ False [PROOFSTEP] specialize cond F c [GOAL] case mp X : Compactum S : Set X.A F : Ultrafilter X.A h : S ∈ F c : ¬str X F ∈ S cond : Sᶜ ∈ F ⊢ False [PROOFSTEP] rw [compl_mem_iff_not_mem] at cond [GOAL] case mp X : Compactum S : Set X.A F : Ultrafilter X.A h : S ∈ F c : ¬str X F ∈ S cond : ¬S ∈ F ⊢ False [PROOFSTEP] contradiction [GOAL] case mpr X : Compactum S : Set X.A ⊢ (∀ (F : Ultrafilter X.A), S ∈ F → str X F ∈ S) → IsOpen Sᶜ [PROOFSTEP] intro h1 F h2 [GOAL] case mpr X : Compactum S : Set X.A h1 : ∀ (F : Ultrafilter X.A), S ∈ F → str X F ∈ S F : Ultrafilter X.A h2 : str X F ∈ Sᶜ ⊢ Sᶜ ∈ F [PROOFSTEP] specialize h1 F [GOAL] case mpr X : Compactum S : Set X.A F : Ultrafilter X.A h2 : str X F ∈ Sᶜ h1 : S ∈ F → str X F ∈ S ⊢ Sᶜ ∈ F [PROOFSTEP] cases' F.mem_or_compl_mem S with h h [GOAL] case mpr.inl X : Compactum S : Set X.A F : Ultrafilter X.A h2 : str X F ∈ Sᶜ h1 : S ∈ F → str X F ∈ S h : S ∈ F ⊢ Sᶜ ∈ F case mpr.inr X : Compactum S : Set X.A F : Ultrafilter X.A h2 : str X F ∈ Sᶜ h1 : S ∈ F → str X F ∈ S h : Sᶜ ∈ F ⊢ Sᶜ ∈ F [PROOFSTEP] exacts [absurd (h1 h) h2, h] [GOAL] X : Compactum ⊢ CompactSpace X.A [PROOFSTEP] constructor [GOAL] case isCompact_univ X : Compactum ⊢ IsCompact Set.univ [PROOFSTEP] rw [isCompact_iff_ultrafilter_le_nhds] [GOAL] case isCompact_univ X : Compactum ⊢ ∀ (f : Ultrafilter X.A), ↑f ≤ 𝓟 Set.univ → ∃ a, a ∈ Set.univ ∧ ↑f ≤ 𝓝 a [PROOFSTEP] intro F _ [GOAL] case isCompact_univ X : Compactum F : Ultrafilter X.A a✝ : ↑F ≤ 𝓟 Set.univ ⊢ ∃ a, a ∈ Set.univ ∧ ↑F ≤ 𝓝 a [PROOFSTEP] refine' ⟨X.str F, by tauto, _⟩ [GOAL] X : Compactum F : Ultrafilter X.A a✝ : ↑F ≤ 𝓟 Set.univ ⊢ str X F ∈ Set.univ [PROOFSTEP] tauto [GOAL] case isCompact_univ X : Compactum F : Ultrafilter X.A a✝ : ↑F ≤ 𝓟 Set.univ ⊢ ↑F ≤ 𝓝 (str X F) [PROOFSTEP] rw [le_nhds_iff] [GOAL] case isCompact_univ X : Compactum F : Ultrafilter X.A a✝ : ↑F ≤ 𝓟 Set.univ ⊢ ∀ (s : Set X.A), str X F ∈ s → IsOpen s → s ∈ ↑F [PROOFSTEP] intro S h1 h2 [GOAL] case isCompact_univ X : Compactum F : Ultrafilter X.A a✝ : ↑F ≤ 𝓟 Set.univ S : Set X.A h1 : str X F ∈ S h2 : IsOpen S ⊢ S ∈ ↑F [PROOFSTEP] exact h2 F h1 [GOAL] X : Compactum A B : Set X.A ⊢ Compactum.basic (A ∩ B) = Compactum.basic A ∩ Compactum.basic B [PROOFSTEP] ext G [GOAL] case h X : Compactum A B : Set X.A G : Ultrafilter X.A ⊢ G ∈ Compactum.basic (A ∩ B) ↔ G ∈ Compactum.basic A ∩ Compactum.basic B [PROOFSTEP] constructor [GOAL] case h.mp X : Compactum A B : Set X.A G : Ultrafilter X.A ⊢ G ∈ Compactum.basic (A ∩ B) → G ∈ Compactum.basic A ∩ Compactum.basic B [PROOFSTEP] intro hG [GOAL] case h.mp X : Compactum A B : Set X.A G : Ultrafilter X.A hG : G ∈ Compactum.basic (A ∩ B) ⊢ G ∈ Compactum.basic A ∩ Compactum.basic B [PROOFSTEP] constructor [GOAL] case h.mp.left X : Compactum A B : Set X.A G : Ultrafilter X.A hG : G ∈ Compactum.basic (A ∩ B) ⊢ G ∈ Compactum.basic A [PROOFSTEP] filter_upwards [hG] with _ [GOAL] case h.mp.right X : Compactum A B : Set X.A G : Ultrafilter X.A hG : G ∈ Compactum.basic (A ∩ B) ⊢ G ∈ Compactum.basic B [PROOFSTEP] filter_upwards [hG] with _ [GOAL] case h X : Compactum A B : Set X.A G : Ultrafilter X.A hG : G ∈ Compactum.basic (A ∩ B) a✝ : X.A ⊢ a✝ ∈ A ∩ B → a✝ ∈ A case h X : Compactum A B : Set X.A G : Ultrafilter X.A hG : G ∈ Compactum.basic (A ∩ B) a✝ : X.A ⊢ a✝ ∈ A ∩ B → a✝ ∈ B [PROOFSTEP] exacts [And.left, And.right] [GOAL] case h.mpr X : Compactum A B : Set X.A G : Ultrafilter X.A ⊢ G ∈ Compactum.basic A ∩ Compactum.basic B → G ∈ Compactum.basic (A ∩ B) [PROOFSTEP] rintro ⟨h1, h2⟩ [GOAL] case h.mpr.intro X : Compactum A B : Set X.A G : Ultrafilter X.A h1 : G ∈ Compactum.basic A h2 : G ∈ Compactum.basic B ⊢ G ∈ Compactum.basic (A ∩ B) [PROOFSTEP] exact inter_mem h1 h2 [GOAL] X : Compactum A : Set X.A a : X.A ha : a ∈ A ⊢ str X (incl X a) = a [PROOFSTEP] simp [GOAL] X : Compactum A : Set X.A ⊢ Compactum.cl (Compactum.cl A) ⊆ Compactum.cl A [PROOFSTEP] rintro _ ⟨F, hF, rfl⟩ -- Notation to be used in this proof. [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] let fsu := Finset (Set (Ultrafilter X)) [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] let ssu := Set (Set (Ultrafilter X)) [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] let ι : fsu → ssu := fun x ↦ ↑x [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] let C0 : ssu := {Z | ∃ B ∈ F, X.str ⁻¹' B = Z} [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] let AA := {G : Ultrafilter X | A ∈ G} [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] let C1 := insert AA C0 [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] let C2 := finiteInterClosure C1 [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] have claim1 : ∀ (B) (_ : B ∈ C0) (C) (_ : C ∈ C0), B ∩ C ∈ C0 := by rintro B ⟨Q, hQ, rfl⟩ C ⟨R, hR, rfl⟩ use Q ∩ R simp only [and_true_iff, eq_self_iff_true, Set.preimage_inter] exact inter_sets _ hQ hR [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 ⊢ ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 [PROOFSTEP] rintro B ⟨Q, hQ, rfl⟩ C ⟨R, hR, rfl⟩ [GOAL] case intro.intro.intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 Q : Set X.A hQ : Q ∈ F R : Set X.A hR : R ∈ F ⊢ str X ⁻¹' Q ∩ str X ⁻¹' R ∈ C0 [PROOFSTEP] use Q ∩ R [GOAL] case h X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 Q : Set X.A hQ : Q ∈ F R : Set X.A hR : R ∈ F ⊢ Q ∩ R ∈ F ∧ str X ⁻¹' (Q ∩ R) = str X ⁻¹' Q ∩ str X ⁻¹' R [PROOFSTEP] simp only [and_true_iff, eq_self_iff_true, Set.preimage_inter] [GOAL] case h X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 Q : Set X.A hQ : Q ∈ F R : Set X.A hR : R ∈ F ⊢ Q ∩ R ∈ F [PROOFSTEP] exact inter_sets _ hQ hR [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] have claim2 : ∀ B ∈ C0, Set.Nonempty B := by rintro B ⟨Q, hQ, rfl⟩ obtain ⟨q⟩ := Filter.nonempty_of_mem hQ use X.incl q simpa -- The intersection of AA with every set in C0 is nonempty. [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 ⊢ ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B [PROOFSTEP] rintro B ⟨Q, hQ, rfl⟩ [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 Q : Set X.A hQ : Q ∈ F ⊢ Set.Nonempty (str X ⁻¹' Q) [PROOFSTEP] obtain ⟨q⟩ := Filter.nonempty_of_mem hQ [GOAL] case intro.intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 Q : Set X.A hQ : Q ∈ F q : X.A h✝ : q ∈ Q ⊢ Set.Nonempty (str X ⁻¹' Q) [PROOFSTEP] use X.incl q [GOAL] case h X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 Q : Set X.A hQ : Q ∈ F q : X.A h✝ : q ∈ Q ⊢ incl X q ∈ str X ⁻¹' Q [PROOFSTEP] simpa -- The intersection of AA with every set in C0 is nonempty. [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] have claim3 : ∀ B ∈ C0, (AA ∩ B).Nonempty := by rintro B ⟨Q, hQ, rfl⟩ have : (Q ∩ cl A).Nonempty := Filter.nonempty_of_mem (inter_mem hQ hF) rcases this with ⟨q, hq1, P, hq2, hq3⟩ refine' ⟨P, hq2, _⟩ rw [← hq3] at hq1 simpa -- Suffices to show that the intersection of any finite subcollection of C1 is nonempty. [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B ⊢ ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) [PROOFSTEP] rintro B ⟨Q, hQ, rfl⟩ [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B Q : Set X.A hQ : Q ∈ F ⊢ Set.Nonempty (AA ∩ str X ⁻¹' Q) [PROOFSTEP] have : (Q ∩ cl A).Nonempty := Filter.nonempty_of_mem (inter_mem hQ hF) [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B Q : Set X.A hQ : Q ∈ F this : Set.Nonempty (Q ∩ Compactum.cl A) ⊢ Set.Nonempty (AA ∩ str X ⁻¹' Q) [PROOFSTEP] rcases this with ⟨q, hq1, P, hq2, hq3⟩ [GOAL] case intro.intro.intro.intro.intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B Q : Set X.A hQ : Q ∈ F q : X.A hq1 : q ∈ Q P : Ultrafilter X.A hq2 : P ∈ Compactum.basic A hq3 : str X P = q ⊢ Set.Nonempty (AA ∩ str X ⁻¹' Q) [PROOFSTEP] refine' ⟨P, hq2, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B Q : Set X.A hQ : Q ∈ F q : X.A hq1 : q ∈ Q P : Ultrafilter X.A hq2 : P ∈ Compactum.basic A hq3 : str X P = q ⊢ P ∈ str X ⁻¹' Q [PROOFSTEP] rw [← hq3] at hq1 [GOAL] case intro.intro.intro.intro.intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B Q : Set X.A hQ : Q ∈ F q : X.A P : Ultrafilter X.A hq1 : str X P ∈ Q hq2 : P ∈ Compactum.basic A hq3 : str X P = q ⊢ P ∈ str X ⁻¹' Q [PROOFSTEP] simpa -- Suffices to show that the intersection of any finite subcollection of C1 is nonempty. [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] suffices ∀ T : fsu, ι T ⊆ C1 → (⋂₀ ι T).Nonempty by obtain ⟨G, h1⟩ := exists_ultrafilter_of_finite_inter_nonempty _ this use X.join G have : G.map X.str = F := Ultrafilter.coe_le_coe.1 fun S hS => h1 (Or.inr ⟨S, hS, rfl⟩) rw [join_distrib, this] exact ⟨h1 (Or.inl rfl), rfl⟩ -- C2 is closed under finite intersections (by construction!). [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) this : ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] obtain ⟨G, h1⟩ := exists_ultrafilter_of_finite_inter_nonempty _ this [GOAL] case intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) this : ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) G : Ultrafilter (Ultrafilter X.A) h1 : C1 ⊆ G.sets ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] use X.join G [GOAL] case h X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) this : ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) G : Ultrafilter (Ultrafilter X.A) h1 : C1 ⊆ G.sets ⊢ join X G ∈ Compactum.basic A ∧ str X (join X G) = str X F [PROOFSTEP] have : G.map X.str = F := Ultrafilter.coe_le_coe.1 fun S hS => h1 (Or.inr ⟨S, hS, rfl⟩) [GOAL] case h X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) this✝ : ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) G : Ultrafilter (Ultrafilter X.A) h1 : C1 ⊆ G.sets this : Ultrafilter.map (str X) G = F ⊢ join X G ∈ Compactum.basic A ∧ str X (join X G) = str X F [PROOFSTEP] rw [join_distrib, this] [GOAL] case h X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) this✝ : ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) G : Ultrafilter (Ultrafilter X.A) h1 : C1 ⊆ G.sets this : Ultrafilter.map (str X) G = F ⊢ join X G ∈ Compactum.basic A ∧ str X F = str X F [PROOFSTEP] exact ⟨h1 (Or.inl rfl), rfl⟩ -- C2 is closed under finite intersections (by construction!). [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) ⊢ ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) [PROOFSTEP] have claim4 := finiteInterClosure_finiteInter C1 [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) ⊢ ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) [PROOFSTEP] have claim5 : FiniteInter C0 := ⟨⟨_, univ_mem, Set.preimage_univ⟩, claim1⟩ -- Every element of C2 is nonempty. [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 ⊢ ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) [PROOFSTEP] have claim6 : ∀ P ∈ C2, (P : Set (Ultrafilter X)).Nonempty := by suffices ∀ P ∈ C2, P ∈ C0 ∨ ∃ Q ∈ C0, P = AA ∩ Q by intro P hP cases' this P hP with h h · exact claim2 _ h · rcases h with ⟨Q, hQ, rfl⟩ exact claim3 _ hQ intro P hP exact claim5.finiteInterClosure_insert _ hP [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 ⊢ ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → Set.Nonempty P [PROOFSTEP] suffices ∀ P ∈ C2, P ∈ C0 ∨ ∃ Q ∈ C0, P = AA ∩ Q by intro P hP cases' this P hP with h h · exact claim2 _ h · rcases h with ⟨Q, hQ, rfl⟩ exact claim3 _ hQ [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 this : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → P ∈ C0 ∨ ∃ Q, Q ∈ C0 ∧ P = AA ∩ Q ⊢ ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → Set.Nonempty P [PROOFSTEP] intro P hP [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 this : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → P ∈ C0 ∨ ∃ Q, Q ∈ C0 ∧ P = AA ∩ Q P : Set (Ultrafilter X.A) hP : P ∈ C2 ⊢ Set.Nonempty P [PROOFSTEP] cases' this P hP with h h [GOAL] case inl X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 this : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → P ∈ C0 ∨ ∃ Q, Q ∈ C0 ∧ P = AA ∩ Q P : Set (Ultrafilter X.A) hP : P ∈ C2 h : P ∈ C0 ⊢ Set.Nonempty P [PROOFSTEP] exact claim2 _ h [GOAL] case inr X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 this : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → P ∈ C0 ∨ ∃ Q, Q ∈ C0 ∧ P = AA ∩ Q P : Set (Ultrafilter X.A) hP : P ∈ C2 h : ∃ Q, Q ∈ C0 ∧ P = AA ∩ Q ⊢ Set.Nonempty P [PROOFSTEP] rcases h with ⟨Q, hQ, rfl⟩ [GOAL] case inr.intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 this : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → P ∈ C0 ∨ ∃ Q, Q ∈ C0 ∧ P = AA ∩ Q Q : Set (Ultrafilter X.A) hQ : Q ∈ C0 hP : AA ∩ Q ∈ C2 ⊢ Set.Nonempty (AA ∩ Q) [PROOFSTEP] exact claim3 _ hQ [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 ⊢ ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → P ∈ C0 ∨ ∃ Q, Q ∈ C0 ∧ P = AA ∩ Q [PROOFSTEP] intro P hP [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 P : Set (Ultrafilter X.A) hP : P ∈ C2 ⊢ P ∈ C0 ∨ ∃ Q, Q ∈ C0 ∧ P = AA ∩ Q [PROOFSTEP] exact claim5.finiteInterClosure_insert _ hP [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 claim6 : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → Set.Nonempty P ⊢ ∀ (T : fsu), ι T ⊆ C1 → Set.Nonempty (⋂₀ ι T) [PROOFSTEP] intro T hT [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 claim6 : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → Set.Nonempty P T : fsu hT : ι T ⊆ C1 ⊢ Set.Nonempty (⋂₀ ι T) [PROOFSTEP] suffices ⋂₀ ι T ∈ C2 by exact claim6 _ this [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 claim6 : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → Set.Nonempty P T : fsu hT : ι T ⊆ C1 this : ⋂₀ ι T ∈ C2 ⊢ Set.Nonempty (⋂₀ ι T) [PROOFSTEP] exact claim6 _ this [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 claim6 : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → Set.Nonempty P T : fsu hT : ι T ⊆ C1 ⊢ ⋂₀ ι T ∈ C2 [PROOFSTEP] apply claim4.finiteInter_mem T [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 claim6 : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → Set.Nonempty P T : fsu hT : ι T ⊆ C1 ⊢ ↑T ⊆ finiteInterClosure C1 [PROOFSTEP] intro t ht [GOAL] case intro.intro X : Compactum A : Set X.A F : Ultrafilter X.A hF : F ∈ Compactum.basic (Compactum.cl A) fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x C0 : ssu := {Z | ∃ B, B ∈ F ∧ str X ⁻¹' B = Z} AA : Set (Ultrafilter X.A) := {G | A ∈ G} C1 : ssu := insert AA C0 C2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure C1 claim1 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → ∀ (C : Set (Ultrafilter X.A)), C ∈ C0 → B ∩ C ∈ C0 claim2 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty B claim3 : ∀ (B : Set (Ultrafilter X.A)), B ∈ C0 → Set.Nonempty (AA ∩ B) claim4 : FiniteInter (finiteInterClosure C1) claim5 : FiniteInter C0 claim6 : ∀ (P : Set (Ultrafilter X.A)), P ∈ C2 → Set.Nonempty P T : fsu hT : ι T ⊆ C1 t : Set (Ultrafilter X.A) ht : t ∈ ↑T ⊢ t ∈ finiteInterClosure C1 [PROOFSTEP] refine' finiteInterClosure.basic (@hT t ht) [GOAL] X : Compactum A : Set X.A ⊢ IsClosed (Compactum.cl A) [PROOFSTEP] rw [isClosed_iff] [GOAL] X : Compactum A : Set X.A ⊢ ∀ (F : Ultrafilter X.A), Compactum.cl A ∈ F → str X F ∈ Compactum.cl A [PROOFSTEP] intro F hF [GOAL] X : Compactum A : Set X.A F : Ultrafilter X.A hF : Compactum.cl A ∈ F ⊢ str X F ∈ Compactum.cl A [PROOFSTEP] exact cl_cl _ ⟨F, hF, rfl⟩ [GOAL] X : Compactum F : Ultrafilter X.A x : X.A ⊢ ↑F ≤ 𝓝 x → str X F = x [PROOFSTEP] let fsu := Finset (Set (Ultrafilter X)) [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ⊢ ↑F ≤ 𝓝 x → str X F = x [PROOFSTEP] let ssu := Set (Set (Ultrafilter X)) [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ⊢ ↑F ≤ 𝓝 x → str X F = x [PROOFSTEP] let ι : fsu → ssu := fun x ↦ ↑x [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x ⊢ ↑F ≤ 𝓝 x → str X F = x [PROOFSTEP] let T0 : ssu := {S | ∃ A ∈ F, S = basic A} [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} ⊢ ↑F ≤ 𝓝 x → str X F = x [PROOFSTEP] let AA := X.str ⁻¹' { x } [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} ⊢ ↑F ≤ 𝓝 x → str X F = x [PROOFSTEP] let T1 := insert AA T0 [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 ⊢ ↑F ≤ 𝓝 x → str X F = x [PROOFSTEP] let T2 := finiteInterClosure T1 [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 ⊢ ↑F ≤ 𝓝 x → str X F = x [PROOFSTEP] intro cond [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x ⊢ str X F = x [PROOFSTEP] have claim1 : ∀ A : Set X, IsClosed A → A ∈ F → x ∈ A := by intro A hA h by_contra H rw [le_nhds_iff] at cond specialize cond Aᶜ H hA.isOpen_compl rw [Ultrafilter.mem_coe, Ultrafilter.compl_mem_iff_not_mem] at cond contradiction -- If A ∈ F, then x ∈ cl A. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x ⊢ ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A [PROOFSTEP] intro A hA h [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x A : Set X.A hA : IsClosed A h : A ∈ F ⊢ x ∈ A [PROOFSTEP] by_contra H [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x A : Set X.A hA : IsClosed A h : A ∈ F H : ¬x ∈ A ⊢ False [PROOFSTEP] rw [le_nhds_iff] at cond [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ∀ (s : Set X.A), x ∈ s → IsOpen s → s ∈ ↑F A : Set X.A hA : IsClosed A h : A ∈ F H : ¬x ∈ A ⊢ False [PROOFSTEP] specialize cond Aᶜ H hA.isOpen_compl [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 A : Set X.A hA : IsClosed A h : A ∈ F H : ¬x ∈ A cond : Aᶜ ∈ ↑F ⊢ False [PROOFSTEP] rw [Ultrafilter.mem_coe, Ultrafilter.compl_mem_iff_not_mem] at cond [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 A : Set X.A hA : IsClosed A h : A ∈ F H : ¬x ∈ A cond : ¬A ∈ F ⊢ False [PROOFSTEP] contradiction -- If A ∈ F, then x ∈ cl A. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A ⊢ str X F = x [PROOFSTEP] have claim2 : ∀ A : Set X, A ∈ F → x ∈ cl A := by intro A hA exact claim1 (cl A) (isClosed_cl A) (mem_of_superset hA (subset_cl A)) -- T0 is closed under intersections. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A ⊢ ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A [PROOFSTEP] intro A hA [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A A : Set X.A hA : A ∈ F ⊢ x ∈ Compactum.cl A [PROOFSTEP] exact claim1 (cl A) (isClosed_cl A) (mem_of_superset hA (subset_cl A)) -- T0 is closed under intersections. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A ⊢ str X F = x [PROOFSTEP] have claim3 : ∀ (S1) (_ : S1 ∈ T0) (S2) (_ : S2 ∈ T0), S1 ∩ S2 ∈ T0 := by rintro S1 ⟨S1, hS1, rfl⟩ S2 ⟨S2, hS2, rfl⟩ exact ⟨S1 ∩ S2, inter_mem hS1 hS2, by simp [basic_inter]⟩ -- For every S ∈ T0, the intersection AA ∩ S is nonempty. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A ⊢ ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 [PROOFSTEP] rintro S1 ⟨S1, hS1, rfl⟩ S2 ⟨S2, hS2, rfl⟩ [GOAL] case intro.intro.intro.intro X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A S1 : Set X.A hS1 : S1 ∈ F S2 : Set X.A hS2 : S2 ∈ F ⊢ Compactum.basic S1 ∩ Compactum.basic S2 ∈ T0 [PROOFSTEP] exact ⟨S1 ∩ S2, inter_mem hS1 hS2, by simp [basic_inter]⟩ -- For every S ∈ T0, the intersection AA ∩ S is nonempty. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A S1 : Set X.A hS1 : S1 ∈ F S2 : Set X.A hS2 : S2 ∈ F ⊢ Compactum.basic S1 ∩ Compactum.basic S2 = Compactum.basic (S1 ∩ S2) [PROOFSTEP] simp [basic_inter] [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 ⊢ str X F = x [PROOFSTEP] have claim4 : ∀ S ∈ T0, (AA ∩ S).Nonempty := by rintro S ⟨S, hS, rfl⟩ rcases claim2 _ hS with ⟨G, hG, hG2⟩ exact ⟨G, hG2, hG⟩ -- Every element of T0 is nonempty. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 ⊢ ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) [PROOFSTEP] rintro S ⟨S, hS, rfl⟩ [GOAL] case intro.intro X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 S : Set X.A hS : S ∈ F ⊢ Set.Nonempty (AA ∩ Compactum.basic S) [PROOFSTEP] rcases claim2 _ hS with ⟨G, hG, hG2⟩ [GOAL] case intro.intro.intro.intro X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 S : Set X.A hS : S ∈ F G : Ultrafilter X.A hG : G ∈ Compactum.basic S hG2 : str X G = x ⊢ Set.Nonempty (AA ∩ Compactum.basic S) [PROOFSTEP] exact ⟨G, hG2, hG⟩ -- Every element of T0 is nonempty. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) ⊢ str X F = x [PROOFSTEP] have claim5 : ∀ S ∈ T0, Set.Nonempty S := by rintro S ⟨S, hS, rfl⟩ exact ⟨F, hS⟩ -- Every element of T2 is nonempty. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) ⊢ ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S [PROOFSTEP] rintro S ⟨S, hS, rfl⟩ [GOAL] case intro.intro X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) S : Set X.A hS : S ∈ F ⊢ Set.Nonempty (Compactum.basic S) [PROOFSTEP] exact ⟨F, hS⟩ -- Every element of T2 is nonempty. [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S ⊢ str X F = x [PROOFSTEP] have claim6 : ∀ S ∈ T2, Set.Nonempty S := by suffices ∀ S ∈ T2, S ∈ T0 ∨ ∃ Q ∈ T0, S = AA ∩ Q by intro S hS cases' this _ hS with h h · exact claim5 S h · rcases h with ⟨Q, hQ, rfl⟩ exact claim4 Q hQ intro S hS apply finiteInterClosure_insert · constructor · use Set.univ refine' ⟨Filter.univ_sets _, _⟩ ext refine' ⟨_, by tauto⟩ · intro apply Filter.univ_sets · exact claim3 · exact hS [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S ⊢ ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S [PROOFSTEP] suffices ∀ S ∈ T2, S ∈ T0 ∨ ∃ Q ∈ T0, S = AA ∩ Q by intro S hS cases' this _ hS with h h · exact claim5 S h · rcases h with ⟨Q, hQ, rfl⟩ exact claim4 Q hQ [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S this : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → S ∈ T0 ∨ ∃ Q, Q ∈ T0 ∧ S = AA ∩ Q ⊢ ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S [PROOFSTEP] intro S hS [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S this : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → S ∈ T0 ∨ ∃ Q, Q ∈ T0 ∧ S = AA ∩ Q S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ Set.Nonempty S [PROOFSTEP] cases' this _ hS with h h [GOAL] case inl X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S this : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → S ∈ T0 ∨ ∃ Q, Q ∈ T0 ∧ S = AA ∩ Q S : Set (Ultrafilter X.A) hS : S ∈ T2 h : S ∈ T0 ⊢ Set.Nonempty S [PROOFSTEP] exact claim5 S h [GOAL] case inr X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S this : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → S ∈ T0 ∨ ∃ Q, Q ∈ T0 ∧ S = AA ∩ Q S : Set (Ultrafilter X.A) hS : S ∈ T2 h : ∃ Q, Q ∈ T0 ∧ S = AA ∩ Q ⊢ Set.Nonempty S [PROOFSTEP] rcases h with ⟨Q, hQ, rfl⟩ [GOAL] case inr.intro.intro X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S this : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → S ∈ T0 ∨ ∃ Q, Q ∈ T0 ∧ S = AA ∩ Q Q : Set (Ultrafilter X.A) hQ : Q ∈ T0 hS : AA ∩ Q ∈ T2 ⊢ Set.Nonempty (AA ∩ Q) [PROOFSTEP] exact claim4 Q hQ [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S ⊢ ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → S ∈ T0 ∨ ∃ Q, Q ∈ T0 ∧ S = AA ∩ Q [PROOFSTEP] intro S hS [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ S ∈ T0 ∨ ∃ Q, Q ∈ T0 ∧ S = AA ∩ Q [PROOFSTEP] apply finiteInterClosure_insert [GOAL] case cond X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ FiniteInter T0 [PROOFSTEP] constructor [GOAL] case cond.univ_mem X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ Set.univ ∈ T0 [PROOFSTEP] use Set.univ [GOAL] case h X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ Set.univ ∈ F ∧ Set.univ = Compactum.basic Set.univ [PROOFSTEP] refine' ⟨Filter.univ_sets _, _⟩ [GOAL] case h X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ Set.univ = Compactum.basic Set.univ [PROOFSTEP] ext [GOAL] case h.h X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 x✝ : Ultrafilter X.A ⊢ x✝ ∈ Set.univ ↔ x✝ ∈ Compactum.basic Set.univ [PROOFSTEP] refine' ⟨_, by tauto⟩ [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 x✝ : Ultrafilter X.A ⊢ x✝ ∈ Compactum.basic Set.univ → x✝ ∈ Set.univ [PROOFSTEP] tauto [GOAL] case h.h X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 x✝ : Ultrafilter X.A ⊢ x✝ ∈ Set.univ → x✝ ∈ Compactum.basic Set.univ [PROOFSTEP] intro [GOAL] case h.h X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 x✝ : Ultrafilter X.A a✝ : x✝ ∈ Set.univ ⊢ x✝ ∈ Compactum.basic Set.univ [PROOFSTEP] apply Filter.univ_sets [GOAL] case cond.inter_mem X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ ∀ ⦃s : Set (Ultrafilter X.A)⦄, s ∈ T0 → ∀ ⦃t : Set (Ultrafilter X.A)⦄, t ∈ T0 → s ∩ t ∈ T0 [PROOFSTEP] exact claim3 [GOAL] case H X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S S : Set (Ultrafilter X.A) hS : S ∈ T2 ⊢ S ∈ finiteInterClosure (insert AA T0) [PROOFSTEP] exact hS [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S ⊢ str X F = x [PROOFSTEP] suffices ∀ F : fsu, ↑F ⊆ T1 → (⋂₀ ι F).Nonempty by obtain ⟨G, h1⟩ := Ultrafilter.exists_ultrafilter_of_finite_inter_nonempty _ this have c1 : X.join G = F := Ultrafilter.coe_le_coe.1 fun P hP => h1 (Or.inr ⟨P, hP, rfl⟩) have c2 : G.map X.str = X.incl x := by refine' Ultrafilter.coe_le_coe.1 fun P hP => _ apply mem_of_superset (h1 (Or.inl rfl)) rintro x ⟨rfl⟩ exact hP simp [← c1, c2] -- Finish... [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S this : ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) ⊢ str X F = x [PROOFSTEP] obtain ⟨G, h1⟩ := Ultrafilter.exists_ultrafilter_of_finite_inter_nonempty _ this [GOAL] case intro X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S this : ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) G : Ultrafilter (Ultrafilter X.A) h1 : T1 ⊆ G.sets ⊢ str X F = x [PROOFSTEP] have c1 : X.join G = F := Ultrafilter.coe_le_coe.1 fun P hP => h1 (Or.inr ⟨P, hP, rfl⟩) [GOAL] case intro X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S this : ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) G : Ultrafilter (Ultrafilter X.A) h1 : T1 ⊆ G.sets c1 : join X G = F ⊢ str X F = x [PROOFSTEP] have c2 : G.map X.str = X.incl x := by refine' Ultrafilter.coe_le_coe.1 fun P hP => _ apply mem_of_superset (h1 (Or.inl rfl)) rintro x ⟨rfl⟩ exact hP [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S this : ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) G : Ultrafilter (Ultrafilter X.A) h1 : T1 ⊆ G.sets c1 : join X G = F ⊢ Ultrafilter.map (str X) G = incl X x [PROOFSTEP] refine' Ultrafilter.coe_le_coe.1 fun P hP => _ [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S this : ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) G : Ultrafilter (Ultrafilter X.A) h1 : T1 ⊆ G.sets c1 : join X G = F P : Set X.A hP : P ∈ ↑(incl X x) ⊢ P ∈ ↑(Ultrafilter.map (str X) G) [PROOFSTEP] apply mem_of_superset (h1 (Or.inl rfl)) [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S this : ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) G : Ultrafilter (Ultrafilter X.A) h1 : T1 ⊆ G.sets c1 : join X G = F P : Set X.A hP : P ∈ ↑(incl X x) ⊢ AA ⊆ str X ⁻¹' P [PROOFSTEP] rintro x ⟨rfl⟩ [GOAL] case refl X : Compactum F : Ultrafilter X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S G : Ultrafilter (Ultrafilter X.A) c1 : join X G = F P : Set X.A x : Ultrafilter X.A AA : Set (Ultrafilter X.A) := str X ⁻¹' {str X x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 (str X x) claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → str X x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → str X x ∈ Compactum.cl A claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S this : ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) h1 : T1 ⊆ G.sets hP : P ∈ ↑(incl X (str X x)) ⊢ x ∈ str X ⁻¹' P [PROOFSTEP] exact hP [GOAL] case intro X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S this : ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) G : Ultrafilter (Ultrafilter X.A) h1 : T1 ⊆ G.sets c1 : join X G = F c2 : Ultrafilter.map (str X) G = incl X x ⊢ str X F = x [PROOFSTEP] simp [← c1, c2] -- Finish... [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S ⊢ ∀ (F : fsu), ↑F ⊆ T1 → Set.Nonempty (⋂₀ ι F) [PROOFSTEP] intro T hT [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S T : fsu hT : ↑T ⊆ T1 ⊢ Set.Nonempty (⋂₀ ι T) [PROOFSTEP] refine' claim6 _ (finiteInter_mem (.finiteInterClosure_finiteInter _) _ _) [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S T : fsu hT : ↑T ⊆ T1 ⊢ ↑T ⊆ finiteInterClosure T1 [PROOFSTEP] intro t ht [GOAL] X : Compactum F : Ultrafilter X.A x : X.A fsu : Type u_1 := Finset (Set (Ultrafilter X.A)) ssu : Type u_1 := Set (Set (Ultrafilter X.A)) ι : fsu → ssu := fun x => ↑x T0 : ssu := {S | ∃ A, A ∈ F ∧ S = Compactum.basic A} AA : Set (Ultrafilter X.A) := str X ⁻¹' {x} T1 : ssu := insert AA T0 T2 : Set (Set (Ultrafilter X.A)) := finiteInterClosure T1 cond : ↑F ≤ 𝓝 x claim1 : ∀ (A : Set X.A), IsClosed A → A ∈ F → x ∈ A claim2 : ∀ (A : Set X.A), A ∈ F → x ∈ Compactum.cl A claim3 : ∀ (S1 : Set (Ultrafilter X.A)), S1 ∈ T0 → ∀ (S2 : Set (Ultrafilter X.A)), S2 ∈ T0 → S1 ∩ S2 ∈ T0 claim4 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty (AA ∩ S) claim5 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T0 → Set.Nonempty S claim6 : ∀ (S : Set (Ultrafilter X.A)), S ∈ T2 → Set.Nonempty S T : fsu hT : ↑T ⊆ T1 t : Set (Ultrafilter X.A) ht : t ∈ ↑T ⊢ t ∈ finiteInterClosure T1 [PROOFSTEP] exact finiteInterClosure.basic (@hT t ht) [GOAL] X : Compactum F : Ultrafilter X.A x : X.A h : str X F = x s : Set X.A hx : x ∈ s hs : IsOpen s ⊢ str X F ∈ s [PROOFSTEP] rwa [h] [GOAL] X : Compactum ⊢ T2Space X.A [PROOFSTEP] rw [t2_iff_ultrafilter] [GOAL] X : Compactum ⊢ ∀ {x y : X.A} (f : Ultrafilter X.A), ↑f ≤ 𝓝 x → ↑f ≤ 𝓝 y → x = y [PROOFSTEP] intro _ _ F hx hy [GOAL] X : Compactum x✝ y✝ : X.A F : Ultrafilter X.A hx : ↑F ≤ 𝓝 x✝ hy : ↑F ≤ 𝓝 y✝ ⊢ x✝ = y✝ [PROOFSTEP] rw [← str_eq_of_le_nhds _ _ hx, ← str_eq_of_le_nhds _ _ hy] [GOAL] X : Compactum F : Ultrafilter X.A ⊢ Ultrafilter.lim F = str X F [PROOFSTEP] rw [Ultrafilter.lim_eq_iff_le_nhds, le_nhds_iff] [GOAL] X : Compactum F : Ultrafilter X.A ⊢ ∀ (s : Set X.A), str X F ∈ s → IsOpen s → s ∈ ↑F [PROOFSTEP] tauto [GOAL] X : Compactum A : Set X.A ⊢ Compactum.cl A = closure A [PROOFSTEP] ext [GOAL] case h X : Compactum A : Set X.A x✝ : X.A ⊢ x✝ ∈ Compactum.cl A ↔ x✝ ∈ closure A [PROOFSTEP] rw [mem_closure_iff_ultrafilter] [GOAL] case h X : Compactum A : Set X.A x✝ : X.A ⊢ x✝ ∈ Compactum.cl A ↔ ∃ u, A ∈ u ∧ ↑u ≤ 𝓝 x✝ [PROOFSTEP] constructor [GOAL] case h.mp X : Compactum A : Set X.A x✝ : X.A ⊢ x✝ ∈ Compactum.cl A → ∃ u, A ∈ u ∧ ↑u ≤ 𝓝 x✝ [PROOFSTEP] rintro ⟨F, h1, h2⟩ [GOAL] case h.mp.intro.intro X : Compactum A : Set X.A x✝ : X.A F : Ultrafilter X.A h1 : F ∈ Compactum.basic A h2 : str X F = x✝ ⊢ ∃ u, A ∈ u ∧ ↑u ≤ 𝓝 x✝ [PROOFSTEP] exact ⟨F, h1, le_nhds_of_str_eq _ _ h2⟩ [GOAL] case h.mpr X : Compactum A : Set X.A x✝ : X.A ⊢ (∃ u, A ∈ u ∧ ↑u ≤ 𝓝 x✝) → x✝ ∈ Compactum.cl A [PROOFSTEP] rintro ⟨F, h1, h2⟩ [GOAL] case h.mpr.intro.intro X : Compactum A : Set X.A x✝ : X.A F : Ultrafilter X.A h1 : A ∈ F h2 : ↑F ≤ 𝓝 x✝ ⊢ x✝ ∈ Compactum.cl A [PROOFSTEP] exact ⟨F, h1, str_eq_of_le_nhds _ _ h2⟩ [GOAL] X Y : Compactum f : X ⟶ Y ⊢ Continuous f.f [PROOFSTEP] rw [continuous_iff_ultrafilter] [GOAL] X Y : Compactum f : X ⟶ Y ⊢ ∀ (x : X.A) (g : Ultrafilter X.A), ↑g ≤ 𝓝 x → Tendsto f.f (↑g) (𝓝 (Monad.Algebra.Hom.f f x)) [PROOFSTEP] intro x g h [GOAL] X Y : Compactum f : X ⟶ Y x : X.A g : Ultrafilter X.A h : ↑g ≤ 𝓝 x ⊢ Tendsto f.f (↑g) (𝓝 (Monad.Algebra.Hom.f f x)) [PROOFSTEP] rw [Tendsto, ← coe_map] [GOAL] X Y : Compactum f : X ⟶ Y x : X.A g : Ultrafilter X.A h : ↑g ≤ 𝓝 x ⊢ ↑(Ultrafilter.map f.f g) ≤ 𝓝 (Monad.Algebra.Hom.f f x) [PROOFSTEP] apply le_nhds_of_str_eq [GOAL] case a X Y : Compactum f : X ⟶ Y x : X.A g : Ultrafilter X.A h : ↑g ≤ 𝓝 x ⊢ str Y (Ultrafilter.map f.f g) = Monad.Algebra.Hom.f f x [PROOFSTEP] rw [← str_hom_commute, str_eq_of_le_nhds _ x _] [GOAL] X Y : Compactum f : X ⟶ Y x : X.A g : Ultrafilter X.A h : ↑g ≤ 𝓝 x ⊢ ↑g ≤ 𝓝 x [PROOFSTEP] apply h [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X ⊢ NatTrans.app (Monad.η β) X ≫ Ultrafilter.lim = 𝟙 X [PROOFSTEP] ext x [GOAL] case h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X x : (𝟭 (Type u_1)).obj X ⊢ (NatTrans.app (Monad.η β) X ≫ Ultrafilter.lim) x = 𝟙 X x [PROOFSTEP] exact lim_eq (pure_le_nhds _) [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X ⊢ NatTrans.app (Monad.μ β) X ≫ Ultrafilter.lim = β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim [PROOFSTEP] ext FF [GOAL] case h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : (β.toFunctor ⋙ β.toFunctor).obj X ⊢ (NatTrans.app (Monad.μ β) X ≫ Ultrafilter.lim) FF = (β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim) FF [PROOFSTEP] change Ultrafilter (Ultrafilter X) at FF [GOAL] case h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) ⊢ (NatTrans.app (Monad.μ β) X ≫ Ultrafilter.lim) FF = (β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim) FF [PROOFSTEP] set x := (Ultrafilter.map Ultrafilter.lim FF).lim with c1 [GOAL] case h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) ⊢ (NatTrans.app (Monad.μ β) X ≫ Ultrafilter.lim) FF = (β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim) FF [PROOFSTEP] have c2 : ∀ (U : Set X) (F : Ultrafilter X), F.lim ∈ U → IsOpen U → U ∈ F := by intro U F h1 hU exact isOpen_iff_ultrafilter.mp hU _ h1 _ (Ultrafilter.le_nhds_lim _) [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) ⊢ ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F [PROOFSTEP] intro U F h1 hU [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) U : Set X F : Ultrafilter X h1 : Ultrafilter.lim F ∈ U hU : IsOpen U ⊢ U ∈ F [PROOFSTEP] exact isOpen_iff_ultrafilter.mp hU _ h1 _ (Ultrafilter.le_nhds_lim _) [GOAL] case h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F ⊢ (NatTrans.app (Monad.μ β) X ≫ Ultrafilter.lim) FF = (β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim) FF [PROOFSTEP] have c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x := by rw [le_nhds_iff] intro U hx hU exact mem_coe.2 (c2 _ _ (by rwa [← c1]) hU) [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F ⊢ ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x [PROOFSTEP] rw [le_nhds_iff] [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F ⊢ ∀ (s : Set X), x ∈ s → IsOpen s → s ∈ ↑(Ultrafilter.map Ultrafilter.lim FF) [PROOFSTEP] intro U hx hU [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F U : Set X hx : x ∈ U hU : IsOpen U ⊢ U ∈ ↑(Ultrafilter.map Ultrafilter.lim FF) [PROOFSTEP] exact mem_coe.2 (c2 _ _ (by rwa [← c1]) hU) [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F U : Set X hx : x ∈ U hU : IsOpen U ⊢ Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) ∈ U [PROOFSTEP] rwa [← c1] [GOAL] case h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x ⊢ (NatTrans.app (Monad.μ β) X ≫ Ultrafilter.lim) FF = (β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim) FF [PROOFSTEP] have c4 : ∀ U : Set X, x ∈ U → IsOpen U → {G : Ultrafilter X | U ∈ G} ∈ FF := by intro U hx hU suffices Ultrafilter.lim ⁻¹' U ∈ FF by apply mem_of_superset this intro P hP exact c2 U P hP hU exact @c3 U (IsOpen.mem_nhds hU hx) [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x ⊢ ∀ (U : Set X), x ∈ U → IsOpen U → {G | U ∈ G} ∈ FF [PROOFSTEP] intro U hx hU [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x U : Set X hx : x ∈ U hU : IsOpen U ⊢ {G | U ∈ G} ∈ FF [PROOFSTEP] suffices Ultrafilter.lim ⁻¹' U ∈ FF by apply mem_of_superset this intro P hP exact c2 U P hP hU [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x U : Set X hx : x ∈ U hU : IsOpen U this : Ultrafilter.lim ⁻¹' U ∈ FF ⊢ {G | U ∈ G} ∈ FF [PROOFSTEP] apply mem_of_superset this [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x U : Set X hx : x ∈ U hU : IsOpen U this : Ultrafilter.lim ⁻¹' U ∈ FF ⊢ Ultrafilter.lim ⁻¹' U ⊆ {G | U ∈ G} [PROOFSTEP] intro P hP [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x U : Set X hx : x ∈ U hU : IsOpen U this : Ultrafilter.lim ⁻¹' U ∈ FF P : Ultrafilter X hP : P ∈ Ultrafilter.lim ⁻¹' U ⊢ P ∈ {G | U ∈ G} [PROOFSTEP] exact c2 U P hP hU [GOAL] X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x U : Set X hx : x ∈ U hU : IsOpen U ⊢ Ultrafilter.lim ⁻¹' U ∈ FF [PROOFSTEP] exact @c3 U (IsOpen.mem_nhds hU hx) [GOAL] case h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x c4 : ∀ (U : Set X), x ∈ U → IsOpen U → {G | U ∈ G} ∈ FF ⊢ (NatTrans.app (Monad.μ β) X ≫ Ultrafilter.lim) FF = (β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim) FF [PROOFSTEP] apply lim_eq [GOAL] case h.h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x c4 : ∀ (U : Set X), x ∈ U → IsOpen U → {G | U ∈ G} ∈ FF ⊢ ↑(NatTrans.app (Monad.μ β) X FF) ≤ 𝓝 ((β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim) FF) [PROOFSTEP] rw [le_nhds_iff] [GOAL] case h.h X : Type u_1 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X FF : Ultrafilter (Ultrafilter X) x : X := Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c1 : x = Ultrafilter.lim (Ultrafilter.map Ultrafilter.lim FF) c2 : ∀ (U : Set X) (F : Ultrafilter X), Ultrafilter.lim F ∈ U → IsOpen U → U ∈ F c3 : ↑(Ultrafilter.map Ultrafilter.lim FF) ≤ 𝓝 x c4 : ∀ (U : Set X), x ∈ U → IsOpen U → {G | U ∈ G} ∈ FF ⊢ ∀ (s : Set X), (β.toFunctor.map Ultrafilter.lim ≫ Ultrafilter.lim) FF ∈ s → IsOpen s → s ∈ ↑(NatTrans.app (Monad.μ β) X FF) [PROOFSTEP] exact c4 [GOAL] X Y : Compactum f : X.A → Y.A cont : Continuous f ⊢ β.toFunctor.map f ≫ Y.a = X.a ≫ f [PROOFSTEP] rw [continuous_iff_ultrafilter] at cont [GOAL] X Y : Compactum f : X.A → Y.A cont : ∀ (x : X.A) (g : Ultrafilter X.A), ↑g ≤ 𝓝 x → Tendsto f (↑g) (𝓝 (f x)) ⊢ β.toFunctor.map f ≫ Y.a = X.a ≫ f [PROOFSTEP] ext (F : Ultrafilter X) [GOAL] case h X Y : Compactum f : X.A → Y.A cont : ∀ (x : X.A) (g : Ultrafilter X.A), ↑g ≤ 𝓝 x → Tendsto f (↑g) (𝓝 (f x)) F : Ultrafilter X.A ⊢ (β.toFunctor.map f ≫ Y.a) F = (X.a ≫ f) F [PROOFSTEP] specialize cont (X.str F) F (le_nhds_of_str_eq F (X.str F) rfl) [GOAL] case h X Y : Compactum f : X.A → Y.A F : Ultrafilter X.A cont : Tendsto f (↑F) (𝓝 (f (str X F))) ⊢ (β.toFunctor.map f ≫ Y.a) F = (X.a ≫ f) F [PROOFSTEP] simp only [types_comp_apply, ofTypeFunctor_map] [GOAL] case h X Y : Compactum f : X.A → Y.A F : Ultrafilter X.A cont : Tendsto f (↑F) (𝓝 (f (str X F))) ⊢ Monad.Algebra.a Y (β.toFunctor.map f F) = f (Monad.Algebra.a X F) [PROOFSTEP] exact str_eq_of_le_nhds (Ultrafilter.map f F) _ cont [GOAL] ⊢ ∀ {X Y : Compactum}, Function.Injective compactumToCompHaus.map [PROOFSTEP] intro _ _ _ _ h [GOAL] X✝ Y✝ : Compactum a₁✝ a₂✝ : X✝ ⟶ Y✝ h : compactumToCompHaus.map a₁✝ = compactumToCompHaus.map a₂✝ ⊢ a₁✝ = a₂✝ [PROOFSTEP] apply Monad.Algebra.Hom.ext [GOAL] case f X✝ Y✝ : Compactum a₁✝ a₂✝ : X✝ ⟶ Y✝ h : compactumToCompHaus.map a₁✝ = compactumToCompHaus.map a₂✝ ⊢ a₁✝.f = a₂✝.f [PROOFSTEP] apply congrArg (fun f => f.toFun) h [GOAL] D : CompHaus x✝ : Set ↑D.toTop h : IsOpen x✝ ⊢ IsOpen (id ⁻¹' x✝) [PROOFSTEP] rw [isOpen_iff_ultrafilter'] at h [GOAL] D : CompHaus x✝ : Set ↑D.toTop h : ∀ (F : Ultrafilter ↑D.toTop), Ultrafilter.lim F ∈ x✝ → x✝ ∈ ↑F ⊢ IsOpen (id ⁻¹' x✝) [PROOFSTEP] exact h [GOAL] D : CompHaus x✝ : Set ↑(compactumToCompHaus.obj (Compactum.ofTopologicalSpace ↑D.toTop)).toTop h1 : IsOpen x✝ ⊢ IsOpen (id ⁻¹' x✝) [PROOFSTEP] rw [isOpen_iff_ultrafilter'] [GOAL] D : CompHaus x✝ : Set ↑(compactumToCompHaus.obj (Compactum.ofTopologicalSpace ↑D.toTop)).toTop h1 : IsOpen x✝ ⊢ ∀ (F : Ultrafilter ↑D.toTop), Ultrafilter.lim F ∈ id ⁻¹' x✝ → id ⁻¹' x✝ ∈ ↑F [PROOFSTEP] intro _ h2 [GOAL] D : CompHaus x✝ : Set ↑(compactumToCompHaus.obj (Compactum.ofTopologicalSpace ↑D.toTop)).toTop h1 : IsOpen x✝ F✝ : Ultrafilter ↑D.toTop h2 : Ultrafilter.lim F✝ ∈ id ⁻¹' x✝ ⊢ id ⁻¹' x✝ ∈ ↑F✝ [PROOFSTEP] exact h1 _ h2 [GOAL] ⊢ IsEquivalence compactumToCompHaus [PROOFSTEP] have := compactumToCompHaus.full [GOAL] this : Full compactumToCompHaus ⊢ IsEquivalence compactumToCompHaus [PROOFSTEP] have := compactumToCompHaus.faithful [GOAL] this✝ : Full compactumToCompHaus this : Faithful compactumToCompHaus ⊢ IsEquivalence compactumToCompHaus [PROOFSTEP] have := compactumToCompHaus.essSurj [GOAL] this✝¹ : Full compactumToCompHaus this✝ : Faithful compactumToCompHaus this : EssSurj compactumToCompHaus ⊢ IsEquivalence compactumToCompHaus [PROOFSTEP] apply Equivalence.ofFullyFaithfullyEssSurj _ [GOAL] ⊢ CreatesLimits (forget CompHaus) [PROOFSTEP] let e : forget CompHaus ≅ compactumToCompHaus.inv ⋙ Compactum.forget := (((forget CompHaus).leftUnitor.symm ≪≫ isoWhiskerRight compactumToCompHaus.asEquivalence.symm.unitIso (forget CompHaus)) ≪≫ compactumToCompHaus.inv.associator compactumToCompHaus (forget CompHaus)) ≪≫ isoWhiskerLeft _ compactumToCompHausCompForget [GOAL] e : forget CompHaus ≅ Functor.inv compactumToCompHaus ⋙ Compactum.forget := (((Functor.leftUnitor (forget CompHaus)).symm ≪≫ isoWhiskerRight (CategoryTheory.Equivalence.symm (Functor.asEquivalence compactumToCompHaus)).unitIso (forget CompHaus)) ≪≫ Functor.associator (Functor.inv compactumToCompHaus) compactumToCompHaus (forget CompHaus)) ≪≫ isoWhiskerLeft (Functor.inv compactumToCompHaus) compactumToCompHausCompForget ⊢ CreatesLimits (forget CompHaus) [PROOFSTEP] exact createsLimitsOfNatIso e.symm [GOAL] ⊢ CreatesLimits (forget Profinite) [PROOFSTEP] change CreatesLimits (profiniteToCompHaus ⋙ forget _) [GOAL] ⊢ CreatesLimits (profiniteToCompHaus ⋙ forget CompHaus) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Topology.Category.Compactum", "llama_tokens": 51519}
[GOAL] J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : IsCofilteredOrEmpty J h : ∀ (j : J), Nonempty ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) ⊢ Set.Nonempty (partialSections F H) [PROOFSTEP] classical cases isEmpty_or_nonempty J · exact ⟨isEmptyElim, fun {j} => IsEmpty.elim' inferInstance j.1⟩ haveI : IsCofiltered J := ⟨⟩ use fun j : J => if hj : j ∈ G then F.map (IsCofiltered.infTo G H hj) (h (IsCofiltered.inf G H)).some else (h _).some rintro ⟨X, Y, hX, hY, f⟩ hf dsimp only rwa [dif_pos hX, dif_pos hY, ← comp_app, ← F.map_comp, @IsCofiltered.infTo_commutes _ _ _ G H] [GOAL] J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : IsCofilteredOrEmpty J h : ∀ (j : J), Nonempty ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) ⊢ Set.Nonempty (partialSections F H) [PROOFSTEP] cases isEmpty_or_nonempty J [GOAL] case inl J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : IsCofilteredOrEmpty J h : ∀ (j : J), Nonempty ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) h✝ : IsEmpty J ⊢ Set.Nonempty (partialSections F H) [PROOFSTEP] exact ⟨isEmptyElim, fun {j} => IsEmpty.elim' inferInstance j.1⟩ [GOAL] case inr J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : IsCofilteredOrEmpty J h : ∀ (j : J), Nonempty ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) h✝ : Nonempty J ⊢ Set.Nonempty (partialSections F H) [PROOFSTEP] haveI : IsCofiltered J := ⟨⟩ [GOAL] case inr J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : IsCofilteredOrEmpty J h : ∀ (j : J), Nonempty ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) h✝ : Nonempty J this : IsCofiltered J ⊢ Set.Nonempty (partialSections F H) [PROOFSTEP] use fun j : J => if hj : j ∈ G then F.map (IsCofiltered.infTo G H hj) (h (IsCofiltered.inf G H)).some else (h _).some [GOAL] case h J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : IsCofilteredOrEmpty J h : ∀ (j : J), Nonempty ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) h✝ : Nonempty J this : IsCofiltered J ⊢ (fun j => if hj : j ∈ G then ↑(F.map (IsCofiltered.infTo G H hj)) (Nonempty.some (_ : Nonempty ↑(F.obj (IsCofiltered.inf G H)))) else Nonempty.some (_ : Nonempty ↑(F.obj j))) ∈ partialSections F H [PROOFSTEP] rintro ⟨X, Y, hX, hY, f⟩ hf [GOAL] case h.mk.mk.mk.mk J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : IsCofilteredOrEmpty J h : ∀ (j : J), Nonempty ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) h✝ : Nonempty J this : IsCofiltered J X Y : J hX : X ∈ G hY : Y ∈ G f : X ⟶ Y hf : { fst := X, snd := { fst := Y, snd := { fst := hX, snd := { fst := hY, snd := f } } } } ∈ H ⊢ ↑(F.map { fst := X, snd := { fst := Y, snd := { fst := hX, snd := { fst := hY, snd := f } } } }.snd.snd.snd.snd) ((fun j => if hj : j ∈ G then ↑(F.map (IsCofiltered.infTo G H hj)) (Nonempty.some (_ : Nonempty ↑(F.obj (IsCofiltered.inf G H)))) else Nonempty.some (_ : Nonempty ↑(F.obj j))) { fst := X, snd := { fst := Y, snd := { fst := hX, snd := { fst := hY, snd := f } } } }.fst) = (fun j => if hj : j ∈ G then ↑(F.map (IsCofiltered.infTo G H hj)) (Nonempty.some (_ : Nonempty ↑(F.obj (IsCofiltered.inf G H)))) else Nonempty.some (_ : Nonempty ↑(F.obj j))) { fst := X, snd := { fst := Y, snd := { fst := hX, snd := { fst := hY, snd := f } } } }.snd.fst [PROOFSTEP] dsimp only [GOAL] case h.mk.mk.mk.mk J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : IsCofilteredOrEmpty J h : ∀ (j : J), Nonempty ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) h✝ : Nonempty J this : IsCofiltered J X Y : J hX : X ∈ G hY : Y ∈ G f : X ⟶ Y hf : { fst := X, snd := { fst := Y, snd := { fst := hX, snd := { fst := hY, snd := f } } } } ∈ H ⊢ ↑(F.map f) (if hj : X ∈ G then ↑(F.map (IsCofiltered.infTo G H hj)) (Nonempty.some (_ : Nonempty ↑(F.obj (IsCofiltered.inf G H)))) else Nonempty.some (_ : Nonempty ↑(F.obj X))) = if hj : Y ∈ G then ↑(F.map (IsCofiltered.infTo G H hj)) (Nonempty.some (_ : Nonempty ↑(F.obj (IsCofiltered.inf G H)))) else Nonempty.some (_ : Nonempty ↑(F.obj Y)) [PROOFSTEP] rwa [dif_pos hX, dif_pos hY, ← comp_app, ← F.map_comp, @IsCofiltered.infTo_commutes _ _ _ G H] [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat ⊢ Directed Superset fun G => partialSections F G.snd [PROOFSTEP] classical intro A B let ιA : FiniteDiagramArrow A.1 → FiniteDiagramArrow (A.1 ⊔ B.1) := fun f => ⟨f.1, f.2.1, Finset.mem_union_left _ f.2.2.1, Finset.mem_union_left _ f.2.2.2.1, f.2.2.2.2⟩ let ιB : FiniteDiagramArrow B.1 → FiniteDiagramArrow (A.1 ⊔ B.1) := fun f => ⟨f.1, f.2.1, Finset.mem_union_right _ f.2.2.1, Finset.mem_union_right _ f.2.2.2.1, f.2.2.2.2⟩ refine' ⟨⟨A.1 ⊔ B.1, A.2.image ιA ⊔ B.2.image ιB⟩, _, _⟩ · rintro u hu f hf have : ιA f ∈ A.2.image ιA ⊔ B.2.image ιB := by apply Finset.mem_union_left rw [Finset.mem_image] refine' ⟨f, hf, rfl⟩ exact hu this · rintro u hu f hf have : ιB f ∈ A.2.image ιA ⊔ B.2.image ιB := by apply Finset.mem_union_right rw [Finset.mem_image] refine' ⟨f, hf, rfl⟩ exact hu this [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat ⊢ Directed Superset fun G => partialSections F G.snd [PROOFSTEP] intro A B [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ⊢ ∃ z, (fun G => partialSections F G.snd) A ⊇ (fun G => partialSections F G.snd) z ∧ (fun G => partialSections F G.snd) B ⊇ (fun G => partialSections F G.snd) z [PROOFSTEP] let ιA : FiniteDiagramArrow A.1 → FiniteDiagramArrow (A.1 ⊔ B.1) := fun f => ⟨f.1, f.2.1, Finset.mem_union_left _ f.2.2.1, Finset.mem_union_left _ f.2.2.2.1, f.2.2.2.2⟩ [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ⊢ ∃ z, (fun G => partialSections F G.snd) A ⊇ (fun G => partialSections F G.snd) z ∧ (fun G => partialSections F G.snd) B ⊇ (fun G => partialSections F G.snd) z [PROOFSTEP] let ιB : FiniteDiagramArrow B.1 → FiniteDiagramArrow (A.1 ⊔ B.1) := fun f => ⟨f.1, f.2.1, Finset.mem_union_right _ f.2.2.1, Finset.mem_union_right _ f.2.2.2.1, f.2.2.2.2⟩ [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ⊢ ∃ z, (fun G => partialSections F G.snd) A ⊇ (fun G => partialSections F G.snd) z ∧ (fun G => partialSections F G.snd) B ⊇ (fun G => partialSections F G.snd) z [PROOFSTEP] refine' ⟨⟨A.1 ⊔ B.1, A.2.image ιA ⊔ B.2.image ιB⟩, _, _⟩ [GOAL] case refine'_1 J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ⊢ (fun G => partialSections F G.snd) A ⊇ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } [PROOFSTEP] rintro u hu f hf [GOAL] case refine'_1 J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow A.fst hf : f ∈ A.snd ⊢ ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst [PROOFSTEP] have : ιA f ∈ A.2.image ιA ⊔ B.2.image ιB := by apply Finset.mem_union_left rw [Finset.mem_image] refine' ⟨f, hf, rfl⟩ [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow A.fst hf : f ∈ A.snd ⊢ ιA f ∈ Finset.image ιA A.snd ⊔ Finset.image ιB B.snd [PROOFSTEP] apply Finset.mem_union_left [GOAL] case h J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow A.fst hf : f ∈ A.snd ⊢ ιA f ∈ Finset.image ιA A.snd [PROOFSTEP] rw [Finset.mem_image] [GOAL] case h J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow A.fst hf : f ∈ A.snd ⊢ ∃ a, a ∈ A.snd ∧ ιA a = ιA f [PROOFSTEP] refine' ⟨f, hf, rfl⟩ [GOAL] case refine'_1 J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow A.fst hf : f ∈ A.snd this : ιA f ∈ Finset.image ιA A.snd ⊔ Finset.image ιB B.snd ⊢ ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst [PROOFSTEP] exact hu this [GOAL] case refine'_2 J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ⊢ (fun G => partialSections F G.snd) B ⊇ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } [PROOFSTEP] rintro u hu f hf [GOAL] case refine'_2 J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow B.fst hf : f ∈ B.snd ⊢ ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst [PROOFSTEP] have : ιB f ∈ A.2.image ιA ⊔ B.2.image ιB := by apply Finset.mem_union_right rw [Finset.mem_image] refine' ⟨f, hf, rfl⟩ [GOAL] J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow B.fst hf : f ∈ B.snd ⊢ ιB f ∈ Finset.image ιA A.snd ⊔ Finset.image ιB B.snd [PROOFSTEP] apply Finset.mem_union_right [GOAL] case h J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow B.fst hf : f ∈ B.snd ⊢ ιB f ∈ Finset.image ιB B.snd [PROOFSTEP] rw [Finset.mem_image] [GOAL] case h J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow B.fst hf : f ∈ B.snd ⊢ ∃ a, a ∈ B.snd ∧ ιB a = ιB f [PROOFSTEP] refine' ⟨f, hf, rfl⟩ [GOAL] case refine'_2 J : Type u inst✝ : SmallCategory J F : J ⥤ TopCat A B : TopCat.FiniteDiagram J ιA : TopCat.FiniteDiagramArrow A.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } ιB : TopCat.FiniteDiagramArrow B.fst → TopCat.FiniteDiagramArrow (A.fst ⊔ B.fst) := fun f => { fst := f.fst, snd := { fst := f.snd.fst, snd := { fst := (_ : f.fst ∈ A.fst ∪ B.fst), snd := { fst := (_ : f.snd.fst ∈ A.fst ∪ B.fst), snd := f.snd.snd.snd.snd } } } } u : (j : J) → ↑(F.obj j) hu : u ∈ (fun G => partialSections F G.snd) { fst := A.fst ⊔ B.fst, snd := Finset.image ιA A.snd ⊔ Finset.image ιB B.snd } f : TopCat.FiniteDiagramArrow B.fst hf : f ∈ B.snd this : ιB f ∈ Finset.image ιA A.snd ⊔ Finset.image ιB B.snd ⊢ ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst [PROOFSTEP] exact hu this [GOAL] J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) ⊢ IsClosed (partialSections F H) [PROOFSTEP] have : partialSections F H = ⋂ (f : FiniteDiagramArrow G) (_ : f ∈ H), {u | F.map f.2.2.2.2 (u f.1) = u f.2.1} := by ext1 simp only [Set.mem_iInter, Set.mem_setOf_eq] rfl [GOAL] J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) ⊢ partialSections F H = ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} [PROOFSTEP] ext1 [GOAL] case h J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) x✝ : (j : J) → ↑(F.obj j) ⊢ x✝ ∈ partialSections F H ↔ x✝ ∈ ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} [PROOFSTEP] simp only [Set.mem_iInter, Set.mem_setOf_eq] [GOAL] case h J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) x✝ : (j : J) → ↑(F.obj j) ⊢ x✝ ∈ partialSections F H ↔ ∀ (i : TopCat.FiniteDiagramArrow G), i ∈ H → ↑(F.map i.snd.snd.snd.snd) (x✝ i.fst) = x✝ i.snd.fst [PROOFSTEP] rfl [GOAL] J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) this : partialSections F H = ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} ⊢ IsClosed (partialSections F H) [PROOFSTEP] rw [this] [GOAL] J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) this : partialSections F H = ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} ⊢ IsClosed (⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst}) [PROOFSTEP] apply isClosed_biInter [GOAL] case h J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) this : partialSections F H = ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} ⊢ ∀ (i : TopCat.FiniteDiagramArrow G), (i ∈ fun i => i ∈ H.val) → IsClosed {u | ↑(F.map i.snd.snd.snd.snd) (u i.fst) = u i.snd.fst} [PROOFSTEP] intro f _ -- Porting note: can't see through forget [GOAL] case h J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) this : partialSections F H = ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} f : TopCat.FiniteDiagramArrow G a✝ : f ∈ fun i => i ∈ H.val ⊢ IsClosed {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} [PROOFSTEP] have : T2Space ((forget TopCat).obj (F.obj f.snd.fst)) := inferInstanceAs (T2Space (F.obj f.snd.fst)) [GOAL] case h J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) this✝ : partialSections F H = ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} f : TopCat.FiniteDiagramArrow G a✝ : f ∈ fun i => i ∈ H.val this : T2Space ((forget TopCat).obj (F.obj f.snd.fst)) ⊢ IsClosed {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} [PROOFSTEP] apply isClosed_eq [GOAL] case h.hf J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) this✝ : partialSections F H = ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} f : TopCat.FiniteDiagramArrow G a✝ : f ∈ fun i => i ∈ H.val this : T2Space ((forget TopCat).obj (F.obj f.snd.fst)) ⊢ Continuous fun x => ↑(F.map f.snd.snd.snd.snd) (x f.fst) [PROOFSTEP] exact (F.map f.snd.snd.snd.snd).continuous.comp (continuous_apply f.fst) [GOAL] case h.hg J : Type u inst✝¹ : SmallCategory J F : J ⥤ TopCat inst✝ : ∀ (j : J), T2Space ↑(F.obj j) G : Finset J H : Finset (TopCat.FiniteDiagramArrow G) this✝ : partialSections F H = ⋂ (f : TopCat.FiniteDiagramArrow G) (_ : f ∈ H), {u | ↑(F.map f.snd.snd.snd.snd) (u f.fst) = u f.snd.fst} f : TopCat.FiniteDiagramArrow G a✝ : f ∈ fun i => i ∈ H.val this : T2Space ((forget TopCat).obj (F.obj f.snd.fst)) ⊢ Continuous fun x => x f.snd.fst [PROOFSTEP] continuity [GOAL] J : Type u inst✝⁴ : SmallCategory J F✝ : J ⥤ TopCat F : J ⥤ TopCatMax inst✝³ : IsCofilteredOrEmpty J inst✝² : ∀ (j : J), Nonempty ↑(F.obj j) inst✝¹ : ∀ (j : J), CompactSpace ↑(F.obj j) inst✝ : ∀ (j : J), T2Space ↑(F.obj j) ⊢ Nonempty ↑(limitCone F).pt [PROOFSTEP] classical obtain ⟨u, hu⟩ := IsCompact.nonempty_iInter_of_directed_nonempty_compact_closed (fun G => partialSections F _) (partialSections.directed F) (fun G => partialSections.nonempty F _) (fun G => IsClosed.isCompact (partialSections.closed F _)) fun G => partialSections.closed F _ use u intro X Y f let G : FiniteDiagram J := ⟨{ X, Y }, {⟨X, Y, by simp only [true_or_iff, eq_self_iff_true, Finset.mem_insert], by simp only [eq_self_iff_true, or_true_iff, Finset.mem_insert, Finset.mem_singleton], f⟩}⟩ exact hu _ ⟨G, rfl⟩ (Finset.mem_singleton_self _) [GOAL] J : Type u inst✝⁴ : SmallCategory J F✝ : J ⥤ TopCat F : J ⥤ TopCatMax inst✝³ : IsCofilteredOrEmpty J inst✝² : ∀ (j : J), Nonempty ↑(F.obj j) inst✝¹ : ∀ (j : J), CompactSpace ↑(F.obj j) inst✝ : ∀ (j : J), T2Space ↑(F.obj j) ⊢ Nonempty ↑(limitCone F).pt [PROOFSTEP] obtain ⟨u, hu⟩ := IsCompact.nonempty_iInter_of_directed_nonempty_compact_closed (fun G => partialSections F _) (partialSections.directed F) (fun G => partialSections.nonempty F _) (fun G => IsClosed.isCompact (partialSections.closed F _)) fun G => partialSections.closed F _ [GOAL] case intro J : Type u inst✝⁴ : SmallCategory J F✝ : J ⥤ TopCat F : J ⥤ TopCatMax inst✝³ : IsCofilteredOrEmpty J inst✝² : ∀ (j : J), Nonempty ↑(F.obj j) inst✝¹ : ∀ (j : J), CompactSpace ↑(F.obj j) inst✝ : ∀ (j : J), T2Space ↑(F.obj j) u : (j : J) → ↑(F.obj j) hu : u ∈ ⋂ (i : TopCat.FiniteDiagram J), partialSections F i.snd ⊢ Nonempty ↑(limitCone F).pt [PROOFSTEP] use u [GOAL] case property J : Type u inst✝⁴ : SmallCategory J F✝ : J ⥤ TopCat F : J ⥤ TopCatMax inst✝³ : IsCofilteredOrEmpty J inst✝² : ∀ (j : J), Nonempty ↑(F.obj j) inst✝¹ : ∀ (j : J), CompactSpace ↑(F.obj j) inst✝ : ∀ (j : J), T2Space ↑(F.obj j) u : (j : J) → ↑(F.obj j) hu : u ∈ ⋂ (i : TopCat.FiniteDiagram J), partialSections F i.snd ⊢ u ∈ {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} [PROOFSTEP] intro X Y f [GOAL] case property J : Type u inst✝⁴ : SmallCategory J F✝ : J ⥤ TopCat F : J ⥤ TopCatMax inst✝³ : IsCofilteredOrEmpty J inst✝² : ∀ (j : J), Nonempty ↑(F.obj j) inst✝¹ : ∀ (j : J), CompactSpace ↑(F.obj j) inst✝ : ∀ (j : J), T2Space ↑(F.obj j) u : (j : J) → ↑(F.obj j) hu : u ∈ ⋂ (i : TopCat.FiniteDiagram J), partialSections F i.snd X Y : J f : X ⟶ Y ⊢ ↑(F.map f) (u X) = u Y [PROOFSTEP] let G : FiniteDiagram J := ⟨{ X, Y }, {⟨X, Y, by simp only [true_or_iff, eq_self_iff_true, Finset.mem_insert], by simp only [eq_self_iff_true, or_true_iff, Finset.mem_insert, Finset.mem_singleton], f⟩}⟩ [GOAL] J : Type u inst✝⁴ : SmallCategory J F✝ : J ⥤ TopCat F : J ⥤ TopCatMax inst✝³ : IsCofilteredOrEmpty J inst✝² : ∀ (j : J), Nonempty ↑(F.obj j) inst✝¹ : ∀ (j : J), CompactSpace ↑(F.obj j) inst✝ : ∀ (j : J), T2Space ↑(F.obj j) u : (j : J) → ↑(F.obj j) hu : u ∈ ⋂ (i : TopCat.FiniteDiagram J), partialSections F i.snd X Y : J f : X ⟶ Y ⊢ X ∈ {X, Y} [PROOFSTEP] simp only [true_or_iff, eq_self_iff_true, Finset.mem_insert] [GOAL] J : Type u inst✝⁴ : SmallCategory J F✝ : J ⥤ TopCat F : J ⥤ TopCatMax inst✝³ : IsCofilteredOrEmpty J inst✝² : ∀ (j : J), Nonempty ↑(F.obj j) inst✝¹ : ∀ (j : J), CompactSpace ↑(F.obj j) inst✝ : ∀ (j : J), T2Space ↑(F.obj j) u : (j : J) → ↑(F.obj j) hu : u ∈ ⋂ (i : TopCat.FiniteDiagram J), partialSections F i.snd X Y : J f : X ⟶ Y ⊢ Y ∈ {X, Y} [PROOFSTEP] simp only [eq_self_iff_true, or_true_iff, Finset.mem_insert, Finset.mem_singleton] [GOAL] case property J : Type u inst✝⁴ : SmallCategory J F✝ : J ⥤ TopCat F : J ⥤ TopCatMax inst✝³ : IsCofilteredOrEmpty J inst✝² : ∀ (j : J), Nonempty ↑(F.obj j) inst✝¹ : ∀ (j : J), CompactSpace ↑(F.obj j) inst✝ : ∀ (j : J), T2Space ↑(F.obj j) u : (j : J) → ↑(F.obj j) hu : u ∈ ⋂ (i : TopCat.FiniteDiagram J), partialSections F i.snd X Y : J f : X ⟶ Y G : TopCat.FiniteDiagram J := { fst := {X, Y}, snd := {{ fst := X, snd := { fst := Y, snd := { fst := (_ : X ∈ {X, Y}), snd := { fst := (_ : Y ∈ {X, Y}), snd := f } } } }} } ⊢ ↑(F.map f) (u X) = u Y [PROOFSTEP] exact hu _ ⟨G, rfl⟩ (Finset.mem_singleton_self _)
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.Limits.Konig", "llama_tokens": 14562}
[GOAL] X Y : TopCat f : X ⟶ Y x : ↑X x✝ : OpenNhds x ⊢ x✝ ≤ x✝ [PROOFSTEP] dsimp [LE.le] [GOAL] X Y : TopCat f : X ⟶ Y x : ↑X x✝ : OpenNhds x ⊢ x✝.obj ≤ x✝.obj [PROOFSTEP] exact le_rfl [GOAL] X Y : TopCat f : X ⟶ Y x : ↑X x✝² x✝¹ x✝ : OpenNhds x ⊢ x✝² ≤ x✝¹ → x✝¹ ≤ x✝ → x✝² ≤ x✝ [PROOFSTEP] dsimp [LE.le] [GOAL] X Y : TopCat f : X ⟶ Y x : ↑X x✝² x✝¹ x✝ : OpenNhds x ⊢ x✝².obj ≤ x✝¹.obj → x✝¹.obj ≤ x✝.obj → x✝².obj ≤ x✝.obj [PROOFSTEP] exact le_trans [GOAL] X Y : TopCat f : X ⟶ Y x : ↑X x✝ : OpenNhds x ⊢ x✝ ≤ ⊤ [PROOFSTEP] dsimp [LE.le] [GOAL] X Y : TopCat f : X ⟶ Y x : ↑X x✝ : OpenNhds x ⊢ x✝.obj ≤ ⊤ [PROOFSTEP] exact le_top [GOAL] X Y : TopCat f : X ⟶ Y x : ↑X U : (OpenNhds x)ᵒᵖ ⊢ (map (𝟙 X) x).obj U.unop = U.unop [PROOFSTEP] simp [GOAL] X Y : TopCat f : X ⟶ Y x : ↑X U : (OpenNhds x)ᵒᵖ ⊢ (map (𝟙 X) x).op.obj U = U [PROOFSTEP] simp [GOAL] X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ (inclusion (↑f x) ⋙ Opens.map f).obj U ≅ (map f x ⋙ inclusion x).obj U [PROOFSTEP] constructor [GOAL] case hom_inv_id X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ autoParam (?hom ≫ ?inv = 𝟙 ((inclusion (↑f x) ⋙ Opens.map f).obj U)) _auto✝ case inv_hom_id X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ autoParam (?inv ≫ ?hom = 𝟙 ((map f x ⋙ inclusion x).obj U)) _auto✝ case hom X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ (inclusion (↑f x) ⋙ Opens.map f).obj U ⟶ (map f x ⋙ inclusion x).obj U case inv X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ (map f x ⋙ inclusion x).obj U ⟶ (inclusion (↑f x) ⋙ Opens.map f).obj U [PROOFSTEP] rfl [GOAL] case inv_hom_id X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ autoParam (?inv ≫ ?hom = 𝟙 ((map f x ⋙ inclusion x).obj U)) _auto✝ case hom X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ (inclusion (↑f x) ⋙ Opens.map f).obj U ⟶ (map f x ⋙ inclusion x).obj U case inv X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ (map f x ⋙ inclusion x).obj U ⟶ (inclusion (↑f x) ⋙ Opens.map f).obj U [PROOFSTEP] rfl [GOAL] case hom X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ (inclusion (↑f x) ⋙ Opens.map f).obj U ⟶ (map f x ⋙ inclusion x).obj U case inv X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ (map f x ⋙ inclusion x).obj U ⟶ (inclusion (↑f x) ⋙ Opens.map f).obj U [PROOFSTEP] exact 𝟙 _ [GOAL] case inv X Y : TopCat f : X ⟶ Y x : ↑X U : OpenNhds (↑f x) ⊢ (map f x ⋙ inclusion x).obj U ⟶ (inclusion (↑f x) ⋙ Opens.map f).obj U [PROOFSTEP] exact 𝟙 _
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.OpenNhds", "llama_tokens": 1470}
[GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f g : SpectralMap α β h : f.toFun = g.toFun ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ g : SpectralMap α β toFun✝ : α → β spectral'✝ : IsSpectralMap toFun✝ h : { toFun := toFun✝, spectral' := spectral'✝ }.toFun = g.toFun ⊢ { toFun := toFun✝, spectral' := spectral'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ toFun✝¹ : α → β spectral'✝¹ : IsSpectralMap toFun✝¹ toFun✝ : α → β spectral'✝ : IsSpectralMap toFun✝ h : { toFun := toFun✝¹, spectral' := spectral'✝¹ }.toFun = { toFun := toFun✝, spectral' := spectral'✝ }.toFun ⊢ { toFun := toFun✝¹, spectral' := spectral'✝¹ } = { toFun := toFun✝, spectral' := spectral'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f : SpectralMap β γ g : SpectralMap α β ⊢ ↑f ∘ ↑g = ↑↑f ∘ ↑↑g [PROOFSTEP] rfl -- porting note: removed `simp` from this and added lemma above to address `simpNF` lint [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ f : SpectralMap β γ g : SpectralMap α β ⊢ ↑(comp f g) = ContinuousMap.comp ↑f ↑g [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 δ : Type u_5 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : TopologicalSpace γ inst✝ : TopologicalSpace δ g : SpectralMap β γ f₁ f₂ : SpectralMap α β hg : Injective ↑g h : comp g f₁ = comp g f₂ a : α ⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a) [PROOFSTEP] rw [← comp_apply, h, comp_apply]
{"mathlib_filename": "Mathlib.Topology.Spectral.Hom", "llama_tokens": 1041}
[GOAL] B : Type u_1 F : Type u_2 Z : Type u_3 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : TopologicalSpace Z proj : Z → B inst✝ : Nonempty F h : IsHomeomorphicTrivialFiberBundle F proj ⊢ Function.Surjective proj [PROOFSTEP] obtain ⟨e, rfl⟩ := h.proj_eq [GOAL] case intro B : Type u_1 F : Type u_2 Z : Type u_3 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : TopologicalSpace Z inst✝ : Nonempty F e : Z ≃ₜ B × F h : IsHomeomorphicTrivialFiberBundle F (Prod.fst ∘ ↑e) ⊢ Function.Surjective (Prod.fst ∘ ↑e) [PROOFSTEP] exact Prod.fst_surjective.comp e.surjective [GOAL] B : Type u_1 F : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : TopologicalSpace Z proj : Z → B h : IsHomeomorphicTrivialFiberBundle F proj ⊢ Continuous proj [PROOFSTEP] obtain ⟨e, rfl⟩ := h.proj_eq [GOAL] case intro B : Type u_1 F : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : TopologicalSpace Z e : Z ≃ₜ B × F h : IsHomeomorphicTrivialFiberBundle F (Prod.fst ∘ ↑e) ⊢ Continuous (Prod.fst ∘ ↑e) [PROOFSTEP] exact continuous_fst.comp e.continuous [GOAL] B : Type u_1 F : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : TopologicalSpace Z proj : Z → B h : IsHomeomorphicTrivialFiberBundle F proj ⊢ IsOpenMap proj [PROOFSTEP] obtain ⟨e, rfl⟩ := h.proj_eq [GOAL] case intro B : Type u_1 F : Type u_2 Z : Type u_3 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : TopologicalSpace Z e : Z ≃ₜ B × F h : IsHomeomorphicTrivialFiberBundle F (Prod.fst ∘ ↑e) ⊢ IsOpenMap (Prod.fst ∘ ↑e) [PROOFSTEP] exact isOpenMap_fst.comp e.isOpenMap
{"mathlib_filename": "Mathlib.Topology.FiberBundle.IsHomeomorphicTrivialBundle", "llama_tokens": 755}
[GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f ⊢ IsIso f [PROOFSTEP] let E := Equiv.ofBijective _ bij [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij ⊢ IsIso f [PROOFSTEP] have hE : Continuous E.symm := by rw [continuous_iff_isClosed] intro S hS rw [← E.image_eq_preimage] exact isClosedMap f S hS [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij ⊢ Continuous ↑E.symm [PROOFSTEP] rw [continuous_iff_isClosed] [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij ⊢ ∀ (s : Set ((forget CompHaus).obj X)), IsClosed s → IsClosed (↑E.symm ⁻¹' s) [PROOFSTEP] intro S hS [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij S : Set ((forget CompHaus).obj X) hS : IsClosed S ⊢ IsClosed (↑E.symm ⁻¹' S) [PROOFSTEP] rw [← E.image_eq_preimage] [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij S : Set ((forget CompHaus).obj X) hS : IsClosed S ⊢ IsClosed (↑E '' S) [PROOFSTEP] exact isClosedMap f S hS [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij hE : Continuous ↑E.symm ⊢ IsIso f [PROOFSTEP] refine' ⟨⟨⟨E.symm, hE⟩, _, _⟩⟩ [GOAL] case refine'_1 X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij hE : Continuous ↑E.symm ⊢ f ≫ ContinuousMap.mk ↑E.symm = 𝟙 X [PROOFSTEP] ext x [GOAL] case refine'_1.w X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij hE : Continuous ↑E.symm x : (forget CompHaus).obj X ⊢ ↑(f ≫ ContinuousMap.mk ↑E.symm) x = ↑(𝟙 X) x [PROOFSTEP] apply E.symm_apply_apply [GOAL] case refine'_2 X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij hE : Continuous ↑E.symm ⊢ ContinuousMap.mk ↑E.symm ≫ f = 𝟙 Y [PROOFSTEP] ext x [GOAL] case refine'_2.w X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ⟶ Y bij : Function.Bijective ↑f E : (forget CompHaus).obj X ≃ (forget CompHaus).obj Y := Equiv.ofBijective (↑f) bij hE : Continuous ↑E.symm x : (forget CompHaus).obj Y ⊢ ↑(ContinuousMap.mk ↑E.symm ≫ f) x = ↑(𝟙 Y) x [PROOFSTEP] apply E.apply_symm_apply [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : ↑X.toTop ≃ₜ ↑Y.toTop ⊢ ContinuousMap.mk ↑f ≫ ContinuousMap.mk ↑(Homeomorph.symm f) = 𝟙 X [PROOFSTEP] ext x [GOAL] case w X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : ↑X.toTop ≃ₜ ↑Y.toTop x : (forget CompHaus).obj X ⊢ ↑(ContinuousMap.mk ↑f ≫ ContinuousMap.mk ↑(Homeomorph.symm f)) x = ↑(𝟙 X) x [PROOFSTEP] exact f.symm_apply_apply x [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : ↑X.toTop ≃ₜ ↑Y.toTop ⊢ ContinuousMap.mk ↑(Homeomorph.symm f) ≫ ContinuousMap.mk ↑f = 𝟙 Y [PROOFSTEP] ext x [GOAL] case w X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : ↑X.toTop ≃ₜ ↑Y.toTop x : (forget CompHaus).obj Y ⊢ ↑(ContinuousMap.mk ↑(Homeomorph.symm f) ≫ ContinuousMap.mk ↑f) x = ↑(𝟙 Y) x [PROOFSTEP] exact f.apply_symm_apply x [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ≅ Y x : ↑X.toTop ⊢ ↑f.inv (↑f.hom x) = x [PROOFSTEP] simp [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ≅ Y x : ↑Y.toTop ⊢ ↑f.hom (↑f.inv x) = x [PROOFSTEP] simp [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ≅ Y ⊢ isoOfHomeo (homeoOfIso f) = f [PROOFSTEP] ext [GOAL] case w.w X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : X ≅ Y x✝ : (forget CompHaus).obj X ⊢ ↑(isoOfHomeo (homeoOfIso f)).hom x✝ = ↑f.hom x✝ [PROOFSTEP] rfl [GOAL] X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : ↑X.toTop ≃ₜ ↑Y.toTop ⊢ homeoOfIso (isoOfHomeo f) = f [PROOFSTEP] ext [GOAL] case H X✝ : Type u_1 inst✝² : TopologicalSpace X✝ inst✝¹ : CompactSpace X✝ inst✝ : T2Space X✝ X Y : CompHaus f : ↑X.toTop ≃ₜ ↑Y.toTop x✝ : ↑X.toTop ⊢ ↑(homeoOfIso (isoOfHomeo f)) x✝ = ↑f x✝ [PROOFSTEP] rfl [GOAL] ⊢ ∀ {A B : CompHaus} (f : A ⟶ B) [inst : IsIso ((forget CompHaus).map f)], IsIso f [PROOFSTEP] intro A B f hf [GOAL] A B : CompHaus f : A ⟶ B hf : IsIso ((forget CompHaus).map f) ⊢ IsIso f [PROOFSTEP] exact CompHaus.isIso_of_bijective _ ((isIso_iff_bijective f).mp hf) [GOAL] X : TopCat Y : CompHaus ⊢ Function.LeftInverse (fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit) [PROOFSTEP] rintro ⟨f : StoneCech X ⟶ Y, hf : Continuous f⟩ -- Porting note: `ext` fails. [GOAL] case mk X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f ⊢ (fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) ((fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) (ContinuousMap.mk f)) = ContinuousMap.mk f [PROOFSTEP] apply ContinuousMap.ext [GOAL] case mk.h X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f ⊢ ∀ (a : ↑(stoneCechObj X).toTop), ↑((fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) ((fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) (ContinuousMap.mk f))) a = ↑(ContinuousMap.mk f) a [PROOFSTEP] intro (x : StoneCech X) [GOAL] case mk.h X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f x : StoneCech ↑X ⊢ ↑((fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) ((fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) (ContinuousMap.mk f))) x = ↑(ContinuousMap.mk f) x [PROOFSTEP] refine' congr_fun _ x [GOAL] case mk.h X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f x : StoneCech ↑X ⊢ ↑((fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) ((fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) (ContinuousMap.mk f))) = ↑(ContinuousMap.mk f) [PROOFSTEP] apply Continuous.ext_on denseRange_stoneCechUnit (continuous_stoneCechExtend _) hf [GOAL] case mk.h X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f x : StoneCech ↑X ⊢ Set.EqOn (stoneCechExtend ?m.48961) f (Set.range stoneCechUnit) X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f x : StoneCech ↑X ⊢ Continuous ((fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) (ContinuousMap.mk f)).toFun [PROOFSTEP] rintro _ ⟨y, rfl⟩ [GOAL] case mk.h.intro X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f x : StoneCech ↑X y : ↑X ⊢ stoneCechExtend ?m.48961 (stoneCechUnit y) = f (stoneCechUnit y) X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f x : StoneCech ↑X ⊢ Continuous ((fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) (ContinuousMap.mk f)).toFun [PROOFSTEP] apply congr_fun (stoneCechExtend_extends (hf.comp _)) y [GOAL] X : TopCat Y : CompHaus f : StoneCech ↑X ⟶ ↑Y.toTop hf : Continuous f x : StoneCech ↑X ⊢ Continuous fun x => stoneCechUnit x [PROOFSTEP] apply continuous_stoneCechUnit [GOAL] X : TopCat Y : CompHaus ⊢ Function.RightInverse (fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit) [PROOFSTEP] rintro ⟨f : (X : Type _) ⟶ Y, hf : Continuous f⟩ -- Porting note: `ext` fails. [GOAL] case mk X : TopCat Y : CompHaus f : ↑X ⟶ ↑Y.toTop hf : Continuous f ⊢ (fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) ((fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) (ContinuousMap.mk f)) = ContinuousMap.mk f [PROOFSTEP] apply ContinuousMap.ext [GOAL] case mk.h X : TopCat Y : CompHaus f : ↑X ⟶ ↑Y.toTop hf : Continuous f ⊢ ∀ (a : ↑X), ↑((fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) ((fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) (ContinuousMap.mk f))) a = ↑(ContinuousMap.mk f) a [PROOFSTEP] intro [GOAL] case mk.h X : TopCat Y : CompHaus f : ↑X ⟶ ↑Y.toTop hf : Continuous f a✝ : ↑X ⊢ ↑((fun f => ContinuousMap.mk (↑f ∘ stoneCechUnit)) ((fun f => ContinuousMap.mk (stoneCechExtend (_ : Continuous f.toFun))) (ContinuousMap.mk f))) a✝ = ↑(ContinuousMap.mk f) a✝ [PROOFSTEP] exact congr_fun (stoneCechExtend_extends hf) _ [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop ⊢ CompactSpace ↑(TopCat.limitCone FF).pt [PROOFSTEP] show CompactSpace {u : ∀ j, F.obj j | ∀ {i j : J} (f : i ⟶ j), (F.map f) (u i) = u j} [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop ⊢ CompactSpace ↑{u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} [PROOFSTEP] rw [← isCompact_iff_compactSpace] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop ⊢ IsCompact {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} [PROOFSTEP] apply IsClosed.isCompact [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop ⊢ IsClosed {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} [PROOFSTEP] have : {u : ∀ j, F.obj j | ∀ {i j : J} (f : i ⟶ j), F.map f (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | F.map f (u i) = u j} := by ext1 simp only [Set.mem_iInter, Set.mem_setOf_eq] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop ⊢ {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} [PROOFSTEP] ext1 [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop x✝ : (j : J) → ↑(F.obj j).toTop ⊢ x✝ ∈ {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} ↔ x✝ ∈ ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} [PROOFSTEP] simp only [Set.mem_iInter, Set.mem_setOf_eq] [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} ⊢ IsClosed {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} [PROOFSTEP] rw [this] [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} ⊢ IsClosed (⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j}) [PROOFSTEP] apply isClosed_iInter [GOAL] case h.h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} ⊢ ∀ (i : J), IsClosed (⋂ (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j}) [PROOFSTEP] intro i [GOAL] case h.h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} i : J ⊢ IsClosed (⋂ (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j}) [PROOFSTEP] apply isClosed_iInter [GOAL] case h.h.h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} i : J ⊢ ∀ (i_1 : J), IsClosed (⋂ (f : i ⟶ i_1), {u | ↑(F.map f) (u i) = u i_1}) [PROOFSTEP] intro j [GOAL] case h.h.h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} i j : J ⊢ IsClosed (⋂ (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j}) [PROOFSTEP] apply isClosed_iInter [GOAL] case h.h.h.h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} i j : J ⊢ ∀ (i_1 : i ⟶ j), IsClosed {u | ↑(F.map i_1) (u i) = u j} [PROOFSTEP] intro f [GOAL] case h.h.h.h J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} i j : J f : i ⟶ j ⊢ IsClosed {u | ↑(F.map f) (u i) = u j} [PROOFSTEP] apply isClosed_eq [GOAL] case h.h.h.h.hf J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} i j : J f : i ⟶ j ⊢ Continuous fun x => ↑(F.map f) (x i) [PROOFSTEP] exact (ContinuousMap.continuous (F.map f)).comp (continuous_apply i) [GOAL] case h.h.h.h.hg J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop this : {u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j} = ⋂ (i : J) (j : J) (f : i ⟶ j), {u | ↑(F.map f) (u i) = u j} i j : J f : i ⟶ j ⊢ Continuous fun x => x j [PROOFSTEP] exact continuous_apply j [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop ⊢ ∀ ⦃X Y : J⦄ (f : X ⟶ Y), ((Functor.const J).obj (mk (TopCat.limitCone FF).pt)).map f ≫ (fun j => NatTrans.app (TopCat.limitCone FF).π j) Y = (fun j => NatTrans.app (TopCat.limitCone FF).π j) X ≫ F.map f [PROOFSTEP] intro _ _ f [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop X✝ Y✝ : J f : X✝ ⟶ Y✝ ⊢ ((Functor.const J).obj (mk (TopCat.limitCone FF).pt)).map f ≫ (fun j => NatTrans.app (TopCat.limitCone FF).π j) Y✝ = (fun j => NatTrans.app (TopCat.limitCone FF).π j) X✝ ≫ F.map f [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case w.mk J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop X✝ Y✝ : J f : X✝ ⟶ Y✝ x : (j : J) → ↑(FF.obj j) hx : x ∈ {u | ∀ {i j : J} (f : i ⟶ j), ↑(FF.map f) (u i) = u j} ⊢ ↑(((Functor.const J).obj (mk (TopCat.limitCone FF).pt)).map f ≫ (fun j => NatTrans.app (TopCat.limitCone FF).π j) Y✝) { val := x, property := hx } = ↑((fun j => NatTrans.app (TopCat.limitCone FF).π j) X✝ ≫ F.map f) { val := x, property := hx } [PROOFSTEP] simp only [comp_apply, Functor.const_obj_map, id_apply] [GOAL] case w.mk J : Type v inst✝ : SmallCategory J F : J ⥤ CompHaus FF : J ⥤ TopCatMax := F ⋙ compHausToTop X✝ Y✝ : J f : X✝ ⟶ Y✝ x : (j : J) → ↑(FF.obj j) hx : x ∈ {u | ∀ {i j : J} (f : i ⟶ j), ↑(FF.map f) (u i) = u j} ⊢ ↑(NatTrans.app (TopCat.limitCone (F ⋙ compHausToTop)).π Y✝) (↑(𝟙 (mk (TopCat.limitCone (F ⋙ compHausToTop)).pt)) { val := x, property := hx }) = ↑(F.map f) (↑(NatTrans.app (TopCat.limitCone (F ⋙ compHausToTop)).π X✝) { val := x, property := hx }) [PROOFSTEP] exact (hx f).symm [GOAL] X Y : CompHaus f : X ⟶ Y ⊢ Epi f ↔ Function.Surjective ↑f [PROOFSTEP] constructor [GOAL] case mp X Y : CompHaus f : X ⟶ Y ⊢ Epi f → Function.Surjective ↑f [PROOFSTEP] dsimp [Function.Surjective] [GOAL] case mp X Y : CompHaus f : X ⟶ Y ⊢ Epi f → ∀ (b : (forget CompHaus).obj Y), ∃ a, ↑f a = b [PROOFSTEP] contrapose! [GOAL] case mp X Y : CompHaus f : X ⟶ Y ⊢ (∃ b, ∀ (a : (forget CompHaus).obj X), ↑f a ≠ b) → ¬Epi f [PROOFSTEP] rintro ⟨y, hy⟩ hf [GOAL] case mp.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f ⊢ False [PROOFSTEP] let C := Set.range f [GOAL] case mp.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f ⊢ False [PROOFSTEP] have hC : IsClosed C := (isCompact_range f.continuous).isClosed [GOAL] case mp.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C ⊢ False [PROOFSTEP] let D := ({ y } : Set Y) [GOAL] case mp.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} ⊢ False [PROOFSTEP] have hD : IsClosed D := isClosed_singleton [GOAL] case mp.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D ⊢ False [PROOFSTEP] have hCD : Disjoint C D := by rw [Set.disjoint_singleton_right] rintro ⟨y', hy'⟩ exact hy y' hy' [GOAL] X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D ⊢ Disjoint C D [PROOFSTEP] rw [Set.disjoint_singleton_right] [GOAL] X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D ⊢ ¬y ∈ C [PROOFSTEP] rintro ⟨y', hy'⟩ [GOAL] case intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D y' : (forget CompHaus).obj X hy' : ↑f y' = y ⊢ False [PROOFSTEP] exact hy y' hy' [GOAL] case mp.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D ⊢ False [PROOFSTEP] haveI : NormalSpace ((forget CompHaus).obj Y) := normalOfCompactT2 [GOAL] case mp.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this : NormalSpace ((forget CompHaus).obj Y) ⊢ False [PROOFSTEP] obtain ⟨φ, hφ0, hφ1, hφ01⟩ := exists_continuous_zero_one_of_closed hC hD hCD [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 ⊢ False [PROOFSTEP] haveI : CompactSpace (ULift.{u} <| Set.Icc (0 : ℝ) 1) := Homeomorph.ulift.symm.compactSpace [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this : CompactSpace (ULift ↑(Set.Icc 0 1)) ⊢ False [PROOFSTEP] haveI : T2Space (ULift.{u} <| Set.Icc (0 : ℝ) 1) := Homeomorph.ulift.symm.t2Space [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) ⊢ False [PROOFSTEP] let Z := of (ULift.{u} <| Set.Icc (0 : ℝ) 1) [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) ⊢ False [PROOFSTEP] let g : Y ⟶ Z := ⟨fun y' => ⟨⟨φ y', hφ01 y'⟩⟩, continuous_uLift_up.comp (φ.continuous.subtype_mk fun y' => hφ01 y')⟩ [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } ⊢ False [PROOFSTEP] let h : Y ⟶ Z := ⟨fun _ => ⟨⟨0, Set.left_mem_Icc.mpr zero_le_one⟩⟩, continuous_const⟩ [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } ⊢ False [PROOFSTEP] have H : h = g := by rw [← cancel_epi f] ext x apply ULift.ext apply Subtype.ext dsimp -- Porting note: This `change` is not ideal. -- I think lean is having issues understanding when a `ContinuousMap` should be considered -- as a morphism. -- TODO(?): Make morphisms in `CompHaus` (and other topological categories) -- into a one-field-structure. change 0 = φ (f x) simp only [hφ0 (Set.mem_range_self x), Pi.zero_apply] [GOAL] X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } ⊢ h = g [PROOFSTEP] rw [← cancel_epi f] [GOAL] X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } ⊢ f ≫ h = f ≫ g [PROOFSTEP] ext x [GOAL] case w X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } x : (forget CompHaus).obj X ⊢ ↑(f ≫ h) x = ↑(f ≫ g) x [PROOFSTEP] apply ULift.ext [GOAL] case w.h X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } x : (forget CompHaus).obj X ⊢ (↑(f ≫ h) x).down = (↑(f ≫ g) x).down [PROOFSTEP] apply Subtype.ext [GOAL] case w.h.a X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } x : (forget CompHaus).obj X ⊢ ↑(↑(f ≫ h) x).down = ↑(↑(f ≫ g) x).down [PROOFSTEP] dsimp -- Porting note: This `change` is not ideal. -- I think lean is having issues understanding when a `ContinuousMap` should be considered -- as a morphism. -- TODO(?): Make morphisms in `CompHaus` (and other topological categories) -- into a one-field-structure. [GOAL] case w.h.a X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } x : (forget CompHaus).obj X ⊢ ↑(↑(f ≫ ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } }) x).down = ↑(↑(f ≫ ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } }) x).down [PROOFSTEP] change 0 = φ (f x) [GOAL] case w.h.a X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } x : (forget CompHaus).obj X ⊢ 0 = ↑φ (↑f x) [PROOFSTEP] simp only [hφ0 (Set.mem_range_self x), Pi.zero_apply] [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } H : h = g ⊢ False [PROOFSTEP] apply_fun fun e => (e y).down.1 at H [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } H : ↑(↑h y).down = ↑(↑g y).down ⊢ False [PROOFSTEP] dsimp at H [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } H : ↑(↑(ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } }) y).down = ↑(↑(ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } }) y).down ⊢ False [PROOFSTEP] change 0 = φ y at H [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } H : 0 = ↑φ y ⊢ False [PROOFSTEP] simp only [hφ1 (Set.mem_singleton y), Pi.one_apply] at H [GOAL] case mp.intro.intro.intro.intro X Y : CompHaus f : X ⟶ Y y : (forget CompHaus).obj Y hy : ∀ (a : (forget CompHaus).obj X), ↑f a ≠ y hf : Epi f C : Set ((forget CompHaus).obj Y) := Set.range ↑f hC : IsClosed C D : Set ↑Y.toTop := {y} hD : IsClosed D hCD : Disjoint C D this✝¹ : NormalSpace ((forget CompHaus).obj Y) φ : C((forget CompHaus).obj Y, ℝ) hφ0 : Set.EqOn (↑φ) 0 C hφ1 : Set.EqOn (↑φ) 1 D hφ01 : ∀ (x : (forget CompHaus).obj Y), ↑φ x ∈ Set.Icc 0 1 this✝ : CompactSpace (ULift ↑(Set.Icc 0 1)) this : T2Space (ULift ↑(Set.Icc 0 1)) Z : CompHaus := of (ULift ↑(Set.Icc 0 1)) g : Y ⟶ Z := ContinuousMap.mk fun y' => { down := { val := ↑φ y', property := (_ : ↑φ y' ∈ Set.Icc 0 1) } } h : Y ⟶ Z := ContinuousMap.mk fun x => { down := { val := 0, property := (_ : 0 ∈ Set.Icc 0 1) } } H : 0 = 1 ⊢ False [PROOFSTEP] exact zero_ne_one H [GOAL] case mpr X Y : CompHaus f : X ⟶ Y ⊢ Function.Surjective ↑f → Epi f [PROOFSTEP] rw [← CategoryTheory.epi_iff_surjective] [GOAL] case mpr X Y : CompHaus f : X ⟶ Y ⊢ Epi ↑f → Epi f [PROOFSTEP] apply (forget CompHaus).epi_of_epi_map [GOAL] X Y : CompHaus f : X ⟶ Y ⊢ Mono f ↔ Function.Injective ↑f [PROOFSTEP] constructor [GOAL] case mp X Y : CompHaus f : X ⟶ Y ⊢ Mono f → Function.Injective ↑f [PROOFSTEP] intro hf x₁ x₂ h [GOAL] case mp X Y : CompHaus f : X ⟶ Y hf : Mono f x₁ x₂ : (forget CompHaus).obj X h : ↑f x₁ = ↑f x₂ ⊢ x₁ = x₂ [PROOFSTEP] let g₁ : of PUnit ⟶ X := ⟨fun _ => x₁, continuous_const⟩ [GOAL] case mp X Y : CompHaus f : X ⟶ Y hf : Mono f x₁ x₂ : (forget CompHaus).obj X h : ↑f x₁ = ↑f x₂ g₁ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₁ ⊢ x₁ = x₂ [PROOFSTEP] let g₂ : of PUnit ⟶ X := ⟨fun _ => x₂, continuous_const⟩ [GOAL] case mp X Y : CompHaus f : X ⟶ Y hf : Mono f x₁ x₂ : (forget CompHaus).obj X h : ↑f x₁ = ↑f x₂ g₁ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₁ g₂ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₂ ⊢ x₁ = x₂ [PROOFSTEP] have : g₁ ≫ f = g₂ ≫ f := by ext exact h [GOAL] X Y : CompHaus f : X ⟶ Y hf : Mono f x₁ x₂ : (forget CompHaus).obj X h : ↑f x₁ = ↑f x₂ g₁ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₁ g₂ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₂ ⊢ g₁ ≫ f = g₂ ≫ f [PROOFSTEP] ext [GOAL] case w X Y : CompHaus f : X ⟶ Y hf : Mono f x₁ x₂ : (forget CompHaus).obj X h : ↑f x₁ = ↑f x₂ g₁ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₁ g₂ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₂ x✝ : (forget CompHaus).obj (of PUnit) ⊢ ↑(g₁ ≫ f) x✝ = ↑(g₂ ≫ f) x✝ [PROOFSTEP] exact h [GOAL] case mp X Y : CompHaus f : X ⟶ Y hf : Mono f x₁ x₂ : (forget CompHaus).obj X h : ↑f x₁ = ↑f x₂ g₁ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₁ g₂ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₂ this : g₁ ≫ f = g₂ ≫ f ⊢ x₁ = x₂ [PROOFSTEP] rw [cancel_mono] at this [GOAL] case mp X Y : CompHaus f : X ⟶ Y hf : Mono f x₁ x₂ : (forget CompHaus).obj X h : ↑f x₁ = ↑f x₂ g₁ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₁ g₂ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₂ this : g₁ = g₂ ⊢ x₁ = x₂ [PROOFSTEP] apply_fun fun e => e PUnit.unit at this [GOAL] case mp X Y : CompHaus f : X ⟶ Y hf : Mono f x₁ x₂ : (forget CompHaus).obj X h : ↑f x₁ = ↑f x₂ g₁ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₁ g₂ : of PUnit ⟶ X := ContinuousMap.mk fun x => x₂ this : ↑g₁ PUnit.unit = ↑g₂ PUnit.unit ⊢ x₁ = x₂ [PROOFSTEP] exact this [GOAL] case mpr X Y : CompHaus f : X ⟶ Y ⊢ Function.Injective ↑f → Mono f [PROOFSTEP] rw [← CategoryTheory.mono_iff_injective] [GOAL] case mpr X Y : CompHaus f : X ⟶ Y ⊢ Mono ↑f → Mono f [PROOFSTEP] apply (forget CompHaus).mono_of_mono_map
{"mathlib_filename": "Mathlib.Topology.Category.CompHaus.Basic", "llama_tokens": 19439}
[GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X i : ι ⊢ res F U ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := i } = F.map (leSupr U i).op [PROOFSTEP] rw [res, limit.lift_π, Fan.mk_π_app] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X ⊢ res F U ≫ leftRes F U = res F U ≫ rightRes F U [PROOFSTEP] dsimp [res, leftRes, rightRes] -- Porting note : `ext` can't see `limit.hom_ext` applies here: -- See https://github.com/leanprover-community/mathlib4/issues/5229 [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X ⊢ ((Pi.lift fun i => F.map (leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) = (Pi.lift fun i => F.map (leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op [PROOFSTEP] refine limit.hom_ext (fun _ => ?_) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X x✝ : Discrete (ι × ι) ⊢ ((Pi.lift fun i => F.map (leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) x✝ = ((Pi.lift fun i => F.map (leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) x✝ [PROOFSTEP] simp only [limit.lift_π, limit.lift_π_assoc, Fan.mk_π_app, Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X x✝ : Discrete (ι × ι) ⊢ F.map (leSupr U x✝.as.fst).op ≫ F.map (infLELeft (U x✝.as.fst) (U x✝.as.snd)).op = F.map (leSupr U x✝.as.snd).op ≫ F.map (infLERight (U x✝.as.fst) (U x✝.as.snd)).op [PROOFSTEP] rw [← F.map_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X x✝ : Discrete (ι × ι) ⊢ F.map ((leSupr U x✝.as.fst).op ≫ (infLELeft (U x✝.as.fst) (U x✝.as.snd)).op) = F.map (leSupr U x✝.as.snd).op ≫ F.map (infLERight (U x✝.as.fst) (U x✝.as.snd)).op [PROOFSTEP] rw [← F.map_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X x✝ : Discrete (ι × ι) ⊢ F.map ((leSupr U x✝.as.fst).op ≫ (infLELeft (U x✝.as.fst) (U x✝.as.snd)).op) = F.map ((leSupr U x✝.as.snd).op ≫ (infLERight (U x✝.as.fst) (U x✝.as.snd)).op) [PROOFSTEP] congr 1 [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (X_1 : WalkingParallelPair) → (diagram F U).obj X_1 ≅ (diagram G U).obj X_1 [PROOFSTEP] rintro ⟨⟩ [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (diagram F U).obj WalkingParallelPair.zero ≅ (diagram G U).obj WalkingParallelPair.zero case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (diagram F U).obj WalkingParallelPair.one ≅ (diagram G U).obj WalkingParallelPair.one [PROOFSTEP] exact piOpens.isoOfIso U α [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (diagram F U).obj WalkingParallelPair.one ≅ (diagram G U).obj WalkingParallelPair.one [PROOFSTEP] exact piInters.isoOfIso U α [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ ∀ {X_1 Y : WalkingParallelPair} (f : X_1 ⟶ Y), (diagram F U).map f ≫ (WalkingParallelPair.casesOn Y (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom = (WalkingParallelPair.casesOn X_1 (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom ≫ (diagram G U).map f [PROOFSTEP] rintro ⟨⟩ ⟨⟩ ⟨⟩ [GOAL] case zero.zero.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (diagram F U).map (WalkingParallelPairHom.id WalkingParallelPair.zero) ≫ (WalkingParallelPair.casesOn WalkingParallelPair.zero (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom = (WalkingParallelPair.casesOn WalkingParallelPair.zero (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom ≫ (diagram G U).map (WalkingParallelPairHom.id WalkingParallelPair.zero) [PROOFSTEP] simp [GOAL] case zero.one.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (diagram F U).map WalkingParallelPairHom.left ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom = (WalkingParallelPair.casesOn WalkingParallelPair.zero (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom ≫ (diagram G U).map WalkingParallelPairHom.left [PROOFSTEP] refine limit.hom_ext (fun _ => ?_) [GOAL] case zero.one.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G x✝ : Discrete (ι × ι) ⊢ ((diagram F U).map WalkingParallelPairHom.left ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom) ≫ limit.π (Discrete.functor fun p => G.obj (op (U p.fst ⊓ U p.snd))) x✝ = ((WalkingParallelPair.casesOn WalkingParallelPair.zero (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom ≫ (diagram G U).map WalkingParallelPairHom.left) ≫ limit.π (Discrete.functor fun p => G.obj (op (U p.fst ⊓ U p.snd))) x✝ [PROOFSTEP] simp only [leftRes, piOpens.isoOfIso, piInters.isoOfIso, parallelPair_map_left, Functor.mapIso_hom, lim_map, limit.lift_map, limit.lift_π, Cones.postcompose_obj_π, NatTrans.comp_app, Fan.mk_π_app, Discrete.natIso_hom_app, Iso.app_hom, Category.assoc, NatTrans.naturality, limMap_π_assoc] [GOAL] case zero.one.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (diagram F U).map WalkingParallelPairHom.right ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom = (WalkingParallelPair.casesOn WalkingParallelPair.zero (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom ≫ (diagram G U).map WalkingParallelPairHom.right [PROOFSTEP] refine limit.hom_ext (fun _ => ?_) [GOAL] case zero.one.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G x✝ : Discrete (ι × ι) ⊢ ((diagram F U).map WalkingParallelPairHom.right ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom) ≫ limit.π (Discrete.functor fun p => G.obj (op (U p.fst ⊓ U p.snd))) x✝ = ((WalkingParallelPair.casesOn WalkingParallelPair.zero (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom ≫ (diagram G U).map WalkingParallelPairHom.right) ≫ limit.π (Discrete.functor fun p => G.obj (op (U p.fst ⊓ U p.snd))) x✝ [PROOFSTEP] simp only [rightRes, piOpens.isoOfIso, piInters.isoOfIso, parallelPair_map_right, Functor.mapIso_hom, lim_map, limit.lift_map, limit.lift_π, Cones.postcompose_obj_π, NatTrans.comp_app, Fan.mk_π_app, Discrete.natIso_hom_app, Iso.app_hom, Category.assoc, NatTrans.naturality, limMap_π_assoc] [GOAL] case one.one.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (diagram F U).map (WalkingParallelPairHom.id WalkingParallelPair.one) ≫ (WalkingParallelPair.casesOn WalkingParallelPair.one (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom = (WalkingParallelPair.casesOn WalkingParallelPair.one (piOpens.isoOfIso U α) (piInters.isoOfIso U α)).hom ≫ (diagram G U).map (WalkingParallelPairHom.id WalkingParallelPair.one) [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ fork F U ≅ (Cones.postcompose (diagram.isoOfIso U α).inv).obj (fork G U) [PROOFSTEP] fapply Fork.ext [GOAL] case i C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ (fork F U).pt ≅ ((Cones.postcompose (diagram.isoOfIso U α).inv).obj (fork G U)).pt [PROOFSTEP] apply α.app [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G ⊢ autoParam ((α.app (op (iSup U))).hom ≫ Fork.ι ((Cones.postcompose (diagram.isoOfIso U α).inv).obj (fork G U)) = Fork.ι (fork F U)) _auto✝ [PROOFSTEP] refine limit.hom_ext (fun _ => ?_) [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G x✝ : Discrete ι ⊢ ((α.app (op (iSup U))).hom ≫ Fork.ι ((Cones.postcompose (diagram.isoOfIso U α).inv).obj (fork G U))) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) x✝ = Fork.ι (fork F U) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) x✝ [PROOFSTEP] dsimp only [Fork.ι] -- Ugh, `simp` can't unfold abbreviations. [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X G : Presheaf C X α : F ≅ G x✝ : Discrete ι ⊢ ((α.app (op (iSup U))).hom ≫ NatTrans.app ((Cones.postcompose (diagram.isoOfIso U α).inv).obj (fork G U)).π WalkingParallelPair.zero) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) x✝ = NatTrans.app (fork F U).π WalkingParallelPair.zero ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) x✝ [PROOFSTEP] simp only [res, diagram.isoOfIso, Iso.app_hom, piOpens.isoOfIso, Cones.postcompose_obj_π, NatTrans.comp_app, fork_π_app_walkingParallelPair_zero, NatIso.ofComponents_inv_app, Functor.mapIso_inv, lim_map, limit.lift_map, Category.assoc, limit.lift_π, Fan.mk_π_app, Discrete.natIso_inv_app, Iso.app_inv, NatTrans.naturality, Iso.hom_inv_id_app_assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) Y Z : WalkingParallelPair f : Y ⟶ Z ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map f ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) Z = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) Y ≫ (SheafConditionEqualizerProducts.diagram F U).map f [PROOFSTEP] cases Y [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) Z : WalkingParallelPair f : WalkingParallelPair.zero ⟶ Z ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map f ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) Z = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map f [PROOFSTEP] cases Z [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) Z : WalkingParallelPair f : WalkingParallelPair.one ⟶ Z ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map f ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) Z = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one ≫ (SheafConditionEqualizerProducts.diagram F U).map f [PROOFSTEP] cases Z [GOAL] case zero.zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) f : WalkingParallelPair.zero ⟶ WalkingParallelPair.zero ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map f ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map f [PROOFSTEP] cases f [GOAL] case zero.one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) f : WalkingParallelPair.zero ⟶ WalkingParallelPair.one ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map f ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map f [PROOFSTEP] cases f [GOAL] case one.zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) f : WalkingParallelPair.one ⟶ WalkingParallelPair.zero ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map f ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one ≫ (SheafConditionEqualizerProducts.diagram F U).map f [PROOFSTEP] cases f [GOAL] case one.one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) f : WalkingParallelPair.one ⟶ WalkingParallelPair.one ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map f ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one ≫ (SheafConditionEqualizerProducts.diagram F U).map f [PROOFSTEP] cases f [GOAL] case zero.zero.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map (WalkingParallelPairHom.id WalkingParallelPair.zero) ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map (WalkingParallelPairHom.id WalkingParallelPair.zero) [PROOFSTEP] refine limit.hom_ext fun i => ?_ [GOAL] case zero.zero.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) i : Discrete ι ⊢ (((Functor.const WalkingParallelPair).obj c.pt).map (WalkingParallelPairHom.id WalkingParallelPair.zero) ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) i = ((fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map (WalkingParallelPairHom.id WalkingParallelPair.zero)) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) i [PROOFSTEP] dsimp [GOAL] case zero.zero.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) i : Discrete ι ⊢ (𝟙 c.pt ≫ Pi.lift fun i => NatTrans.app c.π (op (single i))) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) i = ((Pi.lift fun i => NatTrans.app c.π (op (single i))) ≫ (SheafConditionEqualizerProducts.diagram F U).map (𝟙 WalkingParallelPair.zero)) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) i [PROOFSTEP] simp only [limit.lift_π, Category.id_comp, Fan.mk_π_app, CategoryTheory.Functor.map_id, Category.assoc] [GOAL] case zero.zero.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) i : Discrete ι ⊢ NatTrans.app c.π (op (single i.as)) = (Pi.lift fun i => NatTrans.app c.π (op (single i))) ≫ 𝟙 ((SheafConditionEqualizerProducts.diagram F U).obj WalkingParallelPair.zero) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) i [PROOFSTEP] dsimp [GOAL] case zero.zero.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) i : Discrete ι ⊢ NatTrans.app c.π (op (single i.as)) = (Pi.lift fun i => NatTrans.app c.π (op (single i))) ≫ 𝟙 (SheafConditionEqualizerProducts.piOpens F U) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) i [PROOFSTEP] simp only [limit.lift_π, Category.id_comp, Fan.mk_π_app] [GOAL] case zero.one.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map WalkingParallelPairHom.left ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map WalkingParallelPairHom.left [PROOFSTEP] refine limit.hom_ext fun ⟨i, j⟩ => ?_ [GOAL] case zero.one.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι ⊢ (((Functor.const WalkingParallelPair).obj c.pt).map WalkingParallelPairHom.left ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = ((fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map WalkingParallelPairHom.left) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] dsimp [SheafConditionEqualizerProducts.leftRes] [GOAL] case zero.one.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 c.pt ≫ Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd))) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = ((Pi.lift fun i => NatTrans.app c.π (op (single i))) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] [GOAL] case zero.one.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι ⊢ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single i)) ≫ F.map (infLELeft (U i) (U j)).op [PROOFSTEP] have h := c.π.naturality (Quiver.Hom.op (Hom.left i j)) [GOAL] case zero.one.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι h : ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map (left i j).op ≫ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single i)) ≫ ((diagram U).op ⋙ F).map (left i j).op ⊢ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single i)) ≫ F.map (infLELeft (U i) (U j)).op [PROOFSTEP] dsimp at h [GOAL] case zero.one.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι h : 𝟙 c.pt ≫ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single i)) ≫ F.map ((diagram U).map (left i j)).op ⊢ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single i)) ≫ F.map (infLELeft (U i) (U j)).op [PROOFSTEP] simpa using h [GOAL] case zero.one.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map WalkingParallelPairHom.right ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map WalkingParallelPairHom.right [PROOFSTEP] refine limit.hom_ext fun ⟨i, j⟩ => ?_ [GOAL] case zero.one.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι ⊢ (((Functor.const WalkingParallelPair).obj c.pt).map WalkingParallelPairHom.right ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = ((fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map WalkingParallelPairHom.right) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] dsimp [SheafConditionEqualizerProducts.rightRes] [GOAL] case zero.one.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 c.pt ≫ Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd))) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = ((Pi.lift fun i => NatTrans.app c.π (op (single i))) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] [GOAL] case zero.one.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι ⊢ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single j)) ≫ F.map (infLERight (U i) (U j)).op [PROOFSTEP] have h := c.π.naturality (Quiver.Hom.op (Hom.right i j)) [GOAL] case zero.one.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι h : ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map (right i j).op ≫ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single j)) ≫ ((diagram U).op ⋙ F).map (right i j).op ⊢ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single j)) ≫ F.map (infLERight (U i) (U j)).op [PROOFSTEP] dsimp at h [GOAL] case zero.one.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) x✝ : Discrete (ι × ι) i j : ι h : 𝟙 c.pt ≫ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single j)) ≫ F.map ((diagram U).map (right i j)).op ⊢ NatTrans.app c.π (op (Pairwise.pair i j)) = NatTrans.app c.π (op (single j)) ≫ F.map (infLERight (U i) (U j)).op [PROOFSTEP] simpa using h [GOAL] case one.one.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) ⊢ ((Functor.const WalkingParallelPair).obj c.pt).map (WalkingParallelPairHom.id WalkingParallelPair.one) ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one = (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one ≫ (SheafConditionEqualizerProducts.diagram F U).map (WalkingParallelPairHom.id WalkingParallelPair.one) [PROOFSTEP] refine limit.hom_ext fun i => ?_ [GOAL] case one.one.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) i : Discrete (ι × ι) ⊢ (((Functor.const WalkingParallelPair).obj c.pt).map (WalkingParallelPairHom.id WalkingParallelPair.one) ≫ (fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) i = ((fun Z => WalkingParallelPair.casesOn Z (Pi.lift fun i => NatTrans.app c.π (op (single i))) (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd)))) WalkingParallelPair.one ≫ (SheafConditionEqualizerProducts.diagram F U).map (WalkingParallelPairHom.id WalkingParallelPair.one)) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) i [PROOFSTEP] dsimp [GOAL] case one.one.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) i : Discrete (ι × ι) ⊢ (𝟙 c.pt ≫ Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd))) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) i = ((Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd))) ≫ (SheafConditionEqualizerProducts.diagram F U).map (𝟙 WalkingParallelPair.one)) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) i [PROOFSTEP] simp only [limit.lift_π, Category.id_comp, Fan.mk_π_app, CategoryTheory.Functor.map_id, Category.assoc] [GOAL] case one.one.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) i : Discrete (ι × ι) ⊢ NatTrans.app c.π (op (Pairwise.pair i.as.fst i.as.snd)) = (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd))) ≫ 𝟙 ((SheafConditionEqualizerProducts.diagram F U).obj WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) i [PROOFSTEP] dsimp [GOAL] case one.one.id C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) i : Discrete (ι × ι) ⊢ NatTrans.app c.π (op (Pairwise.pair i.as.fst i.as.snd)) = (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd))) ≫ 𝟙 (SheafConditionEqualizerProducts.piInters F U) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) i [PROOFSTEP] simp only [limit.lift_π, Category.id_comp, Fan.mk_π_app] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone ((diagram U).op ⋙ F) f : c ⟶ c' j : WalkingParallelPair ⊢ f.Hom ≫ NatTrans.app ((fun c => coneEquivFunctorObj F U c) c').π j = NatTrans.app ((fun c => coneEquivFunctorObj F U c) c).π j [PROOFSTEP] cases j [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone ((diagram U).op ⋙ F) f : c ⟶ c' ⊢ f.Hom ≫ NatTrans.app ((fun c => coneEquivFunctorObj F U c) c').π WalkingParallelPair.zero = NatTrans.app ((fun c => coneEquivFunctorObj F U c) c).π WalkingParallelPair.zero [PROOFSTEP] refine limit.hom_ext fun i => ?_ [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone ((diagram U).op ⋙ F) f : c ⟶ c' i : Discrete ι ⊢ (f.Hom ≫ NatTrans.app ((fun c => coneEquivFunctorObj F U c) c').π WalkingParallelPair.zero) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) i = NatTrans.app ((fun c => coneEquivFunctorObj F U c) c).π WalkingParallelPair.zero ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) i [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Limits.ConeMorphism.w, Limits.limit.lift_π, Category.assoc, coneEquivFunctorObj_π_app] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone ((diagram U).op ⋙ F) f : c ⟶ c' ⊢ f.Hom ≫ NatTrans.app ((fun c => coneEquivFunctorObj F U c) c').π WalkingParallelPair.one = NatTrans.app ((fun c => coneEquivFunctorObj F U c) c).π WalkingParallelPair.one [PROOFSTEP] refine limit.hom_ext fun i => ?_ [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone ((diagram U).op ⋙ F) f : c ⟶ c' i : Discrete (ι × ι) ⊢ (f.Hom ≫ NatTrans.app ((fun c => coneEquivFunctorObj F U c) c').π WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) i = NatTrans.app ((fun c => coneEquivFunctorObj F U c) c).π WalkingParallelPair.one ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) i [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Limits.ConeMorphism.w, Limits.limit.lift_π, Category.assoc, coneEquivFunctorObj_π_app] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) ⊢ (X_1 : (CategoryTheory.Pairwise ι)ᵒᵖ) → ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).obj X_1 ⟶ ((diagram U).op ⋙ F).obj X_1 [PROOFSTEP] intro x [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).obj x ⟶ ((diagram U).op ⋙ F).obj x [PROOFSTEP] induction x using Opposite.rec' with | h x => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).obj x ⟶ ((diagram U).op ⋙ F).obj x [PROOFSTEP] induction x using Opposite.rec' with | h x => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x : CategoryTheory.Pairwise ι ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).obj (op x) ⟶ ((diagram U).op ⋙ F).obj (op x) [PROOFSTEP] rcases x with (⟨i⟩ | ⟨i, j⟩) [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i : ι ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).obj (op (single i)) ⟶ ((diagram U).op ⋙ F).obj (op (single i)) [PROOFSTEP] exact c.π.app WalkingParallelPair.zero ≫ Pi.π _ i [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).obj (op (Pairwise.pair i j)) ⟶ ((diagram U).op ⋙ F).obj (op (Pairwise.pair i j)) [PROOFSTEP] exact c.π.app WalkingParallelPair.one ≫ Pi.π _ (i, j) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) ⊢ ∀ ⦃X_1 Y : (CategoryTheory.Pairwise ι)ᵒᵖ⦄ (f : X_1 ⟶ Y), ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) Y = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) X_1 ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] intro x y f [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x y : (CategoryTheory.Pairwise ι)ᵒᵖ f : x ⟶ y ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) y = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) x ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] induction x using Opposite.rec' with | h x => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x y : (CategoryTheory.Pairwise ι)ᵒᵖ f : x ⟶ y ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) y = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) x ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] induction x using Opposite.rec' with | h x => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) y : (CategoryTheory.Pairwise ι)ᵒᵖ x : CategoryTheory.Pairwise ι f : op x ⟶ y ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) y = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op x) ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] induction y using Opposite.rec' with | h y => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) y : (CategoryTheory.Pairwise ι)ᵒᵖ x : CategoryTheory.Pairwise ι f : op x ⟶ y ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) y = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op x) ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] induction y using Opposite.rec' with | h y => ?_ [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x y : CategoryTheory.Pairwise ι f : op x ⟶ op y ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op y) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op x) ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] have ef : f = f.unop.op := rfl [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x y : CategoryTheory.Pairwise ι f : op x ⟶ op y ef : f = f.unop.op ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op y) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op x) ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] revert ef [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x y : CategoryTheory.Pairwise ι f : op x ⟶ op y ⊢ f = f.unop.op → ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op y) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op x) ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] generalize f.unop = f' [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x y : CategoryTheory.Pairwise ι f : op x ⟶ op y f' : (op y).unop ⟶ (op x).unop ⊢ f = f'.op → ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op y) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op x) ≫ ((diagram U).op ⋙ F).map f [PROOFSTEP] rintro rfl [GOAL] case h.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x y : CategoryTheory.Pairwise ι f' : (op y).unop ⟶ (op x).unop ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f'.op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op y) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op x) ≫ ((diagram U).op ⋙ F).map f'.op [PROOFSTEP] rcases x with (⟨i⟩ | ⟨⟩) [GOAL] case h.h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) y : CategoryTheory.Pairwise ι i : ι f' : (op y).unop ⟶ (op (single i)).unop ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f'.op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op y) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single i)) ≫ ((diagram U).op ⋙ F).map f'.op [PROOFSTEP] rcases y with (⟨⟩ | ⟨j, j⟩) [GOAL] case h.h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) y : CategoryTheory.Pairwise ι a✝¹ a✝ : ι f' : (op y).unop ⟶ (op (Pairwise.pair a✝¹ a✝)).unop ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f'.op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op y) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair a✝¹ a✝)) ≫ ((diagram U).op ⋙ F).map f'.op [PROOFSTEP] rcases y with (⟨⟩ | ⟨j, j⟩) [GOAL] case h.h.single.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i a✝ : ι f' : (op (single a✝)).unop ⟶ (op (single i)).unop ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f'.op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single a✝)) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single i)) ≫ ((diagram U).op ⋙ F).map f'.op [PROOFSTEP] rcases f' with ⟨⟩ [GOAL] case h.h.single.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j✝ j : ι f' : (op (Pairwise.pair j✝ j)).unop ⟶ (op (single i)).unop ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f'.op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair j✝ j)) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single i)) ≫ ((diagram U).op ⋙ F).map f'.op [PROOFSTEP] rcases f' with ⟨⟩ [GOAL] case h.h.pair.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) a✝² a✝¹ a✝ : ι f' : (op (single a✝)).unop ⟶ (op (Pairwise.pair a✝² a✝¹)).unop ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f'.op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single a✝)) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair a✝² a✝¹)) ≫ ((diagram U).op ⋙ F).map f'.op [PROOFSTEP] rcases f' with ⟨⟩ [GOAL] case h.h.pair.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) a✝¹ a✝ j✝ j : ι f' : (op (Pairwise.pair j✝ j)).unop ⟶ (op (Pairwise.pair a✝¹ a✝)).unop ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map f'.op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair j✝ j)) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair a✝¹ a✝)) ≫ ((diagram U).op ⋙ F).map f'.op [PROOFSTEP] rcases f' with ⟨⟩ [GOAL] case h.h.single.single.id_single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i : ι ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map (id_single i).op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single i)) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single i)) ≫ ((diagram U).op ⋙ F).map (id_single i).op [PROOFSTEP] dsimp [GOAL] case h.h.single.single.id_single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i : ι ⊢ 𝟙 c.pt ≫ Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i = (Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i) ≫ F.map ((diagram U).map (id_single i)).op [PROOFSTEP] erw [F.map_id] [GOAL] case h.h.single.single.id_single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i : ι ⊢ 𝟙 c.pt ≫ Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i = (Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i) ≫ 𝟙 (F.obj (op ((diagram U).obj (single i)))) [PROOFSTEP] simp [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map (left i j).op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair i j)) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single i)) ≫ ((diagram U).op ⋙ F).map (left i j).op [PROOFSTEP] dsimp [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι ⊢ 𝟙 c.pt ≫ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = (Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i) ≫ F.map ((diagram U).map (left i j)).op [PROOFSTEP] simp only [Category.id_comp, Category.assoc] [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (left i j)).op [PROOFSTEP] have h := c.π.naturality WalkingParallelPairHom.left [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : ((Functor.const WalkingParallelPair).obj c.pt).map WalkingParallelPairHom.left ≫ NatTrans.app c.π WalkingParallelPair.one = NatTrans.app c.π WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map WalkingParallelPairHom.left ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (left i j)).op [PROOFSTEP] dsimp [SheafConditionEqualizerProducts.leftRes] at h [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : 𝟙 c.pt ≫ NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (left i j)).op [PROOFSTEP] simp only [Category.id_comp] at h [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (left i j)).op [PROOFSTEP] have h' := h =≫ Pi.π _ (i, j) [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op h' : NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = (Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (left i j)).op [PROOFSTEP] rw [h'] [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op h' : NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = (Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) ⊢ (Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (left i j)).op [PROOFSTEP] simp only [Category.assoc, limit.lift_π, Fan.mk_π_app] [GOAL] case h.h.single.pair.left C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op h' : NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = (Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) ⊢ Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map (infLELeft (U i) (U j)).op = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (left i j)).op [PROOFSTEP] rfl [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map (right j i).op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair j i)) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (single i)) ≫ ((diagram U).op ⋙ F).map (right j i).op [PROOFSTEP] dsimp [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι ⊢ 𝟙 c.pt ≫ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = (Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i) ≫ F.map ((diagram U).map (right j i)).op [PROOFSTEP] simp only [Category.id_comp, Category.assoc] [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (right j i)).op [PROOFSTEP] have h := c.π.naturality WalkingParallelPairHom.right [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : ((Functor.const WalkingParallelPair).obj c.pt).map WalkingParallelPairHom.right ≫ NatTrans.app c.π WalkingParallelPair.one = NatTrans.app c.π WalkingParallelPair.zero ≫ (SheafConditionEqualizerProducts.diagram F U).map WalkingParallelPairHom.right ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (right j i)).op [PROOFSTEP] dsimp [SheafConditionEqualizerProducts.rightRes] at h [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : 𝟙 c.pt ≫ NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (right j i)).op [PROOFSTEP] simp only [Category.id_comp] at h [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (right j i)).op [PROOFSTEP] have h' := h =≫ Pi.π _ (j, i) [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op h' : NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = (Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) ⊢ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (right j i)).op [PROOFSTEP] rw [h'] [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op h' : NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = (Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) ⊢ (Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (right j i)).op [PROOFSTEP] simp [GOAL] case h.h.single.pair.right C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) i j : ι h : NatTrans.app c.π WalkingParallelPair.one = Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op h' : NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) = (Fork.ι c ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.snd ≫ F.map (infLERight (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (j, i) ⊢ Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map (infLERight (U j) (U i)).op = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i ≫ F.map ((diagram U).map (right j i)).op [PROOFSTEP] rfl [GOAL] case h.h.pair.pair.id_pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) a✝¹ a✝ : ι ⊢ ((Functor.const (CategoryTheory.Pairwise ι)ᵒᵖ).obj c.pt).map (id_pair a✝¹ a✝).op ≫ Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair a✝¹ a✝)) = Opposite.rec' (fun x => Pairwise.casesOn x (fun i => NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i) fun i j => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j)) (op (Pairwise.pair a✝¹ a✝)) ≫ ((diagram U).op ⋙ F).map (id_pair a✝¹ a✝).op [PROOFSTEP] dsimp [GOAL] case h.h.pair.pair.id_pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) a✝¹ a✝ : ι ⊢ 𝟙 c.pt ≫ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (a✝¹, a✝) = (NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (a✝¹, a✝)) ≫ F.map ((diagram U).map (id_pair a✝¹ a✝)).op [PROOFSTEP] erw [F.map_id] [GOAL] case h.h.pair.pair.id_pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) a✝¹ a✝ : ι ⊢ 𝟙 c.pt ≫ NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (a✝¹, a✝) = (NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (a✝¹, a✝)) ≫ 𝟙 (F.obj (op ((diagram U).obj (Pairwise.pair a✝¹ a✝)))) [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' ⊢ ∀ (j : (CategoryTheory.Pairwise ι)ᵒᵖ), f.Hom ≫ NatTrans.app ((fun c => coneEquivInverseObj F U c) c').π j = NatTrans.app ((fun c => coneEquivInverseObj F U c) c).π j [PROOFSTEP] intro x [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' x : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ f.Hom ≫ NatTrans.app ((fun c => coneEquivInverseObj F U c) c').π x = NatTrans.app ((fun c => coneEquivInverseObj F U c) c).π x [PROOFSTEP] induction x using Opposite.rec' with | h x => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' x : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ f.Hom ≫ NatTrans.app ((fun c => coneEquivInverseObj F U c) c').π x = NatTrans.app ((fun c => coneEquivInverseObj F U c) c).π x [PROOFSTEP] induction x using Opposite.rec' with | h x => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' x : CategoryTheory.Pairwise ι ⊢ f.Hom ≫ NatTrans.app ((fun c => coneEquivInverseObj F U c) c').π (op x) = NatTrans.app ((fun c => coneEquivInverseObj F U c) c).π (op x) [PROOFSTEP] rcases x with (⟨i⟩ | ⟨i, j⟩) [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' i : ι ⊢ f.Hom ≫ NatTrans.app ((fun c => coneEquivInverseObj F U c) c').π (op (single i)) = NatTrans.app ((fun c => coneEquivInverseObj F U c) c).π (op (single i)) [PROOFSTEP] dsimp [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' i : ι ⊢ f.Hom ≫ Fork.ι c' ≫ Pi.π (fun i => F.obj (op (U i))) i = Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i [PROOFSTEP] dsimp only [Fork.ι] [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' i : ι ⊢ f.Hom ≫ NatTrans.app c'.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i = NatTrans.app c.π WalkingParallelPair.zero ≫ Pi.π (fun i => F.obj (op (U i))) i [PROOFSTEP] rw [← f.w WalkingParallelPair.zero, Category.assoc] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' i j : ι ⊢ f.Hom ≫ NatTrans.app ((fun c => coneEquivInverseObj F U c) c').π (op (Pairwise.pair i j)) = NatTrans.app ((fun c => coneEquivInverseObj F U c) c).π (op (Pairwise.pair i j)) [PROOFSTEP] dsimp [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c c' : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ c' i j : ι ⊢ f.Hom ≫ NatTrans.app c'.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) = NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (i, j) [PROOFSTEP] rw [← f.w WalkingParallelPair.one, Category.assoc] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) j : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ 𝟙 ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).pt ≫ NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π j = NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π j [PROOFSTEP] induction j using Opposite.rec' with | h j => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) j : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ 𝟙 ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).pt ≫ NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π j = NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π j [PROOFSTEP] induction j using Opposite.rec' with | h j => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) j : CategoryTheory.Pairwise ι ⊢ 𝟙 ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).pt ≫ NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π (op j) = NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π (op j) [PROOFSTEP] rcases j with ⟨⟩ [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) a✝ : ι ⊢ 𝟙 ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).pt ≫ NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π (op (single a✝)) = NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π (op (single a✝)) [PROOFSTEP] dsimp [coneEquivInverse] [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) a✝ : ι ⊢ 𝟙 c.pt ≫ (Pi.lift fun i => NatTrans.app c.π (op (single i))) ≫ Pi.π (fun i => F.obj (op (U i))) a✝ = NatTrans.app c.π (op (single a✝)) [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) a✝¹ a✝ : ι ⊢ 𝟙 ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).pt ≫ NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π (op (Pairwise.pair a✝¹ a✝)) = NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π (op (Pairwise.pair a✝¹ a✝)) [PROOFSTEP] dsimp [coneEquivInverse] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) a✝¹ a✝ : ι ⊢ 𝟙 c.pt ≫ (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd))) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (a✝¹, a✝) = NatTrans.app c.π (op (Pairwise.pair a✝¹ a✝)) [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) j : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ 𝟙 ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π j = NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π j [PROOFSTEP] induction j using Opposite.rec' with | h j => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) j : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ 𝟙 ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π j = NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π j [PROOFSTEP] induction j using Opposite.rec' with | h j => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) j : CategoryTheory.Pairwise ι ⊢ 𝟙 ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π (op j) = NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π (op j) [PROOFSTEP] rcases j with ⟨⟩ [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) a✝ : ι ⊢ 𝟙 ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π (op (single a✝)) = NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π (op (single a✝)) [PROOFSTEP] dsimp [coneEquivInverse] [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) a✝ : ι ⊢ 𝟙 c.pt ≫ NatTrans.app c.π (op (single a✝)) = (Pi.lift fun i => NatTrans.app c.π (op (single i))) ≫ Pi.π (fun i => F.obj (op (U i))) a✝ [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) a✝¹ a✝ : ι ⊢ 𝟙 ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone ((diagram U).op ⋙ F))).obj c).π (op (Pairwise.pair a✝¹ a✝)) = NatTrans.app ((coneEquivFunctor F U ⋙ coneEquivInverse F U).obj c).π (op (Pairwise.pair a✝¹ a✝)) [PROOFSTEP] dsimp [coneEquivInverse] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone ((diagram U).op ⋙ F) a✝¹ a✝ : ι ⊢ 𝟙 c.pt ≫ NatTrans.app c.π (op (Pairwise.pair a✝¹ a✝)) = (Pi.lift fun b => NatTrans.app c.π (op (Pairwise.pair b.fst b.snd))) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (a✝¹, a✝) [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) ⊢ ∀ (j : WalkingParallelPair), 𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π j = NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π j [PROOFSTEP] rintro ⟨_ | _⟩ [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) ⊢ 𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π WalkingParallelPair.zero = NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π WalkingParallelPair.zero [PROOFSTEP] refine limit.hom_ext fun ⟨j⟩ => ?_ [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x✝ : Discrete ι j : ι ⊢ (𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π WalkingParallelPair.zero) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := j } = NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π WalkingParallelPair.zero ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := j } [PROOFSTEP] dsimp [coneEquivInverse] [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x✝ : Discrete ι j : ι ⊢ (𝟙 c.pt ≫ Fork.ι c) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := j } = (Pi.lift fun i => Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := j } [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) ⊢ 𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π WalkingParallelPair.one = NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π WalkingParallelPair.one [PROOFSTEP] refine limit.hom_ext fun ⟨i, j⟩ => ?_ [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt ≫ NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π WalkingParallelPair.one ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] dsimp [coneEquivInverse] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 c.pt ≫ NatTrans.app c.π WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = (Pi.lift fun b => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (b.fst, b.snd)) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) ⊢ ∀ (j : WalkingParallelPair), 𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt ≫ NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π j = NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π j [PROOFSTEP] rintro ⟨_ | _⟩ [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) ⊢ 𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt ≫ NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π WalkingParallelPair.zero = NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π WalkingParallelPair.zero [PROOFSTEP] refine limit.hom_ext fun ⟨j⟩ => ?_ [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x✝ : Discrete ι j : ι ⊢ (𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt ≫ NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π WalkingParallelPair.zero) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := j } = NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π WalkingParallelPair.zero ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := j } [PROOFSTEP] dsimp [coneEquivInverse] [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x✝ : Discrete ι j : ι ⊢ (𝟙 c.pt ≫ Pi.lift fun i => Fork.ι c ≫ Pi.π (fun i => F.obj (op (U i))) i) ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := j } = Fork.ι c ≫ limit.π (Discrete.functor fun i => F.obj (op (U i))) { as := j } [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) ⊢ 𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt ≫ NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π WalkingParallelPair.one = NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π WalkingParallelPair.one [PROOFSTEP] refine limit.hom_ext fun ⟨i, j⟩ => ?_ [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt ≫ NatTrans.app ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).π WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = NatTrans.app ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).π WalkingParallelPair.one ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] dsimp [coneEquivInverse] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c : Cone (SheafConditionEqualizerProducts.diagram F U) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 c.pt ≫ Pi.lift fun b => NatTrans.app c.π WalkingParallelPair.one ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (b.fst, b.snd)) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = NatTrans.app c.π WalkingParallelPair.one ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] simp only [Limits.Fan.mk_π_app, Category.id_comp, Limits.limit.lift_π] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c d : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ d ⊢ (coneEquivInverse F U ⋙ coneEquivFunctor F U).map f ≫ ((fun c => Iso.mk (ConeMorphism.mk (𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt)) (ConeMorphism.mk (𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt))) d).hom = ((fun c => Iso.mk (ConeMorphism.mk (𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt)) (ConeMorphism.mk (𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt))) c).hom ≫ (𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).map f [PROOFSTEP] ext [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c d : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ d ⊢ ((coneEquivInverse F U ⋙ coneEquivFunctor F U).map f ≫ ((fun c => Iso.mk (ConeMorphism.mk (𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt)) (ConeMorphism.mk (𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt))) d).hom).Hom = (((fun c => Iso.mk (ConeMorphism.mk (𝟙 ((coneEquivInverse F U ⋙ coneEquivFunctor F U).obj c).pt)) (ConeMorphism.mk (𝟙 ((𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).obj c).pt))) c).hom ≫ (𝟭 (Cone (SheafConditionEqualizerProducts.diagram F U))).map f).Hom [PROOFSTEP] dsimp [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X c d : Cone (SheafConditionEqualizerProducts.diagram F U) f : c ⟶ d ⊢ f.Hom ≫ 𝟙 d.pt = 𝟙 c.pt ≫ f.Hom [PROOFSTEP] simp only [Category.comp_id, Category.id_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) ⊢ ∀ (j : (CategoryTheory.Pairwise ι)ᵒᵖ), 𝟙 ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).pt ≫ NatTrans.app (F.mapCone (Cocone.op (cocone U))).π j = NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π j [PROOFSTEP] intro x [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) x : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ 𝟙 ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).pt ≫ NatTrans.app (F.mapCone (Cocone.op (cocone U))).π x = NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π x [PROOFSTEP] induction x with | h x => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) x : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ 𝟙 ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).pt ≫ NatTrans.app (F.mapCone (Cocone.op (cocone U))).π x = NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π x [PROOFSTEP] induction x with | h x => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) x : CategoryTheory.Pairwise ι ⊢ 𝟙 ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).pt ≫ NatTrans.app (F.mapCone (Cocone.op (cocone U))).π (op x) = NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π (op x) [PROOFSTEP] rcases x with ⟨⟩ [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝ : ι ⊢ 𝟙 ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).pt ≫ NatTrans.app (F.mapCone (Cocone.op (cocone U))).π (op (single a✝)) = NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π (op (single a✝)) [PROOFSTEP] simp [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝ : ι ⊢ F.map (coconeιApp U (single a✝)).op = F.map (leSupr U a✝).op [PROOFSTEP] rfl [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝¹ a✝ : ι ⊢ 𝟙 ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).pt ≫ NatTrans.app (F.mapCone (Cocone.op (cocone U))).π (op (Pairwise.pair a✝¹ a✝)) = NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π (op (Pairwise.pair a✝¹ a✝)) [PROOFSTEP] dsimp [coneEquivInverse, SheafConditionEqualizerProducts.res, SheafConditionEqualizerProducts.leftRes] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝¹ a✝ : ι ⊢ 𝟙 (F.obj (op (iSup U))) ≫ F.map (coconeιApp U (Pairwise.pair a✝¹ a✝)).op = ((Pi.lift fun i => F.map (leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (a✝¹, a✝) [PROOFSTEP] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝¹ a✝ : ι ⊢ F.map (coconeιApp U (Pairwise.pair a✝¹ a✝)).op = F.map (leSupr U a✝¹).op ≫ F.map (infLELeft (U a✝¹) (U a✝)).op [PROOFSTEP] rw [← F.map_comp] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝¹ a✝ : ι ⊢ F.map (coconeιApp U (Pairwise.pair a✝¹ a✝)).op = F.map ((leSupr U a✝¹).op ≫ (infLELeft (U a✝¹) (U a✝)).op) [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) ⊢ ∀ (j : (CategoryTheory.Pairwise ι)ᵒᵖ), 𝟙 (F.mapCone (Cocone.op (cocone U))).pt ≫ NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π j = NatTrans.app (F.mapCone (Cocone.op (cocone U))).π j [PROOFSTEP] intro x [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) x : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ 𝟙 (F.mapCone (Cocone.op (cocone U))).pt ≫ NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π x = NatTrans.app (F.mapCone (Cocone.op (cocone U))).π x [PROOFSTEP] induction x with | h x => ?_ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) x : (CategoryTheory.Pairwise ι)ᵒᵖ ⊢ 𝟙 (F.mapCone (Cocone.op (cocone U))).pt ≫ NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π x = NatTrans.app (F.mapCone (Cocone.op (cocone U))).π x [PROOFSTEP] induction x with | h x => ?_ [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) x : CategoryTheory.Pairwise ι ⊢ 𝟙 (F.mapCone (Cocone.op (cocone U))).pt ≫ NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π (op x) = NatTrans.app (F.mapCone (Cocone.op (cocone U))).π (op x) [PROOFSTEP] rcases x with ⟨⟩ [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝ : ι ⊢ 𝟙 (F.mapCone (Cocone.op (cocone U))).pt ≫ NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π (op (single a✝)) = NatTrans.app (F.mapCone (Cocone.op (cocone U))).π (op (single a✝)) [PROOFSTEP] simp [GOAL] case h.single C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝ : ι ⊢ F.map (leSupr U a✝).op = F.map (coconeιApp U (single a✝)).op [PROOFSTEP] rfl [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝¹ a✝ : ι ⊢ 𝟙 (F.mapCone (Cocone.op (cocone U))).pt ≫ NatTrans.app ((CategoryTheory.Equivalence.symm (coneEquiv F U)).functor.obj (SheafConditionEqualizerProducts.fork F U)).π (op (Pairwise.pair a✝¹ a✝)) = NatTrans.app (F.mapCone (Cocone.op (cocone U))).π (op (Pairwise.pair a✝¹ a✝)) [PROOFSTEP] dsimp [coneEquivInverse, SheafConditionEqualizerProducts.res, SheafConditionEqualizerProducts.leftRes] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝¹ a✝ : ι ⊢ 𝟙 (F.obj (op (iSup U))) ≫ ((Pi.lift fun i => F.map (leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ Pi.π (fun p => F.obj (op (U p.fst ⊓ U p.snd))) (a✝¹, a✝) = F.map (coconeιApp U (Pairwise.pair a✝¹ a✝)).op [PROOFSTEP] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝¹ a✝ : ι ⊢ F.map (leSupr U a✝¹).op ≫ F.map (infLELeft (U a✝¹) (U a✝)).op = F.map (coconeιApp U (Pairwise.pair a✝¹ a✝)).op [PROOFSTEP] rw [← F.map_comp] [GOAL] case h.pair C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X P : IsLimit (SheafConditionEqualizerProducts.fork F U) a✝¹ a✝ : ι ⊢ F.map ((leSupr U a✝¹).op ≫ (infLELeft (U a✝¹) (U a✝)).op) = F.map (coconeιApp U (Pairwise.pair a✝¹ a✝)).op [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) ⊢ ∀ (j : WalkingParallelPair), 𝟙 ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).pt ≫ NatTrans.app (SheafConditionEqualizerProducts.fork F U).π j = NatTrans.app ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).π j [PROOFSTEP] rintro ⟨⟩ [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) ⊢ 𝟙 ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).pt ≫ NatTrans.app (SheafConditionEqualizerProducts.fork F U).π WalkingParallelPair.zero = NatTrans.app ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).π WalkingParallelPair.zero [PROOFSTEP] simp [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) ⊢ SheafConditionEqualizerProducts.res F U = Pi.lift fun i => F.map (coconeιApp U (single i)).op [PROOFSTEP] rfl [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) ⊢ 𝟙 ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).pt ≫ NatTrans.app (SheafConditionEqualizerProducts.fork F U).π WalkingParallelPair.one = NatTrans.app ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).π WalkingParallelPair.one [PROOFSTEP] refine limit.hom_ext fun ⟨i, j⟩ => ?_ [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).pt ≫ NatTrans.app (SheafConditionEqualizerProducts.fork F U).π WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = NatTrans.app ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).π WalkingParallelPair.one ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] dsimp [coneEquivInverse, SheafConditionEqualizerProducts.res, SheafConditionEqualizerProducts.leftRes] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 (F.obj (op (iSup U))) ≫ (Pi.lift fun i => F.map (leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = (Pi.lift fun b => F.map (coconeιApp U (Pairwise.pair b.fst b.snd)).op) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) x✝ : Discrete (ι × ι) i j : ι ⊢ F.map (leSupr U i).op ≫ F.map (infLELeft (U i) (U j)).op = F.map (coconeιApp U (Pairwise.pair i j)).op [PROOFSTEP] rw [← F.map_comp] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) x✝ : Discrete (ι × ι) i j : ι ⊢ F.map ((leSupr U i).op ≫ (infLELeft (U i) (U j)).op) = F.map (coconeιApp U (Pairwise.pair i j)).op [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) ⊢ ∀ (j : WalkingParallelPair), 𝟙 (SheafConditionEqualizerProducts.fork F U).pt ≫ NatTrans.app ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).π j = NatTrans.app (SheafConditionEqualizerProducts.fork F U).π j [PROOFSTEP] rintro ⟨⟩ [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) ⊢ 𝟙 (SheafConditionEqualizerProducts.fork F U).pt ≫ NatTrans.app ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).π WalkingParallelPair.zero = NatTrans.app (SheafConditionEqualizerProducts.fork F U).π WalkingParallelPair.zero [PROOFSTEP] simp [GOAL] case zero C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) ⊢ (Pi.lift fun i => F.map (coconeιApp U (single i)).op) = SheafConditionEqualizerProducts.res F U [PROOFSTEP] rfl [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) ⊢ 𝟙 (SheafConditionEqualizerProducts.fork F U).pt ≫ NatTrans.app ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).π WalkingParallelPair.one = NatTrans.app (SheafConditionEqualizerProducts.fork F U).π WalkingParallelPair.one [PROOFSTEP] refine limit.hom_ext fun ⟨i, j⟩ => ?_ [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 (SheafConditionEqualizerProducts.fork F U).pt ≫ NatTrans.app ((coneEquiv F U).functor.obj (F.mapCone (Cocone.op (cocone U)))).π WalkingParallelPair.one) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = NatTrans.app (SheafConditionEqualizerProducts.fork F U).π WalkingParallelPair.one ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] dsimp [coneEquivInverse, SheafConditionEqualizerProducts.res, SheafConditionEqualizerProducts.leftRes] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) x✝ : Discrete (ι × ι) i j : ι ⊢ (𝟙 (F.obj (op (iSup U))) ≫ Pi.lift fun b => F.map (coconeιApp U (Pairwise.pair b.fst b.snd)).op) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } = ((Pi.lift fun i => F.map (leSupr U i).op) ≫ Pi.lift fun p => Pi.π (fun i => F.obj (op (U i))) p.fst ≫ F.map (infLELeft (U p.fst) (U p.snd)).op) ≫ limit.π (Discrete.functor fun p => F.obj (op (U p.fst ⊓ U p.snd))) { as := (i, j) } [PROOFSTEP] simp only [limit.lift_π, limit.lift_π_assoc, Category.id_comp, Fan.mk_π_app, Category.assoc] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) x✝ : Discrete (ι × ι) i j : ι ⊢ F.map (coconeιApp U (Pairwise.pair i j)).op = F.map (leSupr U i).op ≫ F.map (infLELeft (U i) (U j)).op [PROOFSTEP] rw [← F.map_comp] [GOAL] case one C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasProducts C X : TopCat F : Presheaf C X ι : Type v' U : ι → Opens ↑X Q : IsLimit (F.mapCone (Cocone.op (cocone U))) x✝ : Discrete (ι × ι) i j : ι ⊢ F.map (coconeιApp U (Pairwise.pair i j)).op = F.map ((leSupr U i).op ≫ (infLELeft (U i) (U j)).op) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.Sheaves.SheafCondition.EqualizerProducts", "llama_tokens": 49285}
[GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i ⊢ IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} [PROOFSTEP] classical -- The limit cone for `F` whose topology is defined as an infimum. let D := limitConeInfi F let E : C.pt ≅ D.pt := hC.conePointUniqueUpToIso (limitConeInfiIsLimit _) have hE : Inducing E.hom := (TopCat.homeoOfIso E).inducing suffices IsTopologicalBasis {U : Set D.pt | ∃ (j : _) (V : Set (F.obj j)), V ∈ T j ∧ U = D.π.app j ⁻¹' V} by convert this.inducing hE ext U0 constructor · rintro ⟨j, V, hV, rfl⟩ refine' ⟨D.π.app j ⁻¹' V, ⟨j, V, hV, rfl⟩, rfl⟩ · rintro ⟨W, ⟨j, V, hV, rfl⟩, rfl⟩ refine' ⟨j, V, hV, rfl⟩ -- Using `D`, we can apply the characterization of the topological basis of a -- topology defined as an infimum... convert isTopologicalBasis_iInf hT fun j (x : D.pt) => D.π.app j x using 1 ext U0 constructor · rintro ⟨j, V, hV, rfl⟩ let U : ∀ i, Set (F.obj i) := fun i => if h : i = j then by rw [h]; exact V else Set.univ refine' ⟨U, { j }, _, _⟩ · rintro i h rw [Finset.mem_singleton] at h dsimp rw [dif_pos h] subst h exact hV · dsimp simp · rintro ⟨U, G, h1, h2⟩ obtain ⟨j, hj⟩ := IsCofiltered.inf_objs_exists G let g : ∀ (e) (_he : e ∈ G), j ⟶ e := fun _ he => (hj he).some let Vs : J → Set (F.obj j) := fun e => if h : e ∈ G then F.map (g e h) ⁻¹' U e else Set.univ let V : Set (F.obj j) := ⋂ (e : J) (_he : e ∈ G), Vs e refine' ⟨j, V, _, _⟩ · -- An intermediate claim used to apply induction along `G : Finset J` later on. have : ∀ (S : Set (Set (F.obj j))) (E : Finset J) (P : J → Set (F.obj j)) (_univ : Set.univ ∈ S) (_inter : ∀ A B : Set (F.obj j), A ∈ S → B ∈ S → A ∩ B ∈ S) (_cond : ∀ (e : J) (_he : e ∈ E), P e ∈ S), (⋂ (e) (_he : e ∈ E), P e) ∈ S := by intro S E induction E using Finset.induction_on with | empty => intro P he _hh simpa | @insert a E _ha hh1 => intro hh2 hh3 hh4 hh5 rw [Finset.set_biInter_insert] refine' hh4 _ _ (hh5 _ (Finset.mem_insert_self _ _)) (hh1 _ hh3 hh4 _) intro e he exact hh5 e (Finset.mem_insert_of_mem he) -- use the intermediate claim to finish off the goal using `univ` and `inter`. refine' this _ _ _ (univ _) (inter _) _ intro e he dsimp rw [dif_pos he] exact compat j e (g e he) (U e) (h1 e he) · -- conclude... rw [h2] change _ = (D.π.app j) ⁻¹' ⋂ (e : J) (_ : e ∈ G), Vs e rw [Set.preimage_iInter] apply congrArg ext1 e erw [Set.preimage_iInter] apply congrArg ext1 he change (D.π.app e) ⁻¹' U e = (D.π.app j) ⁻¹' if h : e ∈ G then F.map (g e h) ⁻¹' U e else Set.univ rw [dif_pos he, ← Set.preimage_comp] apply congrFun apply congrArg rw [← coe_comp, D.w] rfl [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i ⊢ IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} [PROOFSTEP] let D := limitConeInfi F [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F ⊢ IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} [PROOFSTEP] let E : C.pt ≅ D.pt := hC.conePointUniqueUpToIso (limitConeInfiIsLimit _) [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) ⊢ IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} [PROOFSTEP] have hE : Inducing E.hom := (TopCat.homeoOfIso E).inducing [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom ⊢ IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} [PROOFSTEP] suffices IsTopologicalBasis {U : Set D.pt | ∃ (j : _) (V : Set (F.obj j)), V ∈ T j ∧ U = D.π.app j ⁻¹' V} by convert this.inducing hE ext U0 constructor · rintro ⟨j, V, hV, rfl⟩ refine' ⟨D.π.app j ⁻¹' V, ⟨j, V, hV, rfl⟩, rfl⟩ · rintro ⟨W, ⟨j, V, hV, rfl⟩, rfl⟩ refine' ⟨j, V, hV, rfl⟩ -- Using `D`, we can apply the characterization of the topological basis of a -- topology defined as an infimum... [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom this : IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} ⊢ IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} [PROOFSTEP] convert this.inducing hE [GOAL] case h.e'_3.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom this : IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} e_1✝ : ↑C.pt = (forget TopCat).obj C.pt ⊢ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} = Set.preimage ↑E.hom '' {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] ext U0 [GOAL] case h.e'_3.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom this : IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} e_1✝ : ↑C.pt = (forget TopCat).obj C.pt U0 : Set ↑C.pt ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} ↔ U0 ∈ Set.preimage ↑E.hom '' {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] constructor [GOAL] case h.e'_3.h.h.mp J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom this : IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} e_1✝ : ↑C.pt = (forget TopCat).obj C.pt U0 : Set ↑C.pt ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} → U0 ∈ Set.preimage ↑E.hom '' {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] rintro ⟨j, V, hV, rfl⟩ [GOAL] case h.e'_3.h.h.mp.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom this : IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} e_1✝ : ↑C.pt = (forget TopCat).obj C.pt j : J V : Set ↑(F.obj j) hV : V ∈ T j ⊢ ↑(NatTrans.app C.π j) ⁻¹' V ∈ Set.preimage ↑E.hom '' {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] refine' ⟨D.π.app j ⁻¹' V, ⟨j, V, hV, rfl⟩, rfl⟩ [GOAL] case h.e'_3.h.h.mpr J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom this : IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} e_1✝ : ↑C.pt = (forget TopCat).obj C.pt U0 : Set ↑C.pt ⊢ U0 ∈ Set.preimage ↑E.hom '' {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} → U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} [PROOFSTEP] rintro ⟨W, ⟨j, V, hV, rfl⟩, rfl⟩ [GOAL] case h.e'_3.h.h.mpr.intro.intro.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom this : IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} e_1✝ : ↑C.pt = (forget TopCat).obj C.pt j : J V : Set ↑(F.obj j) hV : V ∈ T j ⊢ ↑E.hom ⁻¹' (↑(NatTrans.app D.π j) ⁻¹' V) ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app C.π j) ⁻¹' V} [PROOFSTEP] refine' ⟨j, V, hV, rfl⟩ -- Using `D`, we can apply the characterization of the topological basis of a -- topology defined as an infimum... [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom ⊢ IsTopologicalBasis {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] convert isTopologicalBasis_iInf hT fun j (x : D.pt) => D.π.app j x using 1 [GOAL] case h.e'_3 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom ⊢ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} = {S | ∃ U F_1, (∀ (i : J), i ∈ F_1 → U i ∈ T i) ∧ S = ⋂ (i : J) (_ : i ∈ F_1), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i} [PROOFSTEP] ext U0 [GOAL] case h.e'_3.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} ↔ U0 ∈ {S | ∃ U F_1, (∀ (i : J), i ∈ F_1 → U i ∈ T i) ∧ S = ⋂ (i : J) (_ : i ∈ F_1), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i} [PROOFSTEP] constructor [GOAL] case h.e'_3.h.mp J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} → U0 ∈ {S | ∃ U F_1, (∀ (i : J), i ∈ F_1 → U i ∈ T i) ∧ S = ⋂ (i : J) (_ : i ∈ F_1), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i} [PROOFSTEP] rintro ⟨j, V, hV, rfl⟩ [GOAL] case h.e'_3.h.mp.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j ⊢ ↑(NatTrans.app D.π j) ⁻¹' V ∈ {S | ∃ U F_1, (∀ (i : J), i ∈ F_1 → U i ∈ T i) ∧ S = ⋂ (i : J) (_ : i ∈ F_1), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i} [PROOFSTEP] let U : ∀ i, Set (F.obj i) := fun i => if h : i = j then by rw [h]; exact V else Set.univ [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j i : J h : i = j ⊢ Set ↑(F.obj i) [PROOFSTEP] rw [h] [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j i : J h : i = j ⊢ Set ↑(F.obj j) [PROOFSTEP] exact V [GOAL] case h.e'_3.h.mp.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j U : (i : J) → Set ↑(F.obj i) := fun i => if h : i = j then Eq.mpr (_ : Set ↑(F.obj i) = Set ↑(F.obj j)) V else Set.univ ⊢ ↑(NatTrans.app D.π j) ⁻¹' V ∈ {S | ∃ U F_1, (∀ (i : J), i ∈ F_1 → U i ∈ T i) ∧ S = ⋂ (i : J) (_ : i ∈ F_1), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i} [PROOFSTEP] refine' ⟨U, { j }, _, _⟩ [GOAL] case h.e'_3.h.mp.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j U : (i : J) → Set ↑(F.obj i) := fun i => if h : i = j then Eq.mpr (_ : Set ↑(F.obj i) = Set ↑(F.obj j)) V else Set.univ ⊢ ∀ (i : J), i ∈ {j} → U i ∈ T i [PROOFSTEP] rintro i h [GOAL] case h.e'_3.h.mp.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j U : (i : J) → Set ↑(F.obj i) := fun i => if h : i = j then Eq.mpr (_ : Set ↑(F.obj i) = Set ↑(F.obj j)) V else Set.univ i : J h : i ∈ {j} ⊢ U i ∈ T i [PROOFSTEP] rw [Finset.mem_singleton] at h [GOAL] case h.e'_3.h.mp.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j U : (i : J) → Set ↑(F.obj i) := fun i => if h : i = j then Eq.mpr (_ : Set ↑(F.obj i) = Set ↑(F.obj j)) V else Set.univ i : J h : i = j ⊢ U i ∈ T i [PROOFSTEP] dsimp [GOAL] case h.e'_3.h.mp.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j U : (i : J) → Set ↑(F.obj i) := fun i => if h : i = j then Eq.mpr (_ : Set ↑(F.obj i) = Set ↑(F.obj j)) V else Set.univ i : J h : i = j ⊢ (if h : i = j then cast (_ : Set ↑(F.obj j) = Set ↑(F.obj i)) V else Set.univ) ∈ T i [PROOFSTEP] rw [dif_pos h] [GOAL] case h.e'_3.h.mp.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j U : (i : J) → Set ↑(F.obj i) := fun i => if h : i = j then Eq.mpr (_ : Set ↑(F.obj i) = Set ↑(F.obj j)) V else Set.univ i : J h : i = j ⊢ cast (_ : Set ↑(F.obj j) = Set ↑(F.obj i)) V ∈ T i [PROOFSTEP] subst h [GOAL] case h.e'_3.h.mp.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom i : J V : Set ↑(F.obj i) hV : V ∈ T i U : (i : J) → Set ↑(F.obj i) := fun i_1 => if h : i_1 = i then Eq.mpr (_ : Set ↑(F.obj i_1) = Set ↑(F.obj i)) V else Set.univ ⊢ cast (_ : Set ↑(F.obj i) = Set ↑(F.obj i)) V ∈ T i [PROOFSTEP] exact hV [GOAL] case h.e'_3.h.mp.intro.intro.intro.refine'_2 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j U : (i : J) → Set ↑(F.obj i) := fun i => if h : i = j then Eq.mpr (_ : Set ↑(F.obj i) = Set ↑(F.obj j)) V else Set.univ ⊢ ↑(NatTrans.app D.π j) ⁻¹' V = ⋂ (i : J) (_ : i ∈ {j}), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i [PROOFSTEP] dsimp [GOAL] case h.e'_3.h.mp.intro.intro.intro.refine'_2 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom j : J V : Set ↑(F.obj j) hV : V ∈ T j U : (i : J) → Set ↑(F.obj i) := fun i => if h : i = j then Eq.mpr (_ : Set ↑(F.obj i) = Set ↑(F.obj j)) V else Set.univ ⊢ ↑(NatTrans.app (limitConeInfi F).π j) ⁻¹' V = ⋂ (i : J) (_ : i ∈ {j}), (fun x => ↑(NatTrans.app (limitConeInfi F).π i) x) ⁻¹' if h : i = j then cast (_ : Set ↑(F.obj j) = Set ↑(F.obj i)) V else Set.univ [PROOFSTEP] simp [GOAL] case h.e'_3.h.mpr J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt ⊢ U0 ∈ {S | ∃ U F_1, (∀ (i : J), i ∈ F_1 → U i ∈ T i) ∧ S = ⋂ (i : J) (_ : i ∈ F_1), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i} → U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] rintro ⟨U, G, h1, h2⟩ [GOAL] case h.e'_3.h.mpr.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] obtain ⟨j, hj⟩ := IsCofiltered.inf_objs_exists G [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] let g : ∀ (e) (_he : e ∈ G), j ⟶ e := fun _ he => (hj he).some [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] let Vs : J → Set (F.obj j) := fun e => if h : e ∈ G then F.map (g e h) ⁻¹' U e else Set.univ [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] let V : Set (F.obj j) := ⋂ (e : J) (_he : e ∈ G), Vs e [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e ⊢ U0 ∈ {U | ∃ j V, V ∈ T j ∧ U = ↑(NatTrans.app D.π j) ⁻¹' V} [PROOFSTEP] refine' ⟨j, V, _, _⟩ [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e ⊢ V ∈ T j [PROOFSTEP] have : ∀ (S : Set (Set (F.obj j))) (E : Finset J) (P : J → Set (F.obj j)) (_univ : Set.univ ∈ S) (_inter : ∀ A B : Set (F.obj j), A ∈ S → B ∈ S → A ∩ B ∈ S) (_cond : ∀ (e : J) (_he : e ∈ E), P e ∈ S), (⋂ (e) (_he : e ∈ E), P e) ∈ S := by intro S E induction E using Finset.induction_on with | empty => intro P he _hh simpa | @insert a E _ha hh1 => intro hh2 hh3 hh4 hh5 rw [Finset.set_biInter_insert] refine' hh4 _ _ (hh5 _ (Finset.mem_insert_self _ _)) (hh1 _ hh3 hh4 _) intro e he exact hh5 e (Finset.mem_insert_of_mem he) -- use the intermediate claim to finish off the goal using `univ` and `inter`. [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e ⊢ ∀ (S : Set (Set ↑(F.obj j))) (E : Finset J) (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S [PROOFSTEP] intro S E [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E✝ : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E✝.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) E : Finset J ⊢ ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S [PROOFSTEP] induction E using Finset.induction_on with | empty => intro P he _hh simpa | @insert a E _ha hh1 => intro hh2 hh3 hh4 hh5 rw [Finset.set_biInter_insert] refine' hh4 _ _ (hh5 _ (Finset.mem_insert_self _ _)) (hh1 _ hh3 hh4 _) intro e he exact hh5 e (Finset.mem_insert_of_mem he) -- use the intermediate claim to finish off the goal using `univ` and `inter`. [GOAL] J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E✝ : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E✝.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) E : Finset J ⊢ ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S [PROOFSTEP] induction E using Finset.induction_on with | empty => intro P he _hh simpa | @insert a E _ha hh1 => intro hh2 hh3 hh4 hh5 rw [Finset.set_biInter_insert] refine' hh4 _ _ (hh5 _ (Finset.mem_insert_self _ _)) (hh1 _ hh3 hh4 _) intro e he exact hh5 e (Finset.mem_insert_of_mem he) -- use the intermediate claim to finish off the goal using `univ` and `inter`. [GOAL] case empty J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) ⊢ ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ ∅ → P e ∈ S) → ⋂ (e : J) (_ : e ∈ ∅), P e ∈ S [PROOFSTEP] | empty => intro P he _hh simpa [GOAL] case empty J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) ⊢ ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ ∅ → P e ∈ S) → ⋂ (e : J) (_ : e ∈ ∅), P e ∈ S [PROOFSTEP] intro P he _hh [GOAL] case empty J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) P : J → Set ↑(F.obj j) he : Set.univ ∈ S _hh : ∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S ⊢ (∀ (e : J), e ∈ ∅ → P e ∈ S) → ⋂ (e : J) (_ : e ∈ ∅), P e ∈ S [PROOFSTEP] simpa [GOAL] case insert J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E✝ : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E✝.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) a : J E : Finset J _ha : ¬a ∈ E hh1 : ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S ⊢ ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ insert a E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ insert a E), P e ∈ S [PROOFSTEP] | @insert a E _ha hh1 => intro hh2 hh3 hh4 hh5 rw [Finset.set_biInter_insert] refine' hh4 _ _ (hh5 _ (Finset.mem_insert_self _ _)) (hh1 _ hh3 hh4 _) intro e he exact hh5 e (Finset.mem_insert_of_mem he) -- use the intermediate claim to finish off the goal using `univ` and `inter`. [GOAL] case insert J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E✝ : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E✝.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) a : J E : Finset J _ha : ¬a ∈ E hh1 : ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S ⊢ ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ insert a E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ insert a E), P e ∈ S [PROOFSTEP] intro hh2 hh3 hh4 hh5 [GOAL] case insert J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E✝ : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E✝.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) a : J E : Finset J _ha : ¬a ∈ E hh1 : ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S hh2 : J → Set ↑(F.obj j) hh3 : Set.univ ∈ S hh4 : ∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S hh5 : ∀ (e : J), e ∈ insert a E → hh2 e ∈ S ⊢ ⋂ (e : J) (_ : e ∈ insert a E), hh2 e ∈ S [PROOFSTEP] rw [Finset.set_biInter_insert] [GOAL] case insert J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E✝ : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E✝.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) a : J E : Finset J _ha : ¬a ∈ E hh1 : ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S hh2 : J → Set ↑(F.obj j) hh3 : Set.univ ∈ S hh4 : ∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S hh5 : ∀ (e : J), e ∈ insert a E → hh2 e ∈ S ⊢ hh2 a ∩ ⋂ (x : J) (_ : x ∈ E), hh2 x ∈ S [PROOFSTEP] refine' hh4 _ _ (hh5 _ (Finset.mem_insert_self _ _)) (hh1 _ hh3 hh4 _) [GOAL] case insert J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E✝ : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E✝.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) a : J E : Finset J _ha : ¬a ∈ E hh1 : ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S hh2 : J → Set ↑(F.obj j) hh3 : Set.univ ∈ S hh4 : ∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S hh5 : ∀ (e : J), e ∈ insert a E → hh2 e ∈ S ⊢ ∀ (e : J), e ∈ E → hh2 e ∈ S [PROOFSTEP] intro e he [GOAL] case insert J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E✝ : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E✝.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e S : Set (Set ↑(F.obj j)) a : J E : Finset J _ha : ¬a ∈ E hh1 : ∀ (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S hh2 : J → Set ↑(F.obj j) hh3 : Set.univ ∈ S hh4 : ∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S hh5 : ∀ (e : J), e ∈ insert a E → hh2 e ∈ S e : J he : e ∈ E ⊢ hh2 e ∈ S [PROOFSTEP] exact hh5 e (Finset.mem_insert_of_mem he) -- use the intermediate claim to finish off the goal using `univ` and `inter`. [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e this : ∀ (S : Set (Set ↑(F.obj j))) (E : Finset J) (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S ⊢ V ∈ T j [PROOFSTEP] refine' this _ _ _ (univ _) (inter _) _ [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e this : ∀ (S : Set (Set ↑(F.obj j))) (E : Finset J) (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S ⊢ ∀ (e : J), e ∈ G → Vs e ∈ T j [PROOFSTEP] intro e he [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e this : ∀ (S : Set (Set ↑(F.obj j))) (E : Finset J) (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S e : J he : e ∈ G ⊢ Vs e ∈ T j [PROOFSTEP] dsimp [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e this : ∀ (S : Set (Set ↑(F.obj j))) (E : Finset J) (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S e : J he : e ∈ G ⊢ (if h : e ∈ G then ↑(F.map (Nonempty.some (_ : Nonempty (j ⟶ e)))) ⁻¹' U e else Set.univ) ∈ T j [PROOFSTEP] rw [dif_pos he] [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_1 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e this : ∀ (S : Set (Set ↑(F.obj j))) (E : Finset J) (P : J → Set ↑(F.obj j)), Set.univ ∈ S → (∀ (A B : Set ↑(F.obj j)), A ∈ S → B ∈ S → A ∩ B ∈ S) → (∀ (e : J), e ∈ E → P e ∈ S) → ⋂ (e : J) (_ : e ∈ E), P e ∈ S e : J he : e ∈ G ⊢ ↑(F.map (Nonempty.some (_ : Nonempty (j ⟶ e)))) ⁻¹' U e ∈ T j [PROOFSTEP] exact compat j e (g e he) (U e) (h1 e he) [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e ⊢ U0 = ↑(NatTrans.app D.π j) ⁻¹' V [PROOFSTEP] rw [h2] [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e ⊢ ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i = ↑(NatTrans.app D.π j) ⁻¹' V [PROOFSTEP] change _ = (D.π.app j) ⁻¹' ⋂ (e : J) (_ : e ∈ G), Vs e [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e ⊢ ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i = ↑(NatTrans.app D.π j) ⁻¹' ⋂ (e : J) (_ : e ∈ G), Vs e [PROOFSTEP] rw [Set.preimage_iInter] [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2 J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e ⊢ ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i = ⋂ (i : J), ↑(NatTrans.app D.π j) ⁻¹' ⋂ (_ : i ∈ G), Vs i [PROOFSTEP] apply congrArg [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e ⊢ (fun i => ⋂ (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i) = fun i => ↑(NatTrans.app D.π j) ⁻¹' ⋂ (_ : i ∈ G), Vs i [PROOFSTEP] ext1 e [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J ⊢ ⋂ (_ : e ∈ G), (fun x => ↑(NatTrans.app D.π e) x) ⁻¹' U e = ↑(NatTrans.app D.π j) ⁻¹' ⋂ (_ : e ∈ G), Vs e [PROOFSTEP] erw [Set.preimage_iInter] [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J ⊢ ⋂ (_ : e ∈ G), (fun x => ↑(NatTrans.app D.π e) x) ⁻¹' U e = ⋂ (_ : e ∈ G), ↑(NatTrans.app D.π j) ⁻¹' Vs e [PROOFSTEP] apply congrArg [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J ⊢ (fun x => (fun x => ↑(NatTrans.app D.π e) x) ⁻¹' U e) = fun i => ↑(NatTrans.app D.π j) ⁻¹' Vs e [PROOFSTEP] ext1 he [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J he : e ∈ G ⊢ (fun x => ↑(NatTrans.app D.π e) x) ⁻¹' U e = ↑(NatTrans.app D.π j) ⁻¹' Vs e [PROOFSTEP] change (D.π.app e) ⁻¹' U e = (D.π.app j) ⁻¹' if h : e ∈ G then F.map (g e h) ⁻¹' U e else Set.univ [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J he : e ∈ G ⊢ ↑(NatTrans.app D.π e) ⁻¹' U e = ↑(NatTrans.app D.π j) ⁻¹' if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ [PROOFSTEP] rw [dif_pos he, ← Set.preimage_comp] [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J he : e ∈ G ⊢ ↑(NatTrans.app D.π e) ⁻¹' U e = ↑(F.map (g e he)) ∘ ↑(NatTrans.app D.π j) ⁻¹' U e [PROOFSTEP] apply congrFun [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h.h.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J he : e ∈ G ⊢ Set.preimage ↑(NatTrans.app D.π e) = Set.preimage (↑(F.map (g e he)) ∘ ↑(NatTrans.app D.π j)) [PROOFSTEP] apply congrArg [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h.h.h.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J he : e ∈ G ⊢ ↑(NatTrans.app D.π e) = ↑(F.map (g e he)) ∘ ↑(NatTrans.app D.π j) [PROOFSTEP] rw [← coe_comp, D.w] [GOAL] case h.e'_3.h.mpr.intro.intro.intro.intro.refine'_2.h.h.h.h.h.h J : Type v inst✝¹ : SmallCategory J inst✝ : IsCofiltered J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C T : (j : J) → Set (Set ↑(F.obj j)) hT : ∀ (j : J), IsTopologicalBasis (T j) univ : ∀ (i : J), Set.univ ∈ T i inter : ∀ (i : J) (U1 U2 : Set ↑(F.obj i)), U1 ∈ T i → U2 ∈ T i → U1 ∩ U2 ∈ T i compat : ∀ (i j : J) (f : i ⟶ j) (V : Set ↑(F.obj j)), V ∈ T j → ↑(F.map f) ⁻¹' V ∈ T i D : Cone F := limitConeInfi F E : C.pt ≅ D.pt := IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F) hE : Inducing ↑E.hom U0 : Set ↑D.pt U : (i : J) → Set ↑(F.obj i) G : Finset J h1 : ∀ (i : J), i ∈ G → U i ∈ T i h2 : U0 = ⋂ (i : J) (_ : i ∈ G), (fun x => ↑(NatTrans.app D.π i) x) ⁻¹' U i j : J hj : ∀ {X : J}, X ∈ G → Nonempty (j ⟶ X) g : (e : J) → e ∈ G → (j ⟶ e) := fun x he => Nonempty.some (_ : Nonempty (j ⟶ x)) Vs : J → Set ↑(F.obj j) := fun e => if h : e ∈ G then ↑(F.map (g e h)) ⁻¹' U e else Set.univ V : Set ↑(F.obj j) := ⋂ (e : J) (_ : e ∈ G), Vs e e : J he : e ∈ G ⊢ ↑(NatTrans.app D.π e) = ↑(NatTrans.app D.π e) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.Limits.Cofiltered", "llama_tokens": 39302}
{"mathlib_filename": "Mathlib.Lean.LocalContext", "llama_tokens": 0}
[GOAL] α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y : α ⊢ IsSemiringHom _root_.id [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y : α ⊢ _root_.id 0 = 0 [PROOFSTEP] intros [GOAL] case refine'_2 α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y : α ⊢ _root_.id 1 = 1 [PROOFSTEP] intros [GOAL] case refine'_3 α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y : α ⊢ ∀ (x y : α), _root_.id (x + y) = _root_.id x + _root_.id y [PROOFSTEP] intros [GOAL] case refine'_4 α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y : α ⊢ ∀ (x y : α), _root_.id (x * y) = _root_.id x * _root_.id y [PROOFSTEP] intros [GOAL] case refine'_1 α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y : α ⊢ _root_.id 0 = 0 [PROOFSTEP] rfl [GOAL] case refine'_2 α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y : α ⊢ _root_.id 1 = 1 [PROOFSTEP] rfl [GOAL] case refine'_3 α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y x✝ y✝ : α ⊢ _root_.id (x✝ + y✝) = _root_.id x✝ + _root_.id y✝ [PROOFSTEP] rfl [GOAL] case refine'_4 α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf : IsSemiringHom f x y x✝ y✝ : α ⊢ _root_.id (x✝ * y✝) = _root_.id x✝ * _root_.id y✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v inst✝² : Semiring α inst✝¹ : Semiring β f : α → β hf✝ : IsSemiringHom f x y : α hf : IsSemiringHom f γ : Type u_1 inst✝ : Semiring γ g : β → γ hg : IsSemiringHom g ⊢ (g ∘ f) 0 = 0 [PROOFSTEP] simpa [map_zero hf] using map_zero hg [GOAL] α : Type u β : Type v inst✝² : Semiring α inst✝¹ : Semiring β f : α → β hf✝ : IsSemiringHom f x y : α hf : IsSemiringHom f γ : Type u_1 inst✝ : Semiring γ g : β → γ hg : IsSemiringHom g ⊢ (g ∘ f) 1 = 1 [PROOFSTEP] simpa [map_one hf] using map_one hg [GOAL] α : Type u β : Type v inst✝² : Semiring α inst✝¹ : Semiring β f : α → β hf✝ : IsSemiringHom f x✝ y✝ : α hf : IsSemiringHom f γ : Type u_1 inst✝ : Semiring γ g : β → γ hg : IsSemiringHom g x y : α ⊢ (g ∘ f) (x + y) = (g ∘ f) x + (g ∘ f) y [PROOFSTEP] simp [map_add hf, map_add hg] [GOAL] α : Type u β : Type v inst✝² : Semiring α inst✝¹ : Semiring β f : α → β hf✝ : IsSemiringHom f x✝ y✝ : α hf : IsSemiringHom f γ : Type u_1 inst✝ : Semiring γ g : β → γ hg : IsSemiringHom g x y : α ⊢ (g ∘ f) (x * y) = (g ∘ f) x * (g ∘ f) y [PROOFSTEP] simp [map_mul hf, map_mul hg] [GOAL] α : Type u β : Type v inst✝¹ : Semiring α inst✝ : Semiring β f : α → β hf✝ : IsSemiringHom f x y : α hf : IsSemiringHom f src✝ : IsSemiringHom f := hf ⊢ ∀ (x y : α), f (x + y) = f x + f y [PROOFSTEP] apply @‹IsSemiringHom f›.map_add [GOAL] α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f ⊢ f 0 = f (0 + 0) - f 0 [PROOFSTEP] rw [hf.map_add] [GOAL] α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f ⊢ f 0 = f 0 + f 0 - f 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f ⊢ f (0 + 0) - f 0 = 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f ⊢ f (-x) = f (-x + x) - f x [PROOFSTEP] rw [hf.map_add] [GOAL] α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f ⊢ f (-x) = f (-x) + f x - f x [PROOFSTEP] simp [GOAL] α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f ⊢ f (-x + x) - f x = -f x [PROOFSTEP] simp [hf.map_zero] [GOAL] α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f ⊢ f (x - y) = f x - f y [PROOFSTEP] simp [sub_eq_add_neg, hf.map_add, hf.map_neg] [GOAL] α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf : IsRingHom f x y : α ⊢ IsRingHom _root_.id [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf : IsRingHom f x y : α ⊢ _root_.id 1 = 1 [PROOFSTEP] intros [GOAL] case refine'_2 α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf : IsRingHom f x y : α ⊢ ∀ (x y : α), _root_.id (x * y) = _root_.id x * _root_.id y [PROOFSTEP] intros [GOAL] case refine'_3 α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf : IsRingHom f x y : α ⊢ ∀ (x y : α), _root_.id (x + y) = _root_.id x + _root_.id y [PROOFSTEP] intros [GOAL] case refine'_1 α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf : IsRingHom f x y : α ⊢ _root_.id 1 = 1 [PROOFSTEP] rfl [GOAL] case refine'_2 α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf : IsRingHom f x y x✝ y✝ : α ⊢ _root_.id (x✝ * y✝) = _root_.id x✝ * _root_.id y✝ [PROOFSTEP] rfl [GOAL] case refine'_3 α : Type u β : Type v inst✝¹ : Ring α inst✝ : Ring β f : α → β hf : IsRingHom f x y x✝ y✝ : α ⊢ _root_.id (x✝ + y✝) = _root_.id x✝ + _root_.id y✝ [PROOFSTEP] rfl [GOAL] α : Type u β : Type v inst✝² : Ring α inst✝¹ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f γ : Type u_1 inst✝ : Ring γ g : β → γ hg : IsRingHom g ⊢ (g ∘ f) 1 = 1 [PROOFSTEP] simp [map_one hf] [GOAL] α : Type u β : Type v inst✝² : Ring α inst✝¹ : Ring β f : α → β hf✝ : IsRingHom f x y : α hf : IsRingHom f γ : Type u_1 inst✝ : Ring γ g : β → γ hg : IsRingHom g ⊢ g 1 = 1 [PROOFSTEP] exact map_one hg [GOAL] α : Type u β : Type v inst✝² : Ring α inst✝¹ : Ring β f : α → β hf✝ : IsRingHom f x✝ y✝ : α hf : IsRingHom f γ : Type u_1 inst✝ : Ring γ g : β → γ hg : IsRingHom g x y : α ⊢ (g ∘ f) (x * y) = (g ∘ f) x * (g ∘ f) y [PROOFSTEP] simp [map_mul hf] [GOAL] α : Type u β : Type v inst✝² : Ring α inst✝¹ : Ring β f : α → β hf✝ : IsRingHom f x✝ y✝ : α hf : IsRingHom f γ : Type u_1 inst✝ : Ring γ g : β → γ hg : IsRingHom g x y : α ⊢ g (f x * f y) = g (f x) * g (f y) [PROOFSTEP] rw [map_mul hg] [GOAL] α : Type u β : Type v inst✝² : Ring α inst✝¹ : Ring β f : α → β hf✝ : IsRingHom f x✝ y✝ : α hf : IsRingHom f γ : Type u_1 inst✝ : Ring γ g : β → γ hg : IsRingHom g x y : α ⊢ (g ∘ f) (x + y) = (g ∘ f) x + (g ∘ f) y [PROOFSTEP] simp [map_add hf] [GOAL] α : Type u β : Type v inst✝² : Ring α inst✝¹ : Ring β f : α → β hf✝ : IsRingHom f x✝ y✝ : α hf : IsRingHom f γ : Type u_1 inst✝ : Ring γ g : β → γ hg : IsRingHom g x y : α ⊢ g (f x + f y) = g (f x) + g (f y) [PROOFSTEP] rw [map_add hg]
{"mathlib_filename": "Mathlib.Deprecated.Ring", "llama_tokens": 3795}
{"mathlib_filename": "Mathlib.Lean.Json", "llama_tokens": 0}
[GOAL] F : Type u_1 inst✝ : Field F S✝ S : Set F hS : IsSubfield S x y : F hx : x ∈ S hy : y ∈ S ⊢ x / y ∈ S [PROOFSTEP] rw [div_eq_mul_inv] [GOAL] F : Type u_1 inst✝ : Field F S✝ S : Set F hS : IsSubfield S x y : F hx : x ∈ S hy : y ∈ S ⊢ x * y⁻¹ ∈ S [PROOFSTEP] exact hS.toIsSubring.toIsSubmonoid.mul_mem hx (hS.inv_mem hy) [GOAL] F : Type u_1 inst✝ : Field F S : Set F a : F n : ℤ s : Set F hs : IsSubfield s h : a ∈ s ⊢ a ^ n ∈ s [PROOFSTEP] cases' n with n n [GOAL] case ofNat F : Type u_1 inst✝ : Field F S : Set F a : F s : Set F hs : IsSubfield s h : a ∈ s n : ℕ ⊢ a ^ Int.ofNat n ∈ s [PROOFSTEP] suffices a ^ (n : ℤ) ∈ s by exact this [GOAL] F : Type u_1 inst✝ : Field F S : Set F a : F s : Set F hs : IsSubfield s h : a ∈ s n : ℕ this : a ^ ↑n ∈ s ⊢ a ^ Int.ofNat n ∈ s [PROOFSTEP] exact this [GOAL] case ofNat F : Type u_1 inst✝ : Field F S : Set F a : F s : Set F hs : IsSubfield s h : a ∈ s n : ℕ ⊢ a ^ ↑n ∈ s [PROOFSTEP] rw [zpow_ofNat] [GOAL] case ofNat F : Type u_1 inst✝ : Field F S : Set F a : F s : Set F hs : IsSubfield s h : a ∈ s n : ℕ ⊢ a ^ n ∈ s [PROOFSTEP] exact hs.toIsSubring.toIsSubmonoid.pow_mem h [GOAL] case negSucc F : Type u_1 inst✝ : Field F S : Set F a : F s : Set F hs : IsSubfield s h : a ∈ s n : ℕ ⊢ a ^ Int.negSucc n ∈ s [PROOFSTEP] rw [zpow_negSucc] [GOAL] case negSucc F : Type u_1 inst✝ : Field F S : Set F a : F s : Set F hs : IsSubfield s h : a ∈ s n : ℕ ⊢ (a ^ (n + 1))⁻¹ ∈ s [PROOFSTEP] exact hs.inv_mem (hs.toIsSubring.toIsSubmonoid.pow_mem h) [GOAL] F : Type u_1 inst✝¹ : Field F S : Set F K : Type u_2 inst✝ : Field K f : F →+* K s : Set K hs : IsSubfield s src✝ : IsSubring (↑f ⁻¹' s) := RingHom.isSubring_preimage f hs.toIsSubring a : F ha : ↑f a ∈ s ⊢ ↑f a⁻¹ ∈ s [PROOFSTEP] rw [map_inv₀] [GOAL] F : Type u_1 inst✝¹ : Field F S : Set F K : Type u_2 inst✝ : Field K f : F →+* K s : Set K hs : IsSubfield s src✝ : IsSubring (↑f ⁻¹' s) := RingHom.isSubring_preimage f hs.toIsSubring a : F ha : ↑f a ∈ s ⊢ (↑f a)⁻¹ ∈ s [PROOFSTEP] exact hs.inv_mem ha [GOAL] F : Type u_1 inst✝¹ : Field F S : Set F K : Type u_2 inst✝ : Field K f : F →+* K ⊢ IsSubfield (Set.range ↑f) [PROOFSTEP] rw [← Set.image_univ] [GOAL] F : Type u_1 inst✝¹ : Field F S : Set F K : Type u_2 inst✝ : Field K f : F →+* K ⊢ IsSubfield (↑f '' Set.univ) [PROOFSTEP] apply Image.isSubfield _ Univ.isSubfield [GOAL] F : Type u_1 inst✝ : Field F S : Set F ⊢ ∀ {a b : F}, a ∈ closure S → b ∈ closure S → a * b ∈ closure S [PROOFSTEP] rintro _ _ ⟨p, hp, q, hq, hq0, rfl⟩ ⟨r, hr, s, hs, hs0, rfl⟩ [GOAL] case intro.intro.intro.intro.refl.intro.intro.intro.intro.refl F : Type u_1 inst✝ : Field F S : Set F p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S r : F hr : r ∈ Ring.closure S s : F hs : s ∈ Ring.closure S ⊢ p / q * (r / s) ∈ closure S [PROOFSTEP] exact ⟨p * r, IsSubmonoid.mul_mem Ring.closure.isSubring.toIsSubmonoid hp hr, q * s, IsSubmonoid.mul_mem Ring.closure.isSubring.toIsSubmonoid hq hs, (div_mul_div_comm _ _ _ _).symm⟩ [GOAL] F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid ⊢ ∀ {a b : F}, a ∈ closure S → b ∈ closure S → a + b ∈ closure S [PROOFSTEP] intro a b ha hb [GOAL] F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid a b : F ha : a ∈ closure S hb : b ∈ closure S ⊢ a + b ∈ closure S [PROOFSTEP] rcases id ha with ⟨p, hp, q, hq, rfl⟩ [GOAL] case intro.intro.intro.intro F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid b : F hb : b ∈ closure S p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ha : p / q ∈ closure S ⊢ p / q + b ∈ closure S [PROOFSTEP] rcases id hb with ⟨r, hr, s, hs, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ha : p / q ∈ closure S r : F hr : r ∈ Ring.closure S s : F hs : s ∈ Ring.closure S hb : r / s ∈ closure S ⊢ p / q + r / s ∈ closure S [PROOFSTEP] by_cases hq0 : q = 0 [GOAL] case pos F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ha : p / q ∈ closure S r : F hr : r ∈ Ring.closure S s : F hs : s ∈ Ring.closure S hb : r / s ∈ closure S hq0 : q = 0 ⊢ p / q + r / s ∈ closure S [PROOFSTEP] rwa [hq0, div_zero, zero_add] [GOAL] case neg F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ha : p / q ∈ closure S r : F hr : r ∈ Ring.closure S s : F hs : s ∈ Ring.closure S hb : r / s ∈ closure S hq0 : ¬q = 0 ⊢ p / q + r / s ∈ closure S [PROOFSTEP] by_cases hs0 : s = 0 [GOAL] case pos F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ha : p / q ∈ closure S r : F hr : r ∈ Ring.closure S s : F hs : s ∈ Ring.closure S hb : r / s ∈ closure S hq0 : ¬q = 0 hs0 : s = 0 ⊢ p / q + r / s ∈ closure S [PROOFSTEP] rwa [hs0, div_zero, add_zero] [GOAL] case neg F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ha : p / q ∈ closure S r : F hr : r ∈ Ring.closure S s : F hs : s ∈ Ring.closure S hb : r / s ∈ closure S hq0 : ¬q = 0 hs0 : ¬s = 0 ⊢ p / q + r / s ∈ closure S [PROOFSTEP] exact ⟨p * s + q * r, IsAddSubmonoid.add_mem Ring.closure.isSubring.toIsAddSubgroup.toIsAddSubmonoid (Ring.closure.isSubring.toIsSubmonoid.mul_mem hp hs) (Ring.closure.isSubring.toIsSubmonoid.mul_mem hq hr), q * s, Ring.closure.isSubring.toIsSubmonoid.mul_mem hq hs, (div_add_div p r hq0 hs0).symm⟩ [GOAL] F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid ⊢ ∀ {a : F}, a ∈ closure S → -a ∈ closure S [PROOFSTEP] rintro _ ⟨p, hp, q, hq, rfl⟩ [GOAL] case intro.intro.intro.intro F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ⊢ -(p / q) ∈ closure S [PROOFSTEP] exact ⟨-p, Ring.closure.isSubring.toIsAddSubgroup.neg_mem hp, q, hq, neg_div q p⟩ [GOAL] F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid ⊢ ∀ {x : F}, x ∈ closure S → x⁻¹ ∈ closure S [PROOFSTEP] rintro _ ⟨p, hp, q, hq, rfl⟩ [GOAL] case intro.intro.intro.intro F : Type u_1 inst✝ : Field F S : Set F src✝ : IsSubmonoid (closure S) := isSubmonoid p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ⊢ (p / q)⁻¹ ∈ closure S [PROOFSTEP] exact ⟨q, hq, p, hp, (inv_div _ _).symm⟩ [GOAL] F : Type u_1 inst✝ : Field F S T : Set F hT : IsSubfield T H : S ⊆ T ⊢ closure S ⊆ T [PROOFSTEP] rintro _ ⟨p, hp, q, hq, hq0, rfl⟩ [GOAL] case intro.intro.intro.intro.refl F : Type u_1 inst✝ : Field F S T : Set F hT : IsSubfield T H : S ⊆ T p : F hp : p ∈ Ring.closure S q : F hq : q ∈ Ring.closure S ⊢ p / q ∈ T [PROOFSTEP] exact hT.div_mem (Ring.closure_subset hT.toIsSubring H hp) (Ring.closure_subset hT.toIsSubring H hq)
{"mathlib_filename": "Mathlib.Deprecated.Subfield", "llama_tokens": 3610}
[GOAL] α : Type u a b : Thunk α eq : Thunk.get a = Thunk.get b ⊢ a = b [PROOFSTEP] have ⟨_⟩ := a [GOAL] α : Type u a b : Thunk α fn✝ : Unit → α eq : Thunk.get { fn := fn✝ } = Thunk.get b ⊢ { fn := fn✝ } = b [PROOFSTEP] have ⟨_⟩ := b [GOAL] α : Type u a b : Thunk α fn✝¹ fn✝ : Unit → α eq : Thunk.get { fn := fn✝¹ } = Thunk.get { fn := fn✝ } ⊢ { fn := fn✝¹ } = { fn := fn✝ } [PROOFSTEP] congr [GOAL] case e_fn α : Type u a b : Thunk α fn✝¹ fn✝ : Unit → α eq : Thunk.get { fn := fn✝¹ } = Thunk.get { fn := fn✝ } ⊢ fn✝¹ = fn✝ [PROOFSTEP] exact funext fun _ ↦ eq [GOAL] α : Type u inst✝ : DecidableEq α ⊢ DecidableEq (Thunk α) [PROOFSTEP] intro a b [GOAL] α : Type u inst✝ : DecidableEq α a b : Thunk α ⊢ Decidable (a = b) [PROOFSTEP] have : a = b ↔ a.get = b.get := ⟨by intro x; rw [x], by intro; ext; assumption⟩ [GOAL] α : Type u inst✝ : DecidableEq α a b : Thunk α ⊢ a = b → Thunk.get a = Thunk.get b [PROOFSTEP] intro x [GOAL] α : Type u inst✝ : DecidableEq α a b : Thunk α x : a = b ⊢ Thunk.get a = Thunk.get b [PROOFSTEP] rw [x] [GOAL] α : Type u inst✝ : DecidableEq α a b : Thunk α ⊢ Thunk.get a = Thunk.get b → a = b [PROOFSTEP] intro [GOAL] α : Type u inst✝ : DecidableEq α a b : Thunk α a✝ : Thunk.get a = Thunk.get b ⊢ a = b [PROOFSTEP] ext [GOAL] case eq α : Type u inst✝ : DecidableEq α a b : Thunk α a✝ : Thunk.get a = Thunk.get b ⊢ Thunk.get a = Thunk.get b [PROOFSTEP] assumption [GOAL] α : Type u inst✝ : DecidableEq α a b : Thunk α this : a = b ↔ Thunk.get a = Thunk.get b ⊢ Decidable (a = b) [PROOFSTEP] rw [this] [GOAL] α : Type u inst✝ : DecidableEq α a b : Thunk α this : a = b ↔ Thunk.get a = Thunk.get b ⊢ Decidable (Thunk.get a = Thunk.get b) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Lean.Thunk", "llama_tokens": 877}
[GOAL] B : Type u_1 F : Type u_2 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F ⊢ topologicalSpace B F = induced (↑(TotalSpace.toProd B F)) instTopologicalSpaceProd [PROOFSTEP] simp only [instTopologicalSpaceProd, induced_inf, induced_compose] [GOAL] B : Type u_1 F : Type u_2 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F ⊢ topologicalSpace B F = induced (Prod.fst ∘ ↑(TotalSpace.toProd B F)) inst✝¹ ⊓ induced (Prod.snd ∘ ↑(TotalSpace.toProd B F)) inst✝ [PROOFSTEP] rfl [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] let f₁ : TotalSpace (F₁ × F₂) (E₁ ×ᵇ E₂) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p ↦ ((⟨p.1, p.2.1⟩ : TotalSpace F₁ E₁), (⟨p.1, p.2.2⟩ : TotalSpace F₂ E₂)) [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] let f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p ↦ ⟨e₁ p.1, e₂ p.2⟩ [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] let f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p ↦ ⟨p.1.1, p.1.2, p.2.2⟩ [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] have hf₁ : Continuous f₁ := (Prod.inducing_diag F₁ E₁ F₂ E₂).continuous [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] have hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) := e₁.toLocalHomeomorph.continuousOn.prod_map e₂.toLocalHomeomorph.continuousOn [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] have hf₃ : Continuous f₃ := (continuous_fst.comp continuous_fst).prod_mk (continuous_snd.prod_map continuous_snd) [GOAL] B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ ⊢ ContinuousOn (toFun' e₁ e₂) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] refine' ((hf₃.comp_continuousOn hf₂).comp hf₁.continuousOn _).congr _ [GOAL] case refine'_1 B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ ⊢ MapsTo f₁ (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) (e₁.source ×ˢ e₂.source) [PROOFSTEP] rw [e₁.source_eq, e₂.source_eq] [GOAL] case refine'_1 B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ ⊢ MapsTo f₁ (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) ((TotalSpace.proj ⁻¹' e₁.baseSet) ×ˢ (TotalSpace.proj ⁻¹' e₂.baseSet)) [PROOFSTEP] exact mapsTo_preimage _ _ [GOAL] case refine'_2 B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ ⊢ EqOn (toFun' e₁ e₂) ((f₃ ∘ f₂) ∘ f₁) (TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet)) [PROOFSTEP] rintro ⟨b, v₁, v₂⟩ ⟨hb₁, _⟩ [GOAL] case refine'_2.mk.mk.intro B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ b : B v₁ : E₁ b v₂ : E₂ b hb₁ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₁.baseSet right✝ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₂.baseSet ⊢ toFun' e₁ e₂ { proj := b, snd := (v₁, v₂) } = ((f₃ ∘ f₂) ∘ f₁) { proj := b, snd := (v₁, v₂) } [PROOFSTEP] simp only [Prod.toFun', Prod.mk.inj_iff, Function.comp_apply, and_true_iff] [GOAL] case refine'_2.mk.mk.intro B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ b : B v₁ : E₁ b v₂ : E₂ b hb₁ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₁.baseSet right✝ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₂.baseSet ⊢ b = (↑e₁ { proj := b, snd := v₁ }).fst [PROOFSTEP] rw [e₁.coe_fst] [GOAL] case refine'_2.mk.mk.intro B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ b : B v₁ : E₁ b v₂ : E₂ b hb₁ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₁.baseSet right✝ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₂.baseSet ⊢ { proj := b, snd := v₁ } ∈ e₁.source [PROOFSTEP] rw [e₁.source_eq, mem_preimage] [GOAL] case refine'_2.mk.mk.intro B : Type u_1 inst✝⁴ : TopologicalSpace B F₁ : Type u_2 inst✝³ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝² : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝¹ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝ : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj f₁ : (TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x) → TotalSpace F₁ E₁ × TotalSpace F₂ E₂ := fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd }) f₂ : TotalSpace F₁ E₁ × TotalSpace F₂ E₂ → (B × F₁) × B × F₂ := fun p => (↑e₁ p.fst, ↑e₂ p.snd) f₃ : (B × F₁) × B × F₂ → B × F₁ × F₂ := fun p => (p.fst.fst, p.fst.snd, p.snd.snd) hf₁ : Continuous f₁ hf₂ : ContinuousOn f₂ (e₁.source ×ˢ e₂.source) hf₃ : Continuous f₃ b : B v₁ : E₁ b v₂ : E₂ b hb₁ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₁.baseSet right✝ : { proj := b, snd := (v₁, v₂) }.proj ∈ e₂.baseSet ⊢ { proj := b, snd := v₁ }.proj ∈ e₁.baseSet [PROOFSTEP] exact hb₁ [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x h : x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) ⊢ invFun' e₁ e₂ (toFun' e₁ e₂ x) = x [PROOFSTEP] obtain ⟨x, v₁, v₂⟩ := x [GOAL] case mk.mk B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B v₁ : E₁ x v₂ : E₂ x h : { proj := x, snd := (v₁, v₂) } ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) ⊢ invFun' e₁ e₂ (toFun' e₁ e₂ { proj := x, snd := (v₁, v₂) }) = { proj := x, snd := (v₁, v₂) } [PROOFSTEP] obtain ⟨h₁ : x ∈ e₁.baseSet, h₂ : x ∈ e₂.baseSet⟩ := h [GOAL] case mk.mk.intro B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B v₁ : E₁ x v₂ : E₂ x h₁ : x ∈ e₁.baseSet h₂ : x ∈ e₂.baseSet ⊢ invFun' e₁ e₂ (toFun' e₁ e₂ { proj := x, snd := (v₁, v₂) }) = { proj := x, snd := (v₁, v₂) } [PROOFSTEP] simp only [Prod.toFun', Prod.invFun', symm_apply_apply_mk, h₁, h₂] [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B × F₁ × F₂ h : x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ ⊢ toFun' e₁ e₂ (invFun' e₁ e₂ x) = x [PROOFSTEP] obtain ⟨x, w₁, w₂⟩ := x [GOAL] case mk.mk B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B w₁ : F₁ w₂ : F₂ h : (x, w₁, w₂) ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ ⊢ toFun' e₁ e₂ (invFun' e₁ e₂ (x, w₁, w₂)) = (x, w₁, w₂) [PROOFSTEP] obtain ⟨⟨h₁ : x ∈ e₁.baseSet, h₂ : x ∈ e₂.baseSet⟩, -⟩ := h [GOAL] case mk.mk.intro.intro B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : B w₁ : F₁ w₂ : F₂ h₁ : x ∈ e₁.baseSet h₂ : x ∈ e₂.baseSet ⊢ toFun' e₁ e₂ (invFun' e₁ e₂ (x, w₁, w₂)) = (x, w₁, w₂) [PROOFSTEP] simp only [Prod.toFun', Prod.invFun', apply_mk_symm, h₁, h₂] [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) ⊢ ContinuousOn (invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ) [PROOFSTEP] rw [(Prod.inducing_diag F₁ E₁ F₂ E₂).continuousOn_iff] [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) ⊢ ContinuousOn ((fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ∘ invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ) [PROOFSTEP] have H₁ : Continuous fun p : B × F₁ × F₂ ↦ ((p.1, p.2.1), (p.1, p.2.2)) := (continuous_id.prod_map continuous_fst).prod_mk (continuous_id.prod_map continuous_snd) [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) H₁ : Continuous fun p => ((p.fst, p.snd.fst), p.fst, p.snd.snd) ⊢ ContinuousOn ((fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ∘ invFun' e₁ e₂) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ) [PROOFSTEP] refine' (e₁.continuousOn_symm.prod_map e₂.continuousOn_symm).comp H₁.continuousOn _ [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) H₁ : Continuous fun p => ((p.fst, p.snd.fst), p.fst, p.snd.snd) ⊢ MapsTo (fun p => ((p.fst, p.snd.fst), p.fst, p.snd.snd)) ((e₁.baseSet ∩ e₂.baseSet) ×ˢ univ) ((e₁.baseSet ×ˢ univ) ×ˢ e₂.baseSet ×ˢ univ) [PROOFSTEP] exact fun x h ↦ ⟨⟨h.1.1, mem_univ _⟩, ⟨h.1.2, mem_univ _⟩⟩ [GOAL] B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) ⊢ IsOpen { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source [PROOFSTEP] convert (e₁.open_source.prod e₂.open_source).preimage (FiberBundle.Prod.inducing_diag F₁ E₁ F₂ E₂).continuous [GOAL] case h.e'_3 B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) ⊢ { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source = (fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ⁻¹' e₁.source ×ˢ e₂.source [PROOFSTEP] ext x [GOAL] case h.e'_3.h B : Type u_1 inst✝⁶ : TopologicalSpace B F₁ : Type u_2 inst✝⁵ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁴ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝³ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝² : TopologicalSpace (TotalSpace F₂ E₂) e₁ : Trivialization F₁ TotalSpace.proj e₂ : Trivialization F₂ TotalSpace.proj inst✝¹ : (x : B) → Zero (E₁ x) inst✝ : (x : B) → Zero (E₂ x) x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x ⊢ x ∈ { toFun := Prod.toFun' e₁ e₂, invFun := Prod.invFun' e₁ e₂, source := TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet), target := (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → (Prod.toFun' e₁ e₂ x).fst ∈ e₁.baseSet ∩ e₂.baseSet ∧ (Prod.toFun' e₁ e₂ x).snd ∈ univ), map_target' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → x.fst ∈ e₁.baseSet ∩ e₂.baseSet), left_inv' := (_ : ∀ (x : TotalSpace (F₁ × F₂) fun x => E₁ x × E₂ x), x ∈ TotalSpace.proj ⁻¹' (e₁.baseSet ∩ e₂.baseSet) → Prod.invFun' e₁ e₂ (Prod.toFun' e₁ e₂ x) = x), right_inv' := (_ : ∀ (x : B × F₁ × F₂), x ∈ (e₁.baseSet ∩ e₂.baseSet) ×ˢ univ → Prod.toFun' e₁ e₂ (Prod.invFun' e₁ e₂ x) = x) }.source ↔ x ∈ (fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ⁻¹' e₁.source ×ˢ e₂.source [PROOFSTEP] simp only [Trivialization.source_eq, mfld_simps] [GOAL] B : Type u_1 inst✝¹⁰ : TopologicalSpace B F₁ : Type u_2 inst✝⁹ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁸ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝⁷ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝⁶ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁵ : (x : B) → Zero (E₁ x) inst✝⁴ : (x : B) → Zero (E₂ x) inst✝³ : (x : B) → TopologicalSpace (E₁ x) inst✝² : (x : B) → TopologicalSpace (E₂ x) inst✝¹ : FiberBundle F₁ E₁ inst✝ : FiberBundle F₂ E₂ b : B ⊢ Inducing (TotalSpace.mk b) [PROOFSTEP] rw [(Prod.inducing_diag F₁ E₁ F₂ E₂).inducing_iff] [GOAL] B : Type u_1 inst✝¹⁰ : TopologicalSpace B F₁ : Type u_2 inst✝⁹ : TopologicalSpace F₁ E₁ : B → Type u_3 inst✝⁸ : TopologicalSpace (TotalSpace F₁ E₁) F₂ : Type u_4 inst✝⁷ : TopologicalSpace F₂ E₂ : B → Type u_5 inst✝⁶ : TopologicalSpace (TotalSpace F₂ E₂) inst✝⁵ : (x : B) → Zero (E₁ x) inst✝⁴ : (x : B) → Zero (E₂ x) inst✝³ : (x : B) → TopologicalSpace (E₁ x) inst✝² : (x : B) → TopologicalSpace (E₂ x) inst✝¹ : FiberBundle F₁ E₁ inst✝ : FiberBundle F₂ E₂ b : B ⊢ Inducing ((fun p => ({ proj := p.proj, snd := p.snd.fst }, { proj := p.proj, snd := p.snd.snd })) ∘ TotalSpace.mk b) [PROOFSTEP] exact (totalSpaceMk_inducing F₁ E₁ b).prod_map (totalSpaceMk_inducing F₂ E₂ b) [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f : B' → B inst✝ : (x : B) → TopologicalSpace (E x) ⊢ (x : B') → TopologicalSpace ((f *ᵖ E) x) [PROOFSTEP] intro x [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f : B' → B inst✝ : (x : B) → TopologicalSpace (E x) x : B' ⊢ TopologicalSpace ((f *ᵖ E) x) [PROOFSTEP] rw [Bundle.Pullback] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f : B' → B inst✝ : (x : B) → TopologicalSpace (E x) x : B' ⊢ TopologicalSpace (E (f x)) [PROOFSTEP] infer_instance [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ Continuous TotalSpace.proj [PROOFSTEP] rw [continuous_iff_le_induced, Pullback.TotalSpace.topologicalSpace, pullbackTopology_def] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ induced TotalSpace.proj inst✝¹ ⊓ induced (Pullback.lift f) inst✝ ≤ induced TotalSpace.proj inst✝¹ [PROOFSTEP] exact inf_le_left [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ Continuous (Pullback.lift f) [PROOFSTEP] rw [continuous_iff_le_induced, Pullback.TotalSpace.topologicalSpace, pullbackTopology_def] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ induced TotalSpace.proj inst✝¹ ⊓ induced (Pullback.lift f) inst✝ ≤ induced (Pullback.lift f) inst✝ [PROOFSTEP] exact inf_le_right [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ Inducing (pullbackTotalSpaceEmbedding f) [PROOFSTEP] constructor [GOAL] case induced B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ Pullback.TotalSpace.topologicalSpace F E f = induced (pullbackTotalSpaceEmbedding f) instTopologicalSpaceProd [PROOFSTEP] simp_rw [instTopologicalSpaceProd, induced_inf, induced_compose, Pullback.TotalSpace.topologicalSpace, pullbackTopology_def] [GOAL] case induced B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝¹ : TopologicalSpace B' inst✝ : TopologicalSpace (TotalSpace F E) f : B' → B ⊢ induced TotalSpace.proj inst✝¹ ⊓ induced (Pullback.lift f) inst✝ = induced (Prod.fst ∘ pullbackTotalSpaceEmbedding f) inst✝¹ ⊓ induced (Prod.snd ∘ pullbackTotalSpaceEmbedding f) inst✝ [PROOFSTEP] rfl [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E f : B' → B x : B' ⊢ Continuous (TotalSpace.mk x) [PROOFSTEP] simp only [continuous_iff_le_induced, Pullback.TotalSpace.topologicalSpace, induced_compose, induced_inf, Function.comp, induced_const, top_inf_eq, pullbackTopology_def] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (x : B) → TopologicalSpace (E x) inst✝ : FiberBundle F E f : B' → B x : B' ⊢ instForAllTopologicalSpacePullback E f x ≤ induced (fun x_1 => Pullback.lift f { proj := x, snd := x_1 }) inst✝⁴ [PROOFSTEP] exact le_of_eq (FiberBundle.totalSpaceMk_inducing F E (f x)).induced [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : TotalSpace F (↑f *ᵖ E) h : x ∈ Pullback.lift ↑f ⁻¹' e.source ⊢ (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ [PROOFSTEP] simp_rw [e.source_eq, mem_preimage, Pullback.lift_proj] at h [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : TotalSpace F (↑f *ᵖ E) h : ↑f x.proj ∈ e.baseSet ⊢ (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ [PROOFSTEP] simp_rw [prod_mk_mem_set_prod_eq, mem_univ, and_true_iff, mem_preimage, h] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K y : B' × F h : y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ ⊢ (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source [PROOFSTEP] rw [mem_prod, mem_preimage] at h [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K y : B' × F h : ↑f y.fst ∈ e.baseSet ∧ y.snd ∈ univ ⊢ (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source [PROOFSTEP] simp_rw [e.source_eq, mem_preimage, Pullback.lift_proj, h.1] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : TotalSpace F (↑f *ᵖ E) h : x ∈ Pullback.lift ↑f ⁻¹' e.source ⊢ (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x [PROOFSTEP] simp_rw [mem_preimage, e.mem_source, Pullback.lift_proj] at h [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : TotalSpace F (↑f *ᵖ E) h : ↑f x.proj ∈ e.baseSet ⊢ (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x [PROOFSTEP] simp_rw [Pullback.lift, e.symm_apply_apply_mk h] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : B' × F h : x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ ⊢ (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x [PROOFSTEP] simp_rw [mem_prod, mem_preimage, mem_univ, and_true_iff] at h [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K x : B' × F h : ↑f x.fst ∈ e.baseSet ⊢ (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x [PROOFSTEP] simp_rw [Pullback.lift_mk, e.apply_mk_symm h] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ IsOpen { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.source [PROOFSTEP] simp_rw [e.source_eq, ← preimage_comp] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ IsOpen (TotalSpace.proj ∘ Pullback.lift ↑f ⁻¹' e.baseSet) [PROOFSTEP] exact e.open_baseSet.preimage ((map_continuous f).comp <| Pullback.continuous_proj F E f) [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ ContinuousOn { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.invFun { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.target [PROOFSTEP] dsimp only [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ ContinuousOn (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((↑f ⁻¹' e.baseSet) ×ˢ univ) [PROOFSTEP] simp_rw [(inducing_pullbackTotalSpaceEmbedding F E f).continuousOn_iff, Function.comp, pullbackTotalSpaceEmbedding] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ ContinuousOn (fun x => (x.fst, { proj := ↑f x.fst, snd := Trivialization.symm e (↑f x.fst) x.snd })) ((↑f ⁻¹' e.baseSet) ×ˢ univ) [PROOFSTEP] refine' continuousOn_fst.prod (e.continuousOn_symm.comp ((map_continuous f).prod_map continuous_id).continuousOn Subset.rfl) [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ { toLocalEquiv := { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }, open_source := (_ : IsOpen { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.source), open_target := (_ : IsOpen ((↑f ⁻¹' e.baseSet) ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (fun x => (x.proj, (↑e (Pullback.lift (↑f) x)).snd)) { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.source), continuous_invFun := (_ : ContinuousOn { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.invFun { toFun := fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd), invFun := fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }, source := Pullback.lift ↑f ⁻¹' e.source, target := (↑f ⁻¹' e.baseSet) ×ˢ univ, map_source' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ), map_target' := (_ : ∀ (y : B' × F), y ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) y ∈ Pullback.lift ↑f ⁻¹' e.source), left_inv' := (_ : ∀ (x : TotalSpace F (↑f *ᵖ E)), x ∈ Pullback.lift ↑f ⁻¹' e.source → (fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) ((fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) x) = x), right_inv' := (_ : ∀ (x : B' × F), x ∈ (↑f ⁻¹' e.baseSet) ×ˢ univ → (fun z => (z.proj, (↑e (Pullback.lift (↑f) z)).snd)) ((fun y => { proj := y.fst, snd := Trivialization.symm e (↑f y.fst) y.snd }) x) = x) }.target) }.toLocalEquiv.source = TotalSpace.proj ⁻¹' (↑f ⁻¹' e.baseSet) [PROOFSTEP] dsimp only [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ Pullback.lift ↑f ⁻¹' e.source = TotalSpace.proj ⁻¹' (↑f ⁻¹' e.baseSet) [PROOFSTEP] rw [e.source_eq] [GOAL] B : Type u F : Type v E : B → Type w₁ B' : Type w₂ f✝ : B' → B inst✝⁵ : TopologicalSpace B' inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : TopologicalSpace F inst✝² : TopologicalSpace B inst✝¹ : (_b : B) → Zero (E _b) K : Type U inst✝ : ContinuousMapClass K B' B e : Trivialization F TotalSpace.proj f : K ⊢ Pullback.lift ↑f ⁻¹' (TotalSpace.proj ⁻¹' e.baseSet) = TotalSpace.proj ⁻¹' (↑f ⁻¹' e.baseSet) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Topology.FiberBundle.Constructions", "llama_tokens": 22472}
[GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax X Y : J f : X ⟶ Y ⊢ ((Functor.const J).obj (of ↑{u | ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (u i) = u j})).map f ≫ (fun j => ContinuousMap.mk fun u => ↑u j) Y = (fun j => ContinuousMap.mk fun u => ↑u j) X ≫ F.map f [PROOFSTEP] dsimp [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax X Y : J f : X ⟶ Y ⊢ (𝟙 (of { x // ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (x i) = x j }) ≫ ContinuousMap.mk fun u => ↑u Y) = (ContinuousMap.mk fun u => ↑u X) ≫ F.map f [PROOFSTEP] rw [Category.id_comp] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax X Y : J f : X ⟶ Y ⊢ (ContinuousMap.mk fun u => ↑u Y) = (ContinuousMap.mk fun u => ↑u X) ≫ F.map f [PROOFSTEP] apply ContinuousMap.ext [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax X Y : J f : X ⟶ Y ⊢ ∀ (a : { x // ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (x i) = x j }), ↑(ContinuousMap.mk fun u => ↑u Y) a = ↑((ContinuousMap.mk fun u => ↑u X) ≫ F.map f) a [PROOFSTEP] intro a [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax X Y : J f : X ⟶ Y a : { x // ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) (x i) = x j } ⊢ ↑(ContinuousMap.mk fun u => ↑u Y) a = ↑((ContinuousMap.mk fun u => ↑u X) ≫ F.map f) a [PROOFSTEP] exact (a.2 f).symm [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F x : ↑S.pt i✝ j✝ : J f : i✝ ⟶ j✝ ⊢ ↑(F.map f) ((fun j => ↑(NatTrans.app S.π j) x) i✝) = (fun j => ↑(NatTrans.app S.π j) x) j✝ [PROOFSTEP] dsimp [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F x : ↑S.pt i✝ j✝ : J f : i✝ ⟶ j✝ ⊢ ↑(F.map f) (↑(NatTrans.app S.π i✝) x) = ↑(NatTrans.app S.π j✝) x [PROOFSTEP] erw [← S.w f] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F x : ↑S.pt i✝ j✝ : J f : i✝ ⟶ j✝ ⊢ ↑(F.map f) (↑(NatTrans.app S.π i✝) x) = ↑(NatTrans.app S.π i✝ ≫ F.map f) x [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F x : ↑S.pt i j : J f : i ⟶ j ⊢ ↑(F.map f) ((fun j => ↑(NatTrans.app S.π j) x) i) = (fun j => ↑(NatTrans.app S.π j) x) j [PROOFSTEP] dsimp [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F x : ↑S.pt i j : J f : i ⟶ j ⊢ ↑(F.map f) (↑(NatTrans.app S.π i) x) = ↑(NatTrans.app S.π j) x [PROOFSTEP] rw [← S.w f] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F x : ↑S.pt i j : J f : i ⟶ j ⊢ ↑(F.map f) (↑(NatTrans.app S.π i) x) = ↑(NatTrans.app S.π i ≫ F.map f) x [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F m : S.pt ⟶ (limitCone F).pt h : ∀ (j : J), m ≫ NatTrans.app (limitCone F).π j = NatTrans.app S.π j ⊢ m = (fun S => ContinuousMap.mk fun x => { val := fun j => ↑(NatTrans.app S.π j) x, property := (_ : ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) ((fun j => ↑(NatTrans.app S.π j) x) i) = (fun j => ↑(NatTrans.app S.π j) x) j) }) S [PROOFSTEP] apply ContinuousMap.ext [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F m : S.pt ⟶ (limitCone F).pt h : ∀ (j : J), m ≫ NatTrans.app (limitCone F).π j = NatTrans.app S.π j ⊢ ∀ (a : ↑S.pt), ↑m a = ↑((fun S => ContinuousMap.mk fun x => { val := fun j => ↑(NatTrans.app S.π j) x, property := (_ : ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) ((fun j => ↑(NatTrans.app S.π j) x) i) = (fun j => ↑(NatTrans.app S.π j) x) j) }) S) a [PROOFSTEP] intros a [GOAL] case h J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F m : S.pt ⟶ (limitCone F).pt h : ∀ (j : J), m ≫ NatTrans.app (limitCone F).π j = NatTrans.app S.π j a : ↑S.pt ⊢ ↑m a = ↑((fun S => ContinuousMap.mk fun x => { val := fun j => ↑(NatTrans.app S.π j) x, property := (_ : ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) ((fun j => ↑(NatTrans.app S.π j) x) i) = (fun j => ↑(NatTrans.app S.π j) x) j) }) S) a [PROOFSTEP] apply Subtype.ext [GOAL] case h.a J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F m : S.pt ⟶ (limitCone F).pt h : ∀ (j : J), m ≫ NatTrans.app (limitCone F).π j = NatTrans.app S.π j a : ↑S.pt ⊢ ↑(↑m a) = ↑(↑((fun S => ContinuousMap.mk fun x => { val := fun j => ↑(NatTrans.app S.π j) x, property := (_ : ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) ((fun j => ↑(NatTrans.app S.π j) x) i) = (fun j => ↑(NatTrans.app S.π j) x) j) }) S) a) [PROOFSTEP] funext j [GOAL] case h.a.h J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F m : S.pt ⟶ (limitCone F).pt h : ∀ (j : J), m ≫ NatTrans.app (limitCone F).π j = NatTrans.app S.π j a : ↑S.pt j : J ⊢ ↑(↑m a) j = ↑(↑((fun S => ContinuousMap.mk fun x => { val := fun j => ↑(NatTrans.app S.π j) x, property := (_ : ∀ {i j : J} (f : i ⟶ j), ↑(F.map f) ((fun j => ↑(NatTrans.app S.π j) x) i) = (fun j => ↑(NatTrans.app S.π j) x) j) }) S) a) j [PROOFSTEP] dsimp [GOAL] case h.a.h J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F m : S.pt ⟶ (limitCone F).pt h : ∀ (j : J), m ≫ NatTrans.app (limitCone F).π j = NatTrans.app S.π j a : ↑S.pt j : J ⊢ ↑(↑m a) j = ↑(NatTrans.app S.π j) a [PROOFSTEP] rw [← h] [GOAL] case h.a.h J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax S : Cone F m : S.pt ⟶ (limitCone F).pt h : ∀ (j : J), m ≫ NatTrans.app (limitCone F).π j = NatTrans.app S.π j a : ↑S.pt j : J ⊢ ↑(↑m a) j = ↑(m ≫ NatTrans.app (limitCone F).π j) a [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax ⊢ IsLimit (limitConeInfi F) [PROOFSTEP] refine IsLimit.ofFaithful forget (Types.limitConeIsLimit.{v, u} (F ⋙ forget)) -- Porting note: previously could infer all ?_ except continuity (fun s => ⟨fun v => ⟨fun j => (Functor.mapCone forget s).π.app j v, ?_⟩, ?_⟩) fun s => ?_ [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cone F v : ↑s.pt ⊢ (fun j => NatTrans.app (forget.mapCone s).π j v) ∈ Functor.sections (F ⋙ forget) [PROOFSTEP] dsimp [Functor.sections] [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cone F v : ↑s.pt ⊢ ∀ {j j' : J} (f : j ⟶ j'), forget.map (F.map f) (forget.map (NatTrans.app s.π j) v) = forget.map (NatTrans.app s.π j') v [PROOFSTEP] intro _ _ _ [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cone F v : ↑s.pt j✝ j'✝ : J f✝ : j✝ ⟶ j'✝ ⊢ forget.map (F.map f✝) (forget.map (NatTrans.app s.π j✝) v) = forget.map (NatTrans.app s.π j'✝) v [PROOFSTEP] rw [← comp_apply', forget_map_eq_coe, ← s.π.naturality, forget_map_eq_coe] [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cone F v : ↑s.pt j✝ j'✝ : J f✝ : j✝ ⟶ j'✝ ⊢ ↑(((Functor.const J).obj s.pt).map f✝ ≫ NatTrans.app s.π j'✝) v = ↑(NatTrans.app s.π j'✝) v [PROOFSTEP] dsimp [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cone F v : ↑s.pt j✝ j'✝ : J f✝ : j✝ ⟶ j'✝ ⊢ ↑(𝟙 s.pt ≫ NatTrans.app s.π j'✝) v = ↑(NatTrans.app s.π j'✝) v [PROOFSTEP] rw [Category.id_comp] [GOAL] case refine_2 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cone F ⊢ Continuous fun v => { val := fun j => NatTrans.app (forget.mapCone s).π j v, property := (_ : (fun j => NatTrans.app (forget.mapCone s).π j v) ∈ Functor.sections (F ⋙ forget)) } [PROOFSTEP] exact continuous_iff_coinduced_le.mpr (le_iInf fun j => coinduced_le_iff_le_induced.mp <| (continuous_iff_coinduced_le.mp (s.π.app j).continuous : _)) [GOAL] case refine_3 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cone F ⊢ forget.map ((fun s => ContinuousMap.mk fun v => { val := fun j => NatTrans.app (forget.mapCone s).π j v, property := (_ : (fun j => NatTrans.app (forget.mapCone s).π j v) ∈ Functor.sections (F ⋙ forget)) }) s) = IsLimit.lift (Types.limitConeIsLimit (F ⋙ forget)) (forget.mapCone s) [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax ⊢ IsColimit (colimitCocone F) [PROOFSTEP] refine IsColimit.ofFaithful forget (Types.colimitCoconeIsColimit _) (fun s => -- Porting note: it appears notation for forget breaks dot notation (also above) -- Porting note: previously function was inferred ⟨Quot.lift (fun p => (Functor.mapCocone forget s).ι.app p.fst p.snd) ?_, ?_⟩) fun s => ?_ [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cocone F ⊢ ∀ (a b : (j : J) × (F ⋙ forget).obj j), Types.Quot.Rel (F ⋙ forget) a b → (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) a = (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) b [PROOFSTEP] intro _ _ ⟨_, h⟩ [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cocone F a✝ b✝ : (j : J) × (F ⋙ forget).obj j w✝ : a✝.fst ⟶ b✝.fst h : b✝.snd = (F ⋙ forget).map w✝ a✝.snd ⊢ (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) a✝ = (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) b✝ [PROOFSTEP] dsimp [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cocone F a✝ b✝ : (j : J) × (F ⋙ forget).obj j w✝ : a✝.fst ⟶ b✝.fst h : b✝.snd = (F ⋙ forget).map w✝ a✝.snd ⊢ forget.map (NatTrans.app s.ι a✝.fst) a✝.snd = forget.map (NatTrans.app s.ι b✝.fst) b✝.snd [PROOFSTEP] rw [h, Functor.comp_map, ← comp_apply', s.ι.naturality] [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cocone F a✝ b✝ : (j : J) × (F ⋙ forget).obj j w✝ : a✝.fst ⟶ b✝.fst h : b✝.snd = (F ⋙ forget).map w✝ a✝.snd ⊢ forget.map (NatTrans.app s.ι a✝.fst) a✝.snd = forget.map (NatTrans.app s.ι a✝.fst ≫ ((Functor.const J).obj s.pt).map w✝) a✝.snd [PROOFSTEP] dsimp [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cocone F a✝ b✝ : (j : J) × (F ⋙ forget).obj j w✝ : a✝.fst ⟶ b✝.fst h : b✝.snd = (F ⋙ forget).map w✝ a✝.snd ⊢ forget.map (NatTrans.app s.ι a✝.fst) a✝.snd = forget.map (NatTrans.app s.ι a✝.fst ≫ 𝟙 s.pt) a✝.snd [PROOFSTEP] rw [Category.comp_id] [GOAL] case refine_2 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cocone F ⊢ Continuous (Quot.lift (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) (_ : ∀ (a b : (j : J) × (F ⋙ forget).obj j), Types.Quot.Rel (F ⋙ forget) a b → (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) a = (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) b)) [PROOFSTEP] exact continuous_iff_le_induced.mpr (iSup_le fun j => coinduced_le_iff_le_induced.mp <| (continuous_iff_coinduced_le.mp (s.ι.app j).continuous : _)) [GOAL] case refine_3 J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax s : Cocone F ⊢ forget.map ((fun s => ContinuousMap.mk (Quot.lift (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) (_ : ∀ (a b : (j : J) × (F ⋙ forget).obj j), Types.Quot.Rel (F ⋙ forget) a b → (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) a = (fun p => NatTrans.app (forget.mapCocone s).ι p.fst p.snd) b))) s) = IsColimit.desc (Types.colimitCoconeIsColimit (F ⋙ forget)) (forget.mapCocone s) [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J X : TopCat ⊢ Continuous fun x => PUnit.unit [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X : TopCat f : X ⟶ of PUnit ⊢ f = default [PROOFSTEP] ext [GOAL] case w J : Type v inst✝ : SmallCategory J X : TopCat f : X ⟶ of PUnit x✝ : forget.obj X ⊢ ↑f x✝ = ↑default x✝ [PROOFSTEP] aesop [GOAL] J : Type v inst✝ : SmallCategory J X : TopCat ⊢ Continuous fun x => PEmpty.elim x [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X : TopCat f : of PEmpty ⟶ X ⊢ f = default [PROOFSTEP] ext ⟨⟩
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.Limits.Basic", "llama_tokens": 6039}
{"mathlib_filename": "Mathlib.Lean.SMap", "llama_tokens": 0}
[GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R a : R h : a ∈ closure s b : R ih : ∃ L, (∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) ∧ List.sum (List.map List.prod L) = b L1 : List (List R) h1 : ∀ (l : List R), l ∈ L1 → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 x✝ : AddGroup.InClosure (Monoid.Closure s) (List.sum (List.map List.prod L1)) ⊢ List.sum (List.map List.prod (List.map (List.cons (-1)) L1)) = -List.sum (List.map List.prod L1) [PROOFSTEP] simp only [List.map_map, (· ∘ ·), List.prod_cons, neg_one_mul] [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R a : R h : a ∈ closure s b : R ih : ∃ L, (∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) ∧ List.sum (List.map List.prod L) = b L1 : List (List R) h1 : ∀ (l : List R), l ∈ L1 → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 x✝ : AddGroup.InClosure (Monoid.Closure s) (List.sum (List.map List.prod L1)) ⊢ List.sum (List.map (fun x => -List.prod x) L1) = -List.sum (List.map List.prod L1) [PROOFSTEP] refine' List.recOn L1 neg_zero.symm fun hd tl ih ↦ _ [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R a : R h : a ∈ closure s b : R ih✝ : ∃ L, (∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) ∧ List.sum (List.map List.prod L) = b L1 : List (List R) h1 : ∀ (l : List R), l ∈ L1 → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 x✝ : AddGroup.InClosure (Monoid.Closure s) (List.sum (List.map List.prod L1)) hd : List R tl : List (List R) ih : List.sum (List.map (fun x => -List.prod x) tl) = -List.sum (List.map List.prod tl) ⊢ List.sum (List.map (fun x => -List.prod x) (hd :: tl)) = -List.sum (List.map List.prod (hd :: tl)) [PROOFSTEP] rw [List.map_cons, List.sum_cons, ih, List.map_cons, List.sum_cons, neg_add] [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R a : R h : a ∈ closure s r1 r2 : R ih1 : ∃ L, (∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) ∧ List.sum (List.map List.prod L) = r1 ih2 : ∃ L, (∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) ∧ List.sum (List.map List.prod L) = r2 L1 : List (List R) h1 : ∀ (l : List R), l ∈ L1 → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 L2 : List (List R) h2 : ∀ (l : List R), l ∈ L2 → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 x✝¹ : AddGroup.InClosure (Monoid.Closure s) (List.sum (List.map List.prod L1)) x✝ : AddGroup.InClosure (Monoid.Closure s) (List.sum (List.map List.prod L2)) ⊢ List.sum (List.map List.prod (L1 ++ L2)) = List.sum (List.map List.prod L1) + List.sum (List.map List.prod L2) [PROOFSTEP] rw [List.map_append, List.sum_append] [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop x : R hx : x ∈ closure s h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) ⊢ C x [PROOFSTEP] have h0 : C 0 := add_neg_self (1 : R) ▸ ha h1 hneg1 [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop x : R hx : x ∈ closure s h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 ⊢ C x [PROOFSTEP] rcases exists_list_of_mem_closure hx with ⟨L, HL, rfl⟩ [GOAL] case intro.intro R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hx : List.sum (List.map List.prod L) ∈ closure s ⊢ C (List.sum (List.map List.prod L)) [PROOFSTEP] clear hx [GOAL] case intro.intro R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 ⊢ C (List.sum (List.map List.prod L)) [PROOFSTEP] induction' L with hd tl ih [GOAL] case intro.intro.nil R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 HL : ∀ (l : List R), l ∈ [] → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 ⊢ C (List.sum (List.map List.prod [])) [PROOFSTEP] exact h0 [GOAL] case intro.intro.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R tl : List (List R) ih : (∀ (l : List R), l ∈ tl → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) → C (List.sum (List.map List.prod tl)) HL : ∀ (l : List R), l ∈ hd :: tl → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 ⊢ C (List.sum (List.map List.prod (hd :: tl))) [PROOFSTEP] rw [List.forall_mem_cons] at HL [GOAL] case intro.intro.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R tl : List (List R) ih : (∀ (l : List R), l ∈ tl → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) → C (List.sum (List.map List.prod tl)) HL : (∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1) ∧ ∀ (x : List R), x ∈ tl → ∀ (x_1 : R), x_1 ∈ x → x_1 ∈ s ∨ x_1 = -1 ⊢ C (List.sum (List.map List.prod (hd :: tl))) [PROOFSTEP] suffices C (List.prod hd) by rw [List.map_cons, List.sum_cons] exact ha this (ih HL.2) [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R tl : List (List R) ih : (∀ (l : List R), l ∈ tl → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) → C (List.sum (List.map List.prod tl)) HL : (∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1) ∧ ∀ (x : List R), x ∈ tl → ∀ (x_1 : R), x_1 ∈ x → x_1 ∈ s ∨ x_1 = -1 this : C (List.prod hd) ⊢ C (List.sum (List.map List.prod (hd :: tl))) [PROOFSTEP] rw [List.map_cons, List.sum_cons] [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R tl : List (List R) ih : (∀ (l : List R), l ∈ tl → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) → C (List.sum (List.map List.prod tl)) HL : (∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1) ∧ ∀ (x : List R), x ∈ tl → ∀ (x_1 : R), x_1 ∈ x → x_1 ∈ s ∨ x_1 = -1 this : C (List.prod hd) ⊢ C (List.prod hd + List.sum (List.map List.prod tl)) [PROOFSTEP] exact ha this (ih HL.2) [GOAL] case intro.intro.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R tl : List (List R) ih : (∀ (l : List R), l ∈ tl → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) → C (List.sum (List.map List.prod tl)) HL : (∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1) ∧ ∀ (x : List R), x ∈ tl → ∀ (x_1 : R), x_1 ∈ x → x_1 ∈ s ∨ x_1 = -1 ⊢ C (List.prod hd) [PROOFSTEP] replace HL := HL.1 [GOAL] case intro.intro.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R tl : List (List R) ih : (∀ (l : List R), l ∈ tl → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1) → C (List.sum (List.map List.prod tl)) HL : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 ⊢ C (List.prod hd) [PROOFSTEP] clear ih tl [GOAL] case intro.intro.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R HL : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 ⊢ C (List.prod hd) [PROOFSTEP] suffices ∃ L, (∀ x ∈ L, x ∈ s) ∧ (List.prod hd = List.prod L ∨ List.prod hd = -List.prod L) by rcases this with ⟨L, HL', HP | HP⟩ <;> rw [HP] <;> clear HP HL · induction' L with hd tl ih · exact h1 rw [List.forall_mem_cons] at HL' rw [List.prod_cons] exact hs _ HL'.1 _ (ih HL'.2) · induction' L with hd tl ih · exact hneg1 rw [List.prod_cons, neg_mul_eq_mul_neg] rw [List.forall_mem_cons] at HL' exact hs _ HL'.1 _ (ih HL'.2) [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R HL : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 this : ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod hd = List.prod L ∨ List.prod hd = -List.prod L) ⊢ C (List.prod hd) [PROOFSTEP] rcases this with ⟨L, HL', HP | HP⟩ [GOAL] case intro.intro.inl R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R HL : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod hd = List.prod L ⊢ C (List.prod hd) [PROOFSTEP] rw [HP] [GOAL] case intro.intro.inr R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R HL : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod hd = -List.prod L ⊢ C (List.prod hd) [PROOFSTEP] rw [HP] [GOAL] case intro.intro.inl R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R HL : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod hd = List.prod L ⊢ C (List.prod L) [PROOFSTEP] clear HP HL [GOAL] case intro.intro.inr R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R HL : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod hd = -List.prod L ⊢ C (-List.prod L) [PROOFSTEP] clear HP HL [GOAL] case intro.intro.inl R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s ⊢ C (List.prod L) [PROOFSTEP] induction' L with hd tl ih [GOAL] case intro.intro.inl.nil R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd L : List R HL'✝ : ∀ (x : R), x ∈ L → x ∈ s HL' : ∀ (x : R), x ∈ [] → x ∈ s ⊢ C (List.prod []) [PROOFSTEP] exact h1 [GOAL] case intro.intro.inl.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ L : List R HL'✝ : ∀ (x : R), x ∈ L → x ∈ s hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s) → C (List.prod tl) HL' : ∀ (x : R), x ∈ hd :: tl → x ∈ s ⊢ C (List.prod (hd :: tl)) [PROOFSTEP] rw [List.forall_mem_cons] at HL' [GOAL] case intro.intro.inl.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ L : List R HL'✝ : ∀ (x : R), x ∈ L → x ∈ s hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s) → C (List.prod tl) HL' : hd ∈ s ∧ ∀ (x : R), x ∈ tl → x ∈ s ⊢ C (List.prod (hd :: tl)) [PROOFSTEP] rw [List.prod_cons] [GOAL] case intro.intro.inl.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ L : List R HL'✝ : ∀ (x : R), x ∈ L → x ∈ s hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s) → C (List.prod tl) HL' : hd ∈ s ∧ ∀ (x : R), x ∈ tl → x ∈ s ⊢ C (hd * List.prod tl) [PROOFSTEP] exact hs _ HL'.1 _ (ih HL'.2) [GOAL] case intro.intro.inr R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s ⊢ C (-List.prod L) [PROOFSTEP] induction' L with hd tl ih [GOAL] case intro.intro.inr.nil R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd L : List R HL'✝ : ∀ (x : R), x ∈ L → x ∈ s HL' : ∀ (x : R), x ∈ [] → x ∈ s ⊢ C (-List.prod []) [PROOFSTEP] exact hneg1 [GOAL] case intro.intro.inr.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ L : List R HL'✝ : ∀ (x : R), x ∈ L → x ∈ s hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s) → C (-List.prod tl) HL' : ∀ (x : R), x ∈ hd :: tl → x ∈ s ⊢ C (-List.prod (hd :: tl)) [PROOFSTEP] rw [List.prod_cons, neg_mul_eq_mul_neg] [GOAL] case intro.intro.inr.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ L : List R HL'✝ : ∀ (x : R), x ∈ L → x ∈ s hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s) → C (-List.prod tl) HL' : ∀ (x : R), x ∈ hd :: tl → x ∈ s ⊢ C (hd * -List.prod tl) [PROOFSTEP] rw [List.forall_mem_cons] at HL' [GOAL] case intro.intro.inr.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ L : List R HL'✝ : ∀ (x : R), x ∈ L → x ∈ s hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s) → C (-List.prod tl) HL' : hd ∈ s ∧ ∀ (x : R), x ∈ tl → x ∈ s ⊢ C (hd * -List.prod tl) [PROOFSTEP] exact hs _ HL'.1 _ (ih HL'.2) [GOAL] case intro.intro.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R HL : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod hd = List.prod L ∨ List.prod hd = -List.prod L) [PROOFSTEP] induction' hd with hd tl ih [GOAL] case intro.intro.cons.nil R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd : List R HL✝ : ∀ (x : R), x ∈ hd → x ∈ s ∨ x = -1 HL : ∀ (x : R), x ∈ [] → x ∈ s ∨ x = -1 ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod [] = List.prod L ∨ List.prod [] = -List.prod L) [PROOFSTEP] exact ⟨[], List.forall_mem_nil _, Or.inl rfl⟩ [GOAL] case intro.intro.cons.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : ∀ (x : R), x ∈ hd :: tl → x ∈ s ∨ x = -1 ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod (hd :: tl) = List.prod L ∨ List.prod (hd :: tl) = -List.prod L) [PROOFSTEP] rw [List.forall_mem_cons] at HL [GOAL] case intro.intro.cons.cons R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod (hd :: tl) = List.prod L ∨ List.prod (hd :: tl) = -List.prod L) [PROOFSTEP] rcases ih HL.2 with ⟨L, HL', HP | HP⟩ [GOAL] case intro.intro.cons.cons.intro.intro.inl R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = List.prod L ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod (hd :: tl) = List.prod L ∨ List.prod (hd :: tl) = -List.prod L) [PROOFSTEP] cases' HL.1 with hhd hhd [GOAL] case intro.intro.cons.cons.intro.intro.inr R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = -List.prod L ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod (hd :: tl) = List.prod L ∨ List.prod (hd :: tl) = -List.prod L) [PROOFSTEP] cases' HL.1 with hhd hhd [GOAL] case intro.intro.cons.cons.intro.intro.inl.inl R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = List.prod L hhd : hd ∈ s ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod (hd :: tl) = List.prod L ∨ List.prod (hd :: tl) = -List.prod L) [PROOFSTEP] exact ⟨hd :: L, List.forall_mem_cons.2 ⟨hhd, HL'⟩, Or.inl <| by rw [List.prod_cons, List.prod_cons, HP]⟩ [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = List.prod L hhd : hd ∈ s ⊢ List.prod (hd :: tl) = List.prod (hd :: L) [PROOFSTEP] rw [List.prod_cons, List.prod_cons, HP] [GOAL] case intro.intro.cons.cons.intro.intro.inl.inr R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = List.prod L hhd : hd = -1 ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod (hd :: tl) = List.prod L ∨ List.prod (hd :: tl) = -List.prod L) [PROOFSTEP] exact ⟨L, HL', Or.inr <| by rw [List.prod_cons, hhd, neg_one_mul, HP]⟩ [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = List.prod L hhd : hd = -1 ⊢ List.prod (hd :: tl) = -List.prod L [PROOFSTEP] rw [List.prod_cons, hhd, neg_one_mul, HP] [GOAL] case intro.intro.cons.cons.intro.intro.inr.inl R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = -List.prod L hhd : hd ∈ s ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod (hd :: tl) = List.prod L ∨ List.prod (hd :: tl) = -List.prod L) [PROOFSTEP] exact ⟨hd :: L, List.forall_mem_cons.2 ⟨hhd, HL'⟩, Or.inr <| by rw [List.prod_cons, List.prod_cons, HP, neg_mul_eq_mul_neg]⟩ [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = -List.prod L hhd : hd ∈ s ⊢ List.prod (hd :: tl) = -List.prod (hd :: L) [PROOFSTEP] rw [List.prod_cons, List.prod_cons, HP, neg_mul_eq_mul_neg] [GOAL] case intro.intro.cons.cons.intro.intro.inr.inr R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = -List.prod L hhd : hd = -1 ⊢ ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod (hd :: tl) = List.prod L ∨ List.prod (hd :: tl) = -List.prod L) [PROOFSTEP] exact ⟨L, HL', Or.inl <| by rw [List.prod_cons, hhd, HP, neg_one_mul, neg_neg]⟩ [GOAL] R : Type u inst✝¹ : Ring R cR : Type u inst✝ : CommRing cR s : Set R C : R → Prop h1 : C 1 hneg1 : C (-1) hs : ∀ (z : R), z ∈ s → ∀ (n : R), C n → C (z * n) ha : ∀ {x y : R}, C x → C y → C (x + y) h0 : C 0 L✝ : List (List R) HL✝¹ : ∀ (l : List R), l ∈ L✝ → ∀ (x : R), x ∈ l → x ∈ s ∨ x = -1 hd✝ : List R HL✝ : ∀ (x : R), x ∈ hd✝ → x ∈ s ∨ x = -1 hd : R tl : List R ih : (∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1) → ∃ L, (∀ (x : R), x ∈ L → x ∈ s) ∧ (List.prod tl = List.prod L ∨ List.prod tl = -List.prod L) HL : (hd ∈ s ∨ hd = -1) ∧ ∀ (x : R), x ∈ tl → x ∈ s ∨ x = -1 L : List R HL' : ∀ (x : R), x ∈ L → x ∈ s HP : List.prod tl = -List.prod L hhd : hd = -1 ⊢ List.prod (hd :: tl) = List.prod L [PROOFSTEP] rw [List.prod_cons, hhd, HP, neg_one_mul, neg_neg] [GOAL] R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R ⊢ ↑f '' closure s = closure (↑f '' s) [PROOFSTEP] refine' le_antisymm _ (closure_subset (RingHom.isSubring_image _ closure.isSubring) <| Set.image_subset _ subset_closure) [GOAL] R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R ⊢ ↑f '' closure s ≤ closure (↑f '' s) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s ⊢ ↑f x ∈ closure (↑f '' s) [PROOFSTEP] apply AddGroup.InClosure.recOn (motive := fun {x} _ ↦ f x ∈ closure (f '' s)) hx _ [GOAL] case intro.intro.zero R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s ⊢ ↑f 0 ∈ closure (↑f '' s) [PROOFSTEP] intros [GOAL] case intro.intro.neg R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s ⊢ ∀ {a : R}, AddGroup.InClosure (Monoid.Closure s) a → ↑f a ∈ closure (↑f '' s) → ↑f (-a) ∈ closure (↑f '' s) [PROOFSTEP] intros [GOAL] case intro.intro.add R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s ⊢ ∀ {a b : R}, AddGroup.InClosure (Monoid.Closure s) a → AddGroup.InClosure (Monoid.Closure s) b → ↑f a ∈ closure (↑f '' s) → ↑f b ∈ closure (↑f '' s) → ↑f (a + b) ∈ closure (↑f '' s) [PROOFSTEP] intros [GOAL] R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s ⊢ ∀ {a : R} (a_1 : a ∈ Monoid.Closure s), (fun {x} x_1 => ↑f x ∈ closure (↑f '' s)) (_ : AddGroup.InClosure (Monoid.Closure s) a) [PROOFSTEP] intros [GOAL] case intro.intro.zero R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s ⊢ ↑f 0 ∈ closure (↑f '' s) [PROOFSTEP] rw [f.map_zero] [GOAL] case intro.intro.zero R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s ⊢ 0 ∈ closure (↑f '' s) [PROOFSTEP] apply closure.isSubring.zero_mem [GOAL] case intro.intro.neg R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝¹ : R a✝ : AddGroup.InClosure (Monoid.Closure s) a✝¹ a_ih✝ : ↑f a✝¹ ∈ closure (↑f '' s) ⊢ ↑f (-a✝¹) ∈ closure (↑f '' s) [PROOFSTEP] rw [f.map_neg] [GOAL] case intro.intro.neg R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝¹ : R a✝ : AddGroup.InClosure (Monoid.Closure s) a✝¹ a_ih✝ : ↑f a✝¹ ∈ closure (↑f '' s) ⊢ -↑f a✝¹ ∈ closure (↑f '' s) [PROOFSTEP] apply closure.isSubring.neg_mem [GOAL] case intro.intro.neg R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝¹ : R a✝ : AddGroup.InClosure (Monoid.Closure s) a✝¹ a_ih✝ : ↑f a✝¹ ∈ closure (↑f '' s) ⊢ ↑f a✝¹ ∈ closure (↑f '' s) [PROOFSTEP] assumption [GOAL] case intro.intro.add R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝² b✝ : R a✝¹ : AddGroup.InClosure (Monoid.Closure s) a✝² a✝ : AddGroup.InClosure (Monoid.Closure s) b✝ a_ih✝¹ : ↑f a✝² ∈ closure (↑f '' s) a_ih✝ : ↑f b✝ ∈ closure (↑f '' s) ⊢ ↑f (a✝² + b✝) ∈ closure (↑f '' s) [PROOFSTEP] rw [f.map_add] [GOAL] case intro.intro.add R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝² b✝ : R a✝¹ : AddGroup.InClosure (Monoid.Closure s) a✝² a✝ : AddGroup.InClosure (Monoid.Closure s) b✝ a_ih✝¹ : ↑f a✝² ∈ closure (↑f '' s) a_ih✝ : ↑f b✝ ∈ closure (↑f '' s) ⊢ ↑f a✝² + ↑f b✝ ∈ closure (↑f '' s) [PROOFSTEP] apply closure.isSubring.add_mem [GOAL] case intro.intro.add.a R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝² b✝ : R a✝¹ : AddGroup.InClosure (Monoid.Closure s) a✝² a✝ : AddGroup.InClosure (Monoid.Closure s) b✝ a_ih✝¹ : ↑f a✝² ∈ closure (↑f '' s) a_ih✝ : ↑f b✝ ∈ closure (↑f '' s) ⊢ ↑f a✝² ∈ closure (↑f '' s) case intro.intro.add.a R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝² b✝ : R a✝¹ : AddGroup.InClosure (Monoid.Closure s) a✝² a✝ : AddGroup.InClosure (Monoid.Closure s) b✝ a_ih✝¹ : ↑f a✝² ∈ closure (↑f '' s) a_ih✝ : ↑f b✝ ∈ closure (↑f '' s) ⊢ ↑f b✝ ∈ closure (↑f '' s) [PROOFSTEP] assumption' [GOAL] R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝¹ : R a✝ : a✝¹ ∈ Monoid.Closure s ⊢ ↑f a✝¹ ∈ closure (↑f '' s) [PROOFSTEP] apply AddGroup.mem_closure [GOAL] case a R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝¹ : R a✝ : a✝¹ ∈ Monoid.Closure s ⊢ ↑f a✝¹ ∈ Monoid.Closure (↑f '' s) [PROOFSTEP] rw [← Monoid.image_closure f.to_isMonoidHom] [GOAL] case a R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝¹ : R a✝ : a✝¹ ∈ Monoid.Closure s ⊢ ↑f a✝¹ ∈ ↑f '' Monoid.Closure s [PROOFSTEP] apply Set.mem_image_of_mem [GOAL] case a.h R : Type u inst✝² : Ring R cR : Type u inst✝¹ : CommRing cR s✝ : Set R S : Type u_1 inst✝ : Ring S f : R →+* S s : Set R x : R hx : x ∈ closure s a✝¹ : R a✝ : a✝¹ ∈ Monoid.Closure s ⊢ a✝¹ ∈ Monoid.Closure s [PROOFSTEP] assumption
{"mathlib_filename": "Mathlib.Deprecated.Subring", "llama_tokens": 18978}
[GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A x y z : M x✝¹ : y ∈ powers x x✝ : z ∈ powers x n₁ : ℕ h₁ : x ^ n₁ = y n₂ : ℕ h₂ : x ^ n₂ = z ⊢ x ^ (n₁ + n₂) = y * z [PROOFSTEP] simp only [pow_add, *] [GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A ⊢ IsSubmonoid Set.univ [PROOFSTEP] constructor [GOAL] case one_mem M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A ⊢ 1 ∈ Set.univ [PROOFSTEP] simp [GOAL] case mul_mem M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A ⊢ ∀ {a b : M}, a ∈ Set.univ → b ∈ Set.univ → a * b ∈ Set.univ [PROOFSTEP] simp [GOAL] M : Type u_1 inst✝² : Monoid M s✝ : Set M A : Type u_2 inst✝¹ : AddMonoid A t : Set A N : Type u_3 inst✝ : Monoid N f : M → N hf : IsMonoidHom f s : Set N hs : IsSubmonoid s ⊢ f 1 ∈ s [PROOFSTEP] rw [IsMonoidHom.map_one hf] [GOAL] M : Type u_1 inst✝² : Monoid M s✝ : Set M A : Type u_2 inst✝¹ : AddMonoid A t : Set A N : Type u_3 inst✝ : Monoid N f : M → N hf : IsMonoidHom f s : Set N hs : IsSubmonoid s ⊢ 1 ∈ s [PROOFSTEP] exact hs.one_mem [GOAL] M : Type u_1 inst✝² : Monoid M s✝ : Set M A : Type u_2 inst✝¹ : AddMonoid A t : Set A N : Type u_3 inst✝ : Monoid N f : M → N hf : IsMonoidHom f s : Set N hs : IsSubmonoid s a b : M ha : f a ∈ s hb : f b ∈ s ⊢ f (a * b) ∈ s [PROOFSTEP] rw [IsMonoidHom.map_mul' hf] [GOAL] M : Type u_1 inst✝² : Monoid M s✝ : Set M A : Type u_2 inst✝¹ : AddMonoid A t : Set A N : Type u_3 inst✝ : Monoid N f : M → N hf : IsMonoidHom f s : Set N hs : IsSubmonoid s a b : M ha : f a ∈ s hb : f b ∈ s ⊢ f a * f b ∈ s [PROOFSTEP] exact hs.mul_mem ha hb [GOAL] M : Type u_1 inst✝² : Monoid M s✝ : Set M A : Type u_2 inst✝¹ : AddMonoid A t : Set A γ : Type u_3 inst✝ : Monoid γ f : M → γ hf : IsMonoidHom f s : Set M hs : IsSubmonoid s a b : γ x✝¹ : a ∈ f '' s x✝ : b ∈ f '' s x : M hx : x ∈ s ∧ f x = a y : M hy : y ∈ s ∧ f y = b ⊢ f (x * y) = a * b [PROOFSTEP] rw [hf.map_mul, hx.2, hy.2] [GOAL] M : Type u_1 inst✝² : Monoid M s : Set M A : Type u_2 inst✝¹ : AddMonoid A t : Set A γ : Type u_3 inst✝ : Monoid γ f : M → γ hf : IsMonoidHom f ⊢ IsSubmonoid (Set.range f) [PROOFSTEP] rw [← Set.image_univ] [GOAL] M : Type u_1 inst✝² : Monoid M s : Set M A : Type u_2 inst✝¹ : AddMonoid A t : Set A γ : Type u_3 inst✝ : Monoid γ f : M → γ hf : IsMonoidHom f ⊢ IsSubmonoid (f '' Set.univ) [PROOFSTEP] exact Univ.isSubmonoid.image hf [GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A a : M hs : IsSubmonoid s h : a ∈ s ⊢ a ^ 0 ∈ s [PROOFSTEP] rw [pow_zero] [GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A a : M hs : IsSubmonoid s h : a ∈ s ⊢ 1 ∈ s [PROOFSTEP] exact hs.one_mem [GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A a : M hs : IsSubmonoid s h : a ∈ s n : ℕ ⊢ a ^ (n + 1) ∈ s [PROOFSTEP] rw [pow_succ] [GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A a : M hs : IsSubmonoid s h : a ∈ s n : ℕ ⊢ a * a ^ n ∈ s [PROOFSTEP] exact hs.mul_mem h (IsSubmonoid.pow_mem hs h) [GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A hs : IsSubmonoid s a : M l : List M h : ∀ (x : M), x ∈ a :: l → x ∈ s ⊢ a ∈ s ∧ ∀ (x : M), x ∈ l → x ∈ s [PROOFSTEP] simpa using h [GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A hs : IsSubmonoid s a : M l : List M h : ∀ (x : M), x ∈ a :: l → x ∈ s this : a * List.prod l ∈ s ⊢ List.prod (a :: l) ∈ s [PROOFSTEP] simpa [GOAL] M✝ : Type u_1 inst✝² : Monoid M✝ s✝ : Set M✝ A : Type u_2 inst✝¹ : AddMonoid A t : Set A M : Type u_3 inst✝ : CommMonoid M s : Set M hs : IsSubmonoid s m : Multiset M ⊢ (∀ (a : M), a ∈ m → a ∈ s) → Multiset.prod m ∈ s [PROOFSTEP] refine' Quotient.inductionOn m fun l hl => _ [GOAL] M✝ : Type u_1 inst✝² : Monoid M✝ s✝ : Set M✝ A : Type u_2 inst✝¹ : AddMonoid A t : Set A M : Type u_3 inst✝ : CommMonoid M s : Set M hs : IsSubmonoid s m : Multiset M l : List M hl : ∀ (a : M), a ∈ Quotient.mk (List.isSetoid M) l → a ∈ s ⊢ Multiset.prod (Quotient.mk (List.isSetoid M) l) ∈ s [PROOFSTEP] rw [Multiset.quot_mk_to_coe, Multiset.coe_prod] [GOAL] M✝ : Type u_1 inst✝² : Monoid M✝ s✝ : Set M✝ A : Type u_2 inst✝¹ : AddMonoid A t : Set A M : Type u_3 inst✝ : CommMonoid M s : Set M hs : IsSubmonoid s m : Multiset M l : List M hl : ∀ (a : M), a ∈ Quotient.mk (List.isSetoid M) l → a ∈ s ⊢ List.prod l ∈ s [PROOFSTEP] exact list_prod_mem hs hl [GOAL] M✝ : Type u_1 inst✝² : Monoid M✝ s✝ : Set M✝ A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ M : Type u_3 A : Type u_4 inst✝ : CommMonoid M s : Set M hs : IsSubmonoid s f : A → M m : Multiset A hm : Multiset.Nodup m x✝ : ∀ (b : A), b ∈ { val := m, nodup := hm } → f b ∈ s ⊢ ∀ (a : M), a ∈ Multiset.map (fun b => f b) { val := m, nodup := hm }.val → a ∈ s [PROOFSTEP] simpa [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t✝ : Set A s t : Set M ht : IsSubmonoid t h : s ⊆ t a : M ha : a ∈ Closure s ⊢ a ∈ t [PROOFSTEP] induction ha [GOAL] case basic M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t✝ : Set A s t : Set M ht : IsSubmonoid t h : s ⊆ t a a✝¹ : M a✝ : a✝¹ ∈ s ⊢ a✝¹ ∈ t [PROOFSTEP] simp [h _, *, IsSubmonoid.one_mem, IsSubmonoid.mul_mem] [GOAL] case one M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t✝ : Set A s t : Set M ht : IsSubmonoid t h : s ⊆ t a : M ⊢ 1 ∈ t [PROOFSTEP] simp [h _, *, IsSubmonoid.one_mem, IsSubmonoid.mul_mem] [GOAL] case mul M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t✝ : Set A s t : Set M ht : IsSubmonoid t h : s ⊆ t a a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : a✝² ∈ t a_ih✝ : b✝ ∈ t ⊢ a✝² * b✝ ∈ t [PROOFSTEP] simp [h _, *, IsSubmonoid.one_mem, IsSubmonoid.mul_mem] [GOAL] M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M ⊢ f '' Closure s ≤ Closure (f '' s) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x : M hx : x ∈ Closure s ⊢ f x ∈ Closure (f '' s) [PROOFSTEP] induction' hx with z hz [GOAL] case intro.intro.basic M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x z : M hz : z ∈ s ⊢ f z ∈ Closure (f '' s) [PROOFSTEP] solve_by_elim [subset_closure, Set.mem_image_of_mem] [GOAL] case intro.intro.one M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x : M ⊢ f 1 ∈ Closure (f '' s) [PROOFSTEP] rw [hf.map_one] [GOAL] case intro.intro.one M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x : M ⊢ 1 ∈ Closure (f '' s) [PROOFSTEP] apply IsSubmonoid.one_mem (closure.isSubmonoid (f '' s)) [GOAL] case intro.intro.mul M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : f a✝² ∈ Closure (f '' s) a_ih✝ : f b✝ ∈ Closure (f '' s) ⊢ f (a✝² * b✝) ∈ Closure (f '' s) [PROOFSTEP] rw [hf.map_mul] [GOAL] case intro.intro.mul M : Type u_1 inst✝² : Monoid M s✝ : Set M A✝ : Type u_2 inst✝¹ : AddMonoid A✝ t : Set A✝ A : Type u_3 inst✝ : Monoid A f : M → A hf : IsMonoidHom f s : Set M x a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : f a✝² ∈ Closure (f '' s) a_ih✝ : f b✝ ∈ Closure (f '' s) ⊢ f a✝² * f b✝ ∈ Closure (f '' s) [PROOFSTEP] solve_by_elim [(closure.isSubmonoid _).mul_mem] [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a : M h : a ∈ Closure s ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a [PROOFSTEP] induction h [GOAL] case basic M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a a✝¹ : M a✝ : a✝¹ ∈ s ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a✝¹ case one M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a : M ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = 1 case mul M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a✝² a_ih✝ : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = b✝ ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a✝² * b✝ [PROOFSTEP] case basic a ha => exists [a]; simp [ha] [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝ a : M ha : a ∈ s ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a [PROOFSTEP] case basic a ha => exists [a]; simp [ha] [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝ a : M ha : a ∈ s ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a [PROOFSTEP] exists [a] [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝ a : M ha : a ∈ s ⊢ (∀ (x : M), x ∈ [a] → x ∈ s) ∧ List.prod [a] = a [PROOFSTEP] simp [ha] [GOAL] case one M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a : M ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = 1 case mul M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a✝² a_ih✝ : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = b✝ ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a✝² * b✝ [PROOFSTEP] case one => exists []; simp [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a : M ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = 1 [PROOFSTEP] case one => exists []; simp [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a : M ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = 1 [PROOFSTEP] exists [] [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a : M ⊢ (∀ (x : M), x ∈ [] → x ∈ s) ∧ List.prod [] = 1 [PROOFSTEP] simp [GOAL] case mul M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a a✝² b✝ : M a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a✝² a_ih✝ : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = b✝ ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a✝² * b✝ [PROOFSTEP] case mul a b _ _ ha hb => rcases ha with ⟨la, ha, eqa⟩ rcases hb with ⟨lb, hb, eqb⟩ exists la ++ lb simp [eqa.symm, eqb.symm, or_imp] exact fun a => ⟨ha a, hb a⟩ [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝² a b : M a✝¹ : InClosure s a a✝ : InClosure s b ha : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a hb : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = b ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a * b [PROOFSTEP] case mul a b _ _ ha hb => rcases ha with ⟨la, ha, eqa⟩ rcases hb with ⟨lb, hb, eqb⟩ exists la ++ lb simp [eqa.symm, eqb.symm, or_imp] exact fun a => ⟨ha a, hb a⟩ [GOAL] M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝² a b : M a✝¹ : InClosure s a a✝ : InClosure s b ha : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a hb : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = b ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a * b [PROOFSTEP] rcases ha with ⟨la, ha, eqa⟩ [GOAL] case intro.intro M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝² a b : M a✝¹ : InClosure s a a✝ : InClosure s b hb : ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = b la : List M ha : ∀ (x : M), x ∈ la → x ∈ s eqa : List.prod la = a ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a * b [PROOFSTEP] rcases hb with ⟨lb, hb, eqb⟩ [GOAL] case intro.intro.intro.intro M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝² a b : M a✝¹ : InClosure s a a✝ : InClosure s b la : List M ha : ∀ (x : M), x ∈ la → x ∈ s eqa : List.prod la = a lb : List M hb : ∀ (x : M), x ∈ lb → x ∈ s eqb : List.prod lb = b ⊢ ∃ l, (∀ (x : M), x ∈ l → x ∈ s) ∧ List.prod l = a * b [PROOFSTEP] exists la ++ lb [GOAL] case intro.intro.intro.intro M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝² a b : M a✝¹ : InClosure s a a✝ : InClosure s b la : List M ha : ∀ (x : M), x ∈ la → x ∈ s eqa : List.prod la = a lb : List M hb : ∀ (x : M), x ∈ lb → x ∈ s eqb : List.prod lb = b ⊢ (∀ (x : M), x ∈ la ++ lb → x ∈ s) ∧ List.prod (la ++ lb) = a * b [PROOFSTEP] simp [eqa.symm, eqb.symm, or_imp] [GOAL] case intro.intro.intro.intro M : Type u_1 inst✝¹ : Monoid M s✝ : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A s : Set M a✝² a b : M a✝¹ : InClosure s a a✝ : InClosure s b la : List M ha : ∀ (x : M), x ∈ la → x ∈ s eqa : List.prod la = a lb : List M hb : ∀ (x : M), x ∈ lb → x ∈ s eqb : List.prod lb = b ⊢ ∀ (x : M), (x ∈ la → x ∈ s) ∧ (x ∈ lb → x ∈ s) [PROOFSTEP] exact fun a => ⟨ha a, hb a⟩ [GOAL] M✝ : Type u_1 inst✝² : Monoid M✝ s✝ : Set M✝ A : Type u_2 inst✝¹ : AddMonoid A t✝ : Set A M : Type u_3 inst✝ : CommMonoid M s t : Set M x : M hx : x ∈ Closure (s ∪ t) L : List M HL1✝ : ∀ (x : M), x ∈ L → x ∈ s ∪ t HL2 : List.prod L = x hd : M tl : List M ih : (∀ (x : M), x ∈ tl → x ∈ s ∪ t) → ∃ y, y ∈ Closure s ∧ ∃ z, z ∈ Closure t ∧ y * z = List.prod tl HL1 : ∀ (x : M), x ∈ hd :: tl → x ∈ s ∪ t y : M hy : y ∈ Closure s z : M hz : z ∈ Closure t hyzx : y * z = List.prod tl hs : hd ∈ s ⊢ hd * y * z = List.prod (hd :: tl) [PROOFSTEP] rw [mul_assoc, List.prod_cons, ← hyzx] [GOAL] M✝ : Type u_1 inst✝² : Monoid M✝ s✝ : Set M✝ A : Type u_2 inst✝¹ : AddMonoid A t✝ : Set A M : Type u_3 inst✝ : CommMonoid M s t : Set M x : M hx : x ∈ Closure (s ∪ t) L : List M HL1✝ : ∀ (x : M), x ∈ L → x ∈ s ∪ t HL2 : List.prod L = x hd : M tl : List M ih : (∀ (x : M), x ∈ tl → x ∈ s ∪ t) → ∃ y, y ∈ Closure s ∧ ∃ z, z ∈ Closure t ∧ y * z = List.prod tl HL1 : ∀ (x : M), x ∈ hd :: tl → x ∈ s ∪ t y : M hy : y ∈ Closure s z : M hz : z ∈ Closure t hyzx : y * z = List.prod tl ht : hd ∈ t ⊢ y * (z * hd) = List.prod (hd :: tl) [PROOFSTEP] rw [← mul_assoc, List.prod_cons, ← hyzx, mul_comm hd] [GOAL] M : Type u_1 inst✝¹ : Monoid M s : Set M A : Type u_2 inst✝ : AddMonoid A t : Set A S : Submonoid M ⊢ IsSubmonoid ↑S [PROOFSTEP] refine' ⟨S.2, S.1.2⟩
{"mathlib_filename": "Mathlib.Deprecated.Submonoid", "llama_tokens": 8685}
[GOAL] α : Type u β : Type v inst✝² : Mul α inst✝¹ : Mul β γ : Type u_1 inst✝ : Mul γ f : α → β g : β → γ hf : IsMulHom f hg : IsMulHom g x y : α ⊢ (g ∘ f) (x * y) = (g ∘ f) x * (g ∘ f) y [PROOFSTEP] simp only [Function.comp, hf.map_mul, hg.map_mul] [GOAL] α✝ : Type u β✝ : Type v inst✝⁴ : Mul α✝ inst✝³ : Mul β✝ γ : Type u_1 inst✝² : Mul γ α : Type u_2 β : Type u_3 inst✝¹ : Semigroup α inst✝ : CommSemigroup β f g : α → β hf : IsMulHom f hg : IsMulHom g a b : α ⊢ f (a * b) * g (a * b) = f a * g a * (f b * g b) [PROOFSTEP] simp only [hf.map_mul, hg.map_mul, mul_comm, mul_assoc, mul_left_comm] [GOAL] α : Type u β : Type v inst✝¹ : MulOneClass α inst✝ : Group β f : α → β hf : IsMulHom f ⊢ ?m.13736 hf * f 1 = ?m.13736 hf [PROOFSTEP] rw [← hf.map_mul, one_mul] [GOAL] α : Type u β : Type v inst✝² : MulOneClass α inst✝¹ : MulOneClass β f : α → β hf : IsMonoidHom f γ : Type u_1 inst✝ : MulOneClass γ g : β → γ hg : IsMonoidHom g src✝ : IsMulHom (g ∘ f) := IsMulHom.comp hf.toIsMulHom hg.toIsMulHom ⊢ g (f 1) = 1 [PROOFSTEP] rw [hf.map_one, hg.map_one] [GOAL] α : Type u β : Type v inst✝¹ : Group α inst✝ : Group β f : α → β hf✝ hf : IsGroupHom f a : α ⊢ f a⁻¹ * f a = 1 [PROOFSTEP] rw [← hf.map_mul, inv_mul_self, hf.map_one] [GOAL] α : Type u β : Type v inst✝¹ : Group α inst✝ : Group β f : α → β hf✝ hf : IsGroupHom f a b : α ⊢ f (a / b) = f a / f b [PROOFSTEP] simp_rw [div_eq_mul_inv, hf.map_mul, hf.map_inv] [GOAL] α : Type u β : Type v inst✝¹ : Group α inst✝ : Group β f✝ : α → β hf✝ : IsGroupHom f✝ f : α → β hf : IsGroupHom f h : Function.Injective f x✝ : α ⊢ f x✝ = 1 → x✝ = 1 [PROOFSTEP] rw [← hf.map_one] [GOAL] α : Type u β : Type v inst✝¹ : Group α inst✝ : Group β f✝ : α → β hf✝ : IsGroupHom f✝ f : α → β hf : IsGroupHom f h : Function.Injective f x✝ : α ⊢ f x✝ = f 1 → x✝ = 1 [PROOFSTEP] exact @h _ _ [GOAL] α : Type u β : Type v inst✝¹ : Group α inst✝ : Group β f✝ : α → β hf✝ : IsGroupHom f✝ f : α → β hf : IsGroupHom f h : ∀ (a : α), f a = 1 → a = 1 x y : α hxy : f x = f y ⊢ f (x / y) = 1 [PROOFSTEP] rwa [hf.map_div, div_eq_one] [GOAL] α✝ : Type u β✝ : Type v α : Type u_1 β : Type u_2 inst✝¹ : AddGroup α inst✝ : AddCommGroup β f g : α → β hf : IsAddGroupHom f hg : IsAddGroupHom g ⊢ IsAddGroupHom fun a => f a - g a [PROOFSTEP] simpa only [sub_eq_add_neg] using hf.add hg.neg
{"mathlib_filename": "Mathlib.Deprecated.Group", "llama_tokens": 1325}
{"mathlib_filename": "Mathlib.Lean.Expr", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Meta", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Linter", "llama_tokens": 0}
[GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁶ : TopologicalSpace X inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace F E : B → Type u_5 inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (b : B) → TopologicalSpace (E b) inst✝¹ : FiberBundle F E inst✝ : T1Space B x : B ⊢ IsClosed (range (TotalSpace.mk x)) [PROOFSTEP] rw [TotalSpace.range_mk] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁶ : TopologicalSpace X inst✝⁵ : TopologicalSpace B inst✝⁴ : TopologicalSpace F E : B → Type u_5 inst✝³ : TopologicalSpace (TotalSpace F E) inst✝² : (b : B) → TopologicalSpace (E b) inst✝¹ : FiberBundle F E inst✝ : T1Space B x : B ⊢ IsClosed (TotalSpace.proj ⁻¹' {x}) [PROOFSTEP] exact isClosed_singleton.preimage <| continuous_proj F E [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] obtain ⟨ea, hea⟩ : ∃ ea : Trivialization F (π F E), a ∈ ea.baseSet := ⟨trivializationAt F E a, mem_baseSet_trivializationAt F E a⟩ -- If `a < b`, then `[a, b] = ∅`, and the statement is trivial [GOAL] case intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] cases' lt_or_le b a with hab hab [GOAL] case intro.inl ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : b < a ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] exact ⟨ea, by simp [*]⟩ /- Let `s` be the set of points `x ∈ [a, b]` such that `E` is trivializable over `[a, x]`. We need to show that `b ∈ s`. Let `c = Sup s`. We will show that `c ∈ s` and `c = b`. -/ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : b < a ⊢ Icc a b ⊆ ea.baseSet [PROOFSTEP] simp [*] [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] set s : Set B := {x ∈ Icc a b | ∃ e : Trivialization F (π F E), Icc a x ⊆ e.baseSet} [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] have ha : a ∈ s := ⟨left_mem_Icc.2 hab, ea, by simp [hea]⟩ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ⊢ Icc a a ⊆ ea.baseSet [PROOFSTEP] simp [hea] [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] have sne : s.Nonempty := ⟨a, ha⟩ [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] have hsb : b ∈ upperBounds s := fun x hx => hx.1.2 [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] have sbd : BddAbove s := ⟨b, hsb⟩ [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] set c := sSup s [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] have hsc : IsLUB s c := isLUB_csSup sne sbd [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] have hc : c ∈ Icc a b := ⟨hsc.1 ha, hsc.2 hsb⟩ [GOAL] case intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] obtain ⟨-, ec : Trivialization F (π F E), hec : Icc a c ⊆ ec.baseSet⟩ : c ∈ s := by cases' hc.1.eq_or_lt with heq hlt · rwa [← heq] refine ⟨hc, ?_⟩ /- In order to show that `c ∈ s`, consider a trivialization `ec` of `proj` over a neighborhood of `c`. Its base set includes `(c', c]` for some `c' ∈ [a, c)`. -/ obtain ⟨ec, hc⟩ : ∃ ec : Trivialization F (π F E), c ∈ ec.baseSet := ⟨trivializationAt F E c, mem_baseSet_trivializationAt F E c⟩ obtain ⟨c', hc', hc'e⟩ : ∃ c' ∈ Ico a c, Ioc c' c ⊆ ec.baseSet := (mem_nhdsWithin_Iic_iff_exists_mem_Ico_Ioc_subset hlt).1 (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds ec.open_baseSet hc) /- Since `c' < c = Sup s`, there exists `d ∈ s ∩ (c', c]`. Let `ead` be a trivialization of `proj` over `[a, d]`. Then we can glue `ead` and `ec` into a trivialization over `[a, c]`. -/ obtain ⟨d, ⟨hdab, ead, had⟩, hd⟩ : ∃ d ∈ s, d ∈ Ioc c' c := hsc.exists_between hc'.2 refine' ⟨ead.piecewiseLe ec d (had ⟨hdab.1, le_rfl⟩) (hc'e hd), subset_ite.2 _⟩ refine' ⟨fun x hx => had ⟨hx.1.1, hx.2⟩, fun x hx => hc'e ⟨hd.1.trans (not_le.1 hx.2), hx.1.2⟩⟩ /- So, `c ∈ s`. Let `ec` be a trivialization of `proj` over `[a, c]`. If `c = b`, then we are done. Otherwise we show that `proj` can be trivialized over a larger interval `[a, d]`, `d ∈ (c, b]`, hence `c` is not an upper bound of `s`. -/ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ⊢ c ∈ s [PROOFSTEP] cases' hc.1.eq_or_lt with heq hlt [GOAL] case inl ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b heq : a = c ⊢ c ∈ s [PROOFSTEP] rwa [← heq] [GOAL] case inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b hlt : a < c ⊢ c ∈ s [PROOFSTEP] refine ⟨hc, ?_⟩ /- In order to show that `c ∈ s`, consider a trivialization `ec` of `proj` over a neighborhood of `c`. Its base set includes `(c', c]` for some `c' ∈ [a, c)`. -/ [GOAL] case inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b hlt : a < c ⊢ ∃ e, Icc a c ⊆ e.baseSet [PROOFSTEP] obtain ⟨ec, hc⟩ : ∃ ec : Trivialization F (π F E), c ∈ ec.baseSet := ⟨trivializationAt F E c, mem_baseSet_trivializationAt F E c⟩ [GOAL] case inr.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc✝ : c ∈ Icc a b hlt : a < c ec : Trivialization F TotalSpace.proj hc : c ∈ ec.baseSet ⊢ ∃ e, Icc a c ⊆ e.baseSet [PROOFSTEP] obtain ⟨c', hc', hc'e⟩ : ∃ c' ∈ Ico a c, Ioc c' c ⊆ ec.baseSet := (mem_nhdsWithin_Iic_iff_exists_mem_Ico_Ioc_subset hlt).1 (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds ec.open_baseSet hc) /- Since `c' < c = Sup s`, there exists `d ∈ s ∩ (c', c]`. Let `ead` be a trivialization of `proj` over `[a, d]`. Then we can glue `ead` and `ec` into a trivialization over `[a, c]`. -/ [GOAL] case inr.intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc✝ : c ∈ Icc a b hlt : a < c ec : Trivialization F TotalSpace.proj hc : c ∈ ec.baseSet c' : B hc' : c' ∈ Ico a c hc'e : Ioc c' c ⊆ ec.baseSet ⊢ ∃ e, Icc a c ⊆ e.baseSet [PROOFSTEP] obtain ⟨d, ⟨hdab, ead, had⟩, hd⟩ : ∃ d ∈ s, d ∈ Ioc c' c := hsc.exists_between hc'.2 [GOAL] case inr.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc✝ : c ∈ Icc a b hlt : a < c ec : Trivialization F TotalSpace.proj hc : c ∈ ec.baseSet c' : B hc' : c' ∈ Ico a c hc'e : Ioc c' c ⊆ ec.baseSet d : B hd : d ∈ Ioc c' c hdab : d ∈ Icc a b ead : Trivialization F TotalSpace.proj had : Icc a d ⊆ ead.baseSet ⊢ ∃ e, Icc a c ⊆ e.baseSet [PROOFSTEP] refine' ⟨ead.piecewiseLe ec d (had ⟨hdab.1, le_rfl⟩) (hc'e hd), subset_ite.2 _⟩ [GOAL] case inr.intro.intro.intro.intro.intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc✝ : c ∈ Icc a b hlt : a < c ec : Trivialization F TotalSpace.proj hc : c ∈ ec.baseSet c' : B hc' : c' ∈ Ico a c hc'e : Ioc c' c ⊆ ec.baseSet d : B hd : d ∈ Ioc c' c hdab : d ∈ Icc a b ead : Trivialization F TotalSpace.proj had : Icc a d ⊆ ead.baseSet ⊢ Icc a c ∩ Iic d ⊆ ead.baseSet ∧ Icc a c \ Iic d ⊆ (Trivialization.transFiberHomeomorph ec (Trivialization.coordChangeHomeomorph ec ead (_ : d ∈ ec.baseSet) (_ : d ∈ ead.baseSet))).baseSet [PROOFSTEP] refine' ⟨fun x hx => had ⟨hx.1.1, hx.2⟩, fun x hx => hc'e ⟨hd.1.trans (not_le.1 hx.2), hx.1.2⟩⟩ /- So, `c ∈ s`. Let `ec` be a trivialization of `proj` over `[a, c]`. If `c = b`, then we are done. Otherwise we show that `proj` can be trivialized over a larger interval `[a, d]`, `d ∈ (c, b]`, hence `c` is not an upper bound of `s`. -/ [GOAL] case intro.inr.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] cases' hc.2.eq_or_lt with heq hlt [GOAL] case intro.inr.intro.intro.inl ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet heq : c = b ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] exact ⟨ec, heq ▸ hec⟩ [GOAL] case intro.inr.intro.intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] suffices : ∃ d ∈ Ioc c b, ∃ e : Trivialization F (π F E), Icc a d ⊆ e.baseSet [GOAL] case intro.inr.intro.intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b this : ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] rcases this with ⟨d, hdcb, hd⟩ -- porting note: todo: use `rsuffices` [GOAL] case intro.inr.intro.intro.inr.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : ∃ e, Icc a d ⊆ e.baseSet ⊢ ∃ e, Icc a b ⊆ e.baseSet [PROOFSTEP] exact ((hsc.1 ⟨⟨hc.1.trans hdcb.1.le, hdcb.2⟩, hd⟩).not_lt hdcb.1).elim [GOAL] case this ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] obtain ⟨d, hdcb, hd⟩ : ∃ d ∈ Ioc c b, Ico c d ⊆ ec.baseSet := (mem_nhdsWithin_Ici_iff_exists_mem_Ioc_Ico_subset hlt).1 (mem_nhdsWithin_of_mem_nhds <| IsOpen.mem_nhds ec.open_baseSet (hec ⟨hc.1, le_rfl⟩)) [GOAL] case this.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] have had : Ico a d ⊆ ec.baseSet := Ico_subset_Icc_union_Ico.trans (union_subset hec hd) [GOAL] case this.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] by_cases he : Disjoint (Iio d) (Ioi c) [GOAL] case pos ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet he : Disjoint (Iio d) (Ioi c) ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] obtain ⟨ed, hed⟩ : ∃ ed : Trivialization F (π F E), d ∈ ed.baseSet := ⟨trivializationAt F E d, mem_baseSet_trivializationAt F E d⟩ [GOAL] case pos.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet he : Disjoint (Iio d) (Ioi c) ed : Trivialization F TotalSpace.proj hed : d ∈ ed.baseSet ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] refine' ⟨d, hdcb, (ec.restrOpen (Iio d) isOpen_Iio).disjointUnion (ed.restrOpen (Ioi c) isOpen_Ioi) (he.mono (inter_subset_right _ _) (inter_subset_right _ _)), fun x hx => _⟩ [GOAL] case pos.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet he : Disjoint (Iio d) (Ioi c) ed : Trivialization F TotalSpace.proj hed : d ∈ ed.baseSet x : B hx : x ∈ Icc a d ⊢ x ∈ (Trivialization.disjointUnion (Trivialization.restrOpen ec (Iio d) (_ : IsOpen (Iio d))) (Trivialization.restrOpen ed (Ioi c) (_ : IsOpen (Ioi c))) (_ : Disjoint (Trivialization.restrOpen ec (Iio d) (_ : IsOpen (Iio d))).baseSet (Trivialization.restrOpen ed (Ioi c) (_ : IsOpen (Ioi c))).baseSet)).baseSet [PROOFSTEP] rcases hx.2.eq_or_lt with (rfl | hxd) [GOAL] case pos.intro.inl ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b ed : Trivialization F TotalSpace.proj x : B hdcb : x ∈ Ioc c b hd : Ico c x ⊆ ec.baseSet had : Ico a x ⊆ ec.baseSet he : Disjoint (Iio x) (Ioi c) hed : x ∈ ed.baseSet hx : x ∈ Icc a x ⊢ x ∈ (Trivialization.disjointUnion (Trivialization.restrOpen ec (Iio x) (_ : IsOpen (Iio x))) (Trivialization.restrOpen ed (Ioi c) (_ : IsOpen (Ioi c))) (_ : Disjoint (Trivialization.restrOpen ec (Iio x) (_ : IsOpen (Iio x))).baseSet (Trivialization.restrOpen ed (Ioi c) (_ : IsOpen (Ioi c))).baseSet)).baseSet case pos.intro.inr ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet he : Disjoint (Iio d) (Ioi c) ed : Trivialization F TotalSpace.proj hed : d ∈ ed.baseSet x : B hx : x ∈ Icc a d hxd : x < d ⊢ x ∈ (Trivialization.disjointUnion (Trivialization.restrOpen ec (Iio d) (_ : IsOpen (Iio d))) (Trivialization.restrOpen ed (Ioi c) (_ : IsOpen (Ioi c))) (_ : Disjoint (Trivialization.restrOpen ec (Iio d) (_ : IsOpen (Iio d))).baseSet (Trivialization.restrOpen ed (Ioi c) (_ : IsOpen (Ioi c))).baseSet)).baseSet [PROOFSTEP] exacts [Or.inr ⟨hed, hdcb.1⟩, Or.inl ⟨had ⟨hx.1, hxd⟩, hxd⟩] [GOAL] case neg ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet he : ¬Disjoint (Iio d) (Ioi c) ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] rw [disjoint_left] at he [GOAL] case neg ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet he : ¬∀ ⦃a : B⦄, a ∈ Iio d → ¬a ∈ Ioi c ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] push_neg at he [GOAL] case neg ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet he : Exists fun ⦃a⦄ => a ∈ Iio d ∧ a ∈ Ioi (sSup s) ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] rcases he with ⟨d', hdd' : d' < d, hd'c⟩ [GOAL] case neg.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝⁷ : TopologicalSpace X inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F E : B → Type u_5 inst✝⁴ : TopologicalSpace (TotalSpace F E) inst✝³ : (b : B) → TopologicalSpace (E b) inst✝² : ConditionallyCompleteLinearOrder B inst✝¹ : OrderTopology B inst✝ : FiberBundle F E a b : B ea : Trivialization F TotalSpace.proj hea : a ∈ ea.baseSet hab : a ≤ b s : Set B := {x | x ∈ Icc a b ∧ ∃ e, Icc a x ⊆ e.baseSet} ha : a ∈ s sne : Set.Nonempty s hsb : b ∈ upperBounds s sbd : BddAbove s c : B := sSup s hsc : IsLUB s c hc : c ∈ Icc a b ec : Trivialization F TotalSpace.proj hec : Icc a c ⊆ ec.baseSet hlt : c < b d : B hdcb : d ∈ Ioc c b hd : Ico c d ⊆ ec.baseSet had : Ico a d ⊆ ec.baseSet d' : B hdd' : d' < d hd'c : d' ∈ Ioi (sSup s) ⊢ ∃ d, d ∈ Ioc c b ∧ ∃ e, Icc a d ⊆ e.baseSet [PROOFSTEP] exact ⟨d', ⟨hd'c, hdd'.le.trans hdcb.2⟩, ec, (Icc_subset_Ico_right hdd').trans had⟩ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι p : B × F hp : p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ ⊢ (fun p => (p.fst, coordChange Z i j p.fst p.snd)) p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ [PROOFSTEP] simpa using hp [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι p : B × F hp : p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ ⊢ (fun p => (p.fst, coordChange Z j i p.fst p.snd)) p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ [PROOFSTEP] simpa using hp [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι ⊢ ∀ ⦃x : B × F⦄, x ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z j i p.fst p.snd)) ((fun p => (p.fst, coordChange Z i j p.fst p.snd)) x) = x [PROOFSTEP] rintro ⟨x, v⟩ hx [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : (x, v) ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ ⊢ (fun p => (p.fst, coordChange Z j i p.fst p.snd)) ((fun p => (p.fst, coordChange Z i j p.fst p.snd)) (x, v)) = (x, v) [PROOFSTEP] simp only [prod_mk_mem_set_prod_eq, mem_inter_iff, and_true, mem_univ] at hx [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ (fun p => (p.fst, coordChange Z j i p.fst p.snd)) ((fun p => (p.fst, coordChange Z i j p.fst p.snd)) (x, v)) = (x, v) [PROOFSTEP] dsimp only [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ (x, coordChange Z j i x (coordChange Z i j x v)) = (x, v) [PROOFSTEP] rw [coordChange_comp, Z.coordChange_self] [GOAL] case mk.a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ x ∈ baseSet Z i case mk.a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ x ∈ baseSet Z i ∩ baseSet Z j ∩ baseSet Z i [PROOFSTEP] exacts [hx.1, ⟨⟨hx.1, hx.2⟩, hx.1⟩] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι ⊢ ∀ ⦃x : B × F⦄, x ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z i j p.fst p.snd)) ((fun p => (p.fst, coordChange Z j i p.fst p.snd)) x) = x [PROOFSTEP] rintro ⟨x, v⟩ hx [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : (x, v) ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ ⊢ (fun p => (p.fst, coordChange Z i j p.fst p.snd)) ((fun p => (p.fst, coordChange Z j i p.fst p.snd)) (x, v)) = (x, v) [PROOFSTEP] simp only [prod_mk_mem_set_prod_eq, mem_inter_iff, and_true_iff, mem_univ] at hx [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ (fun p => (p.fst, coordChange Z i j p.fst p.snd)) ((fun p => (p.fst, coordChange Z j i p.fst p.snd)) (x, v)) = (x, v) [PROOFSTEP] dsimp only [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ (x, coordChange Z i j x (coordChange Z j i x v)) = (x, v) [PROOFSTEP] rw [Z.coordChange_comp, Z.coordChange_self] [GOAL] case mk.a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ x ∈ baseSet Z j [PROOFSTEP] exact hx.2 [GOAL] case mk.a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ x ∈ baseSet Z j ∩ baseSet Z i ∩ baseSet Z j [PROOFSTEP] simp [hx] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι ⊢ ContinuousOn { toFun := fun p => (p.fst, coordChange Z i j p.fst p.snd), invFun := fun p => (p.fst, coordChange Z j i p.fst p.snd), source := (baseSet Z i ∩ baseSet Z j) ×ˢ univ, target := (baseSet Z i ∩ baseSet Z j) ×ˢ univ, map_source' := (_ : ∀ (p : B × F), p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z i j p.fst p.snd)) p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ), map_target' := (_ : ∀ (p : B × F), p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z j i p.fst p.snd)) p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ), left_inv' := (_ : ∀ ⦃x : B × F⦄, x ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z j i p.fst p.snd)) ((fun p => (p.fst, coordChange Z i j p.fst p.snd)) x) = x), right_inv' := (_ : ∀ ⦃x : B × F⦄, x ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z i j p.fst p.snd)) ((fun p => (p.fst, coordChange Z j i p.fst p.snd)) x) = x) }.invFun { toFun := fun p => (p.fst, coordChange Z i j p.fst p.snd), invFun := fun p => (p.fst, coordChange Z j i p.fst p.snd), source := (baseSet Z i ∩ baseSet Z j) ×ˢ univ, target := (baseSet Z i ∩ baseSet Z j) ×ˢ univ, map_source' := (_ : ∀ (p : B × F), p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z i j p.fst p.snd)) p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ), map_target' := (_ : ∀ (p : B × F), p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z j i p.fst p.snd)) p ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ), left_inv' := (_ : ∀ ⦃x : B × F⦄, x ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z j i p.fst p.snd)) ((fun p => (p.fst, coordChange Z i j p.fst p.snd)) x) = x), right_inv' := (_ : ∀ ⦃x : B × F⦄, x ∈ (baseSet Z i ∩ baseSet Z j) ×ˢ univ → (fun p => (p.fst, coordChange Z i j p.fst p.snd)) ((fun p => (p.fst, coordChange Z j i p.fst p.snd)) x) = x) }.target [PROOFSTEP] simpa [inter_comm] using continuous_fst.continuousOn.prod (Z.continuousOn_coordChange j i) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι p : B × F ⊢ p ∈ (trivChange Z i j).toLocalEquiv.source ↔ p.fst ∈ baseSet Z i ∩ baseSet Z j [PROOFSTEP] erw [mem_prod] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i j : ι p : B × F ⊢ p.fst ∈ baseSet Z i ∩ baseSet Z j ∧ p.snd ∈ univ ↔ p.fst ∈ baseSet Z i ∩ baseSet Z j [PROOFSTEP] simp [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι p : TotalSpace Z hp : p ∈ proj Z ⁻¹' baseSet Z i ⊢ (fun p => (p.proj, coordChange Z (indexAt Z p.proj) i p.proj p.snd)) p ∈ baseSet Z i ×ˢ univ [PROOFSTEP] simpa only [Set.mem_preimage, and_true_iff, Set.mem_univ, Set.prod_mk_mem_set_prod_eq] using hp [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι p : B × F hp : p ∈ baseSet Z i ×ˢ univ ⊢ (fun p => { proj := p.fst, snd := coordChange Z i (indexAt Z p.fst) p.fst p.snd }) p ∈ proj Z ⁻¹' baseSet Z i [PROOFSTEP] simpa only [Set.mem_preimage, and_true_iff, Set.mem_univ, Set.mem_prod] using hp [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι ⊢ ∀ ⦃x : TotalSpace Z⦄, x ∈ proj Z ⁻¹' baseSet Z i → (fun p => { proj := p.fst, snd := coordChange Z i (indexAt Z p.fst) p.fst p.snd }) ((fun p => (p.proj, coordChange Z (indexAt Z p.proj) i p.proj p.snd)) x) = x [PROOFSTEP] rintro ⟨x, v⟩ hx [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : Fiber Z x hx : { proj := x, snd := v } ∈ proj Z ⁻¹' baseSet Z i ⊢ (fun p => { proj := p.fst, snd := coordChange Z i (indexAt Z p.fst) p.fst p.snd }) ((fun p => (p.proj, coordChange Z (indexAt Z p.proj) i p.proj p.snd)) { proj := x, snd := v }) = { proj := x, snd := v } [PROOFSTEP] replace hx : x ∈ Z.baseSet i := hx [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : Fiber Z x hx : x ∈ baseSet Z i ⊢ (fun p => { proj := p.fst, snd := coordChange Z i (indexAt Z p.fst) p.fst p.snd }) ((fun p => (p.proj, coordChange Z (indexAt Z p.proj) i p.proj p.snd)) { proj := x, snd := v }) = { proj := x, snd := v } [PROOFSTEP] dsimp only [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : Fiber Z x hx : x ∈ baseSet Z i ⊢ { proj := x, snd := coordChange Z i (indexAt Z x) x (coordChange Z (indexAt Z x) i x v) } = { proj := x, snd := v } [PROOFSTEP] rw [Z.coordChange_comp, Z.coordChange_self] [GOAL] case mk.a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : Fiber Z x hx : x ∈ baseSet Z i ⊢ x ∈ baseSet Z (indexAt Z x) [PROOFSTEP] apply_rules [mem_baseSet_at, mem_inter] [GOAL] case mk.a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : Fiber Z x hx : x ∈ baseSet Z i ⊢ x ∈ baseSet Z (indexAt Z x) ∩ baseSet Z i ∩ baseSet Z (indexAt Z x) [PROOFSTEP] apply_rules [mem_baseSet_at, mem_inter] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι ⊢ ∀ ⦃x : B × F⦄, x ∈ baseSet Z i ×ˢ univ → (fun p => (p.proj, coordChange Z (indexAt Z p.proj) i p.proj p.snd)) ((fun p => { proj := p.fst, snd := coordChange Z i (indexAt Z p.fst) p.fst p.snd }) x) = x [PROOFSTEP] rintro ⟨x, v⟩ hx [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : F hx : (x, v) ∈ baseSet Z i ×ˢ univ ⊢ (fun p => (p.proj, coordChange Z (indexAt Z p.proj) i p.proj p.snd)) ((fun p => { proj := p.fst, snd := coordChange Z i (indexAt Z p.fst) p.fst p.snd }) (x, v)) = (x, v) [PROOFSTEP] simp only [prod_mk_mem_set_prod_eq, and_true_iff, mem_univ] at hx [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : F hx : x ∈ baseSet Z i ⊢ (fun p => (p.proj, coordChange Z (indexAt Z p.proj) i p.proj p.snd)) ((fun p => { proj := p.fst, snd := coordChange Z i (indexAt Z p.fst) p.fst p.snd }) (x, v)) = (x, v) [PROOFSTEP] dsimp only [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : F hx : x ∈ baseSet Z i ⊢ (x, coordChange Z (indexAt Z x) i x (coordChange Z i (indexAt Z x) x v)) = (x, v) [PROOFSTEP] rw [Z.coordChange_comp, Z.coordChange_self] [GOAL] case mk.a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : F hx : x ∈ baseSet Z i ⊢ x ∈ baseSet Z i case mk.a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι x : B v : F hx : x ∈ baseSet Z i ⊢ x ∈ baseSet Z i ∩ baseSet Z (indexAt Z x) ∩ baseSet Z i [PROOFSTEP] exacts [hx, ⟨⟨hx, Z.mem_baseSet_at _⟩, hx⟩] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι p : B × F ⊢ p ∈ (localTrivAsLocalEquiv Z i).target ↔ p.fst ∈ baseSet Z i [PROOFSTEP] erw [mem_prod] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι p : B × F ⊢ p.fst ∈ baseSet Z i ∧ p.snd ∈ univ ↔ p.fst ∈ baseSet Z i [PROOFSTEP] simp only [and_true_iff, mem_univ] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ i j : ι ⊢ LocalEquiv.trans (LocalEquiv.symm (localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z j) ≈ (trivChange Z i j).toLocalEquiv [PROOFSTEP] constructor [GOAL] case left ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ i j : ι ⊢ (LocalEquiv.trans (LocalEquiv.symm (localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z j)).source = (trivChange Z i j).toLocalEquiv.source [PROOFSTEP] ext x [GOAL] case left.h ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ i j : ι x : B × F ⊢ x ∈ (LocalEquiv.trans (LocalEquiv.symm (localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z j)).source ↔ x ∈ (trivChange Z i j).toLocalEquiv.source [PROOFSTEP] simp only [mem_localTrivAsLocalEquiv_target, mfld_simps] [GOAL] case left.h ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ i j : ι x : B × F ⊢ x.fst ∈ baseSet Z i ∧ ↑(LocalEquiv.symm (localTrivAsLocalEquiv Z i)) x ∈ (localTrivAsLocalEquiv Z j).source ↔ x.fst ∈ baseSet Z i ∧ x.fst ∈ baseSet Z j [PROOFSTEP] rfl [GOAL] case right ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ i j : ι ⊢ EqOn (↑(LocalEquiv.trans (LocalEquiv.symm (localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z j))) (↑(trivChange Z i j).toLocalEquiv) (LocalEquiv.trans (LocalEquiv.symm (localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z j)).source [PROOFSTEP] rintro ⟨x, v⟩ hx [GOAL] case right.mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ i j : ι x : B v : F hx : (x, v) ∈ (LocalEquiv.trans (LocalEquiv.symm (localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z j)).source ⊢ ↑(LocalEquiv.trans (LocalEquiv.symm (localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z j)) (x, v) = ↑(trivChange Z i j).toLocalEquiv (x, v) [PROOFSTEP] simp only [trivChange, localTrivAsLocalEquiv, LocalEquiv.symm, true_and_iff, Prod.mk.inj_iff, prod_mk_mem_set_prod_eq, LocalEquiv.trans_source, mem_inter_iff, and_true_iff, mem_preimage, proj, mem_univ, eq_self_iff_true, (· ∘ ·), LocalEquiv.coe_trans, TotalSpace.proj] at hx ⊢ [GOAL] case right.mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ i j : ι x : B v : F hx : x ∈ baseSet Z i ∧ x ∈ baseSet Z j ⊢ coordChange Z (indexAt Z x) j x (coordChange Z i (indexAt Z x) x v) = coordChange Z i j x v [PROOFSTEP] simp only [Z.coordChange_comp, hx, mem_inter_iff, and_self_iff, mem_baseSet_at] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι ⊢ IsOpen (localTrivAsLocalEquiv Z i).source [PROOFSTEP] apply TopologicalSpace.GenerateOpen.basic [GOAL] case a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι ⊢ (localTrivAsLocalEquiv Z i).source ∈ ⋃ (i : ι) (s : Set (B × F)) (_ : IsOpen s), {(localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' s} [PROOFSTEP] simp only [exists_prop, mem_iUnion, mem_singleton_iff] [GOAL] case a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι ⊢ ∃ i_1 i_2, IsOpen i_2 ∧ (localTrivAsLocalEquiv Z i).source = (localTrivAsLocalEquiv Z i_1).source ∩ ↑(localTrivAsLocalEquiv Z i_1) ⁻¹' i_2 [PROOFSTEP] refine ⟨i, Z.baseSet i ×ˢ univ, (Z.isOpen_baseSet i).prod isOpen_univ, ?_⟩ [GOAL] case a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι ⊢ (localTrivAsLocalEquiv Z i).source = (localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' baseSet Z i ×ˢ univ [PROOFSTEP] ext p [GOAL] case a.h ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι p : TotalSpace Z ⊢ p ∈ (localTrivAsLocalEquiv Z i).source ↔ p ∈ (localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' baseSet Z i ×ˢ univ [PROOFSTEP] simp only [localTrivAsLocalEquiv_apply, prod_mk_mem_set_prod_eq, mem_inter_iff, and_self_iff, mem_localTrivAsLocalEquiv_source, and_true, mem_univ, mem_preimage] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι ⊢ ContinuousOn (↑(localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z i).source [PROOFSTEP] rw [continuousOn_open_iff (Z.open_source' i)] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι ⊢ ∀ (t : Set (B × F)), IsOpen t → IsOpen ((localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' t) [PROOFSTEP] intro s s_open [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι s : Set (B × F) s_open : IsOpen s ⊢ IsOpen ((localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' s) [PROOFSTEP] apply TopologicalSpace.GenerateOpen.basic [GOAL] case a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι s : Set (B × F) s_open : IsOpen s ⊢ (localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' s ∈ ⋃ (i : ι) (s : Set (B × F)) (_ : IsOpen s), {(localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' s} [PROOFSTEP] simp only [exists_prop, mem_iUnion, mem_singleton_iff] [GOAL] case a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι s : Set (B × F) s_open : IsOpen s ⊢ ∃ i_1 i_2, IsOpen i_2 ∧ (localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' s = (localTrivAsLocalEquiv Z i_1).source ∩ ↑(localTrivAsLocalEquiv Z i_1) ⁻¹' i_2 [PROOFSTEP] exact ⟨i, s, s_open, rfl⟩ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι ⊢ ContinuousOn (localTrivAsLocalEquiv Z i).invFun (localTrivAsLocalEquiv Z i).target [PROOFSTEP] refine continuousOn_open_of_generateFrom fun t ht ↦ ?_ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) ht : t ∈ ⋃ (i : ι) (s : Set (B × F)) (_ : IsOpen s), {(localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' s} ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' t) [PROOFSTEP] simp only [exists_prop, mem_iUnion, mem_singleton_iff] at ht [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) ht : ∃ i i_1, IsOpen i_1 ∧ t = (localTrivAsLocalEquiv Z i).source ∩ ↑(localTrivAsLocalEquiv Z i) ⁻¹' i_1 ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' t) [PROOFSTEP] obtain ⟨j, s, s_open, ts⟩ : ∃ j s, IsOpen s ∧ t = (localTrivAsLocalEquiv Z j).source ∩ localTrivAsLocalEquiv Z j ⁻¹' s := ht [GOAL] case intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' t) [PROOFSTEP] rw [ts] [GOAL] case intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' ((localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s)) [PROOFSTEP] simp only [LocalEquiv.right_inv, preimage_inter, LocalEquiv.left_inv] [GOAL] case intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ ((localTrivAsLocalEquiv Z i).invFun ⁻¹' (localTrivAsLocalEquiv Z j).source ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' (↑(localTrivAsLocalEquiv Z j) ⁻¹' s))) [PROOFSTEP] let e := Z.localTrivAsLocalEquiv i [GOAL] case intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s e : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z i ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ ((localTrivAsLocalEquiv Z i).invFun ⁻¹' (localTrivAsLocalEquiv Z j).source ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' (↑(localTrivAsLocalEquiv Z j) ⁻¹' s))) [PROOFSTEP] let e' := Z.localTrivAsLocalEquiv j [GOAL] case intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s e : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z i e' : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z j ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ ((localTrivAsLocalEquiv Z i).invFun ⁻¹' (localTrivAsLocalEquiv Z j).source ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' (↑(localTrivAsLocalEquiv Z j) ⁻¹' s))) [PROOFSTEP] let f := e.symm.trans e' [GOAL] case intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s e : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z i e' : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z j f : LocalEquiv (B × F) (B × F) := LocalEquiv.trans (LocalEquiv.symm e) e' ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ ((localTrivAsLocalEquiv Z i).invFun ⁻¹' (localTrivAsLocalEquiv Z j).source ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' (↑(localTrivAsLocalEquiv Z j) ⁻¹' s))) [PROOFSTEP] have : IsOpen (f.source ∩ f ⁻¹' s) := by rw [LocalEquiv.EqOnSource.source_inter_preimage_eq (Z.localTrivAsLocalEquiv_trans i j)] exact (continuousOn_open_iff (Z.trivChange i j).open_source).1 (Z.trivChange i j).continuousOn _ s_open [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s e : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z i e' : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z j f : LocalEquiv (B × F) (B × F) := LocalEquiv.trans (LocalEquiv.symm e) e' ⊢ IsOpen (f.source ∩ ↑f ⁻¹' s) [PROOFSTEP] rw [LocalEquiv.EqOnSource.source_inter_preimage_eq (Z.localTrivAsLocalEquiv_trans i j)] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s e : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z i e' : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z j f : LocalEquiv (B × F) (B × F) := LocalEquiv.trans (LocalEquiv.symm e) e' ⊢ IsOpen ((trivChange Z i j).toLocalEquiv.source ∩ ↑(trivChange Z i j).toLocalEquiv ⁻¹' s) [PROOFSTEP] exact (continuousOn_open_iff (Z.trivChange i j).open_source).1 (Z.trivChange i j).continuousOn _ s_open [GOAL] case intro.intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s e : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z i e' : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z j f : LocalEquiv (B × F) (B × F) := LocalEquiv.trans (LocalEquiv.symm e) e' this : IsOpen (f.source ∩ ↑f ⁻¹' s) ⊢ IsOpen ((localTrivAsLocalEquiv Z i).target ∩ ((localTrivAsLocalEquiv Z i).invFun ⁻¹' (localTrivAsLocalEquiv Z j).source ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' (↑(localTrivAsLocalEquiv Z j) ⁻¹' s))) [PROOFSTEP] convert this using 1 [GOAL] case h.e'_3 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s e : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z i e' : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z j f : LocalEquiv (B × F) (B × F) := LocalEquiv.trans (LocalEquiv.symm e) e' this : IsOpen (f.source ∩ ↑f ⁻¹' s) ⊢ (localTrivAsLocalEquiv Z i).target ∩ ((localTrivAsLocalEquiv Z i).invFun ⁻¹' (localTrivAsLocalEquiv Z j).source ∩ (localTrivAsLocalEquiv Z i).invFun ⁻¹' (↑(localTrivAsLocalEquiv Z j) ⁻¹' s)) = f.source ∩ ↑f ⁻¹' s [PROOFSTEP] dsimp [LocalEquiv.trans_source] [GOAL] case h.e'_3 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι t : Set (TotalSpace Z) j : ι s : Set (B × F) s_open : IsOpen s ts : t = (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ⁻¹' s e : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z i e' : LocalEquiv (TotalSpace Z) (B × F) := localTrivAsLocalEquiv Z j f : LocalEquiv (B × F) (B × F) := LocalEquiv.trans (LocalEquiv.symm e) e' this : IsOpen (f.source ∩ ↑f ⁻¹' s) ⊢ (localTrivAsLocalEquiv Z i).target ∩ (↑(LocalEquiv.symm (localTrivAsLocalEquiv Z i)) ⁻¹' (localTrivAsLocalEquiv Z j).source ∩ ↑(LocalEquiv.symm (localTrivAsLocalEquiv Z i)) ⁻¹' (↑(localTrivAsLocalEquiv Z j) ⁻¹' s)) = (localTrivAsLocalEquiv Z i).target ∩ ↑(LocalEquiv.symm (localTrivAsLocalEquiv Z i)) ⁻¹' (localTrivAsLocalEquiv Z j).source ∩ ↑(localTrivAsLocalEquiv Z j) ∘ ↑(LocalEquiv.symm (localTrivAsLocalEquiv Z i)) ⁻¹' s [PROOFSTEP] rw [← preimage_comp, inter_assoc] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι p : TotalSpace Z x✝ : p ∈ { toLocalEquiv := localTrivAsLocalEquiv Z i, open_source := (_ : IsOpen (localTrivAsLocalEquiv Z i).source), open_target := (_ : IsOpen (baseSet Z i ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (↑(localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z i).source), continuous_invFun := (_ : ContinuousOn (localTrivAsLocalEquiv Z i).invFun (localTrivAsLocalEquiv Z i).target) }.toLocalEquiv.source ⊢ (↑{ toLocalEquiv := localTrivAsLocalEquiv Z i, open_source := (_ : IsOpen (localTrivAsLocalEquiv Z i).source), open_target := (_ : IsOpen (baseSet Z i ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (↑(localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z i).source), continuous_invFun := (_ : ContinuousOn (localTrivAsLocalEquiv Z i).invFun (localTrivAsLocalEquiv Z i).target) } p).fst = proj Z p [PROOFSTEP] simp only [mfld_simps] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i✝ : ι b : B a : F i : ι p : TotalSpace Z x✝ : p ∈ { toLocalEquiv := localTrivAsLocalEquiv Z i, open_source := (_ : IsOpen (localTrivAsLocalEquiv Z i).source), open_target := (_ : IsOpen (baseSet Z i ×ˢ univ)), continuous_toFun := (_ : ContinuousOn (↑(localTrivAsLocalEquiv Z i)) (localTrivAsLocalEquiv Z i).source), continuous_invFun := (_ : ContinuousOn (localTrivAsLocalEquiv Z i).invFun (localTrivAsLocalEquiv Z i).target) }.toLocalEquiv.source ⊢ (↑(localTrivAsLocalEquiv Z i) p).fst = p.proj [PROOFSTEP] rfl [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v ⊢ Continuous (let_fun this := fun x => { proj := x, snd := v }; this) [PROOFSTEP] refine continuous_iff_continuousAt.2 fun x => ?_ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v x : B ⊢ ContinuousAt (let_fun this := fun x => { proj := x, snd := v }; this) x [PROOFSTEP] have A : Z.baseSet (Z.indexAt x) ∈ 𝓝 x := IsOpen.mem_nhds (Z.isOpen_baseSet (Z.indexAt x)) (Z.mem_baseSet_at x) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v x : B A : baseSet Z (indexAt Z x) ∈ 𝓝 x ⊢ ContinuousAt (let_fun this := fun x => { proj := x, snd := v }; this) x [PROOFSTEP] refine ((Z.localTrivAt x).toLocalHomeomorph.continuousAt_iff_continuousAt_comp_left ?_).2 ?_ [GOAL] case refine_1 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v x : B A : baseSet Z (indexAt Z x) ∈ 𝓝 x ⊢ (let_fun this := fun x => { proj := x, snd := v }; this) ⁻¹' (localTrivAt Z x).toLocalHomeomorph.toLocalEquiv.source ∈ 𝓝 x [PROOFSTEP] exact A [GOAL] case refine_2 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v x : B A : baseSet Z (indexAt Z x) ∈ 𝓝 x ⊢ ContinuousAt (↑(localTrivAt Z x).toLocalHomeomorph ∘ let_fun this := fun x => { proj := x, snd := v }; this) x [PROOFSTEP] apply continuousAt_id.prod [GOAL] case refine_2 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v x : B A : baseSet Z (indexAt Z x) ∈ 𝓝 x ⊢ ContinuousAt (fun x_1 => coordChange Z (indexAt Z ((let_fun this := fun x => { proj := x, snd := v }; this) x_1).proj) (indexAt Z x) ((let_fun this := fun x => { proj := x, snd := v }; this) x_1).proj ((let_fun this := fun x => { proj := x, snd := v }; this) x_1).snd) x [PROOFSTEP] simp only [(· ∘ ·), mfld_simps, localTrivAt_snd] [GOAL] case refine_2 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v x : B A : baseSet Z (indexAt Z x) ∈ 𝓝 x ⊢ ContinuousAt (fun x_1 => coordChange Z (indexAt Z x_1) (indexAt Z x) x_1 v) x [PROOFSTEP] have : ContinuousOn (fun _ : B => v) (Z.baseSet (Z.indexAt x)) := continuousOn_const [GOAL] case refine_2 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v x : B A : baseSet Z (indexAt Z x) ∈ 𝓝 x this : ContinuousOn (fun x => v) (baseSet Z (indexAt Z x)) ⊢ ContinuousAt (fun x_1 => coordChange Z (indexAt Z x_1) (indexAt Z x) x_1 v) x [PROOFSTEP] refine (this.congr fun y hy ↦ ?_).continuousAt A [GOAL] case refine_2 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a v : F h : ∀ (i j : ι) (x : B), x ∈ baseSet Z i ∩ baseSet Z j → coordChange Z i j x v = v x : B A : baseSet Z (indexAt Z x) ∈ 𝓝 x this : ContinuousOn (fun x => v) (baseSet Z (indexAt Z x)) y : B hy : y ∈ baseSet Z (indexAt Z x) ⊢ coordChange Z (indexAt Z y) (indexAt Z x) y v = v [PROOFSTEP] exact h _ _ _ ⟨mem_baseSet_at _ _, hy⟩ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a : F p : TotalSpace Z ⊢ ↑(localTrivAt Z p.proj) p = (p.proj, p.snd) [PROOFSTEP] rw [localTrivAt, localTriv_apply, coordChange_self] [GOAL] case a ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a : F p : TotalSpace Z ⊢ p.proj ∈ baseSet Z (indexAt Z p.proj) [PROOFSTEP] exact Z.mem_baseSet_at p.1 [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b✝ : B a : F b : B ⊢ b ∈ (localTrivAt Z b).baseSet [PROOFSTEP] rw [localTrivAt, ← baseSet_at] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b✝ : B a : F b : B ⊢ b ∈ baseSet Z (indexAt Z b) [PROOFSTEP] exact Z.mem_baseSet_at b [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b : B a : F ⊢ { proj := b, snd := a } ∈ (localTrivAt Z b).toLocalHomeomorph.toLocalEquiv.source [PROOFSTEP] simp only [mfld_simps] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b✝ : B a : F b : B x : Fiber Z b ⊢ 𝓝 x = comap (TotalSpace.mk b) (𝓝 { proj := b, snd := x }) [PROOFSTEP] rw [(Z.localTrivAt b).nhds_eq_comap_inf_principal (mk_mem_localTrivAt_source _ _ _), comap_inf, comap_principal, comap_comap] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b✝ : B a : F b : B x : Fiber Z b ⊢ 𝓝 x = comap (↑(localTrivAt Z b).toLocalHomeomorph ∘ TotalSpace.mk b) (𝓝 (↑(localTrivAt Z b).toLocalHomeomorph { proj := b, snd := x })) ⊓ 𝓟 (TotalSpace.mk b ⁻¹' (localTrivAt Z b).toLocalHomeomorph.toLocalEquiv.source) [PROOFSTEP] simp only [(· ∘ ·), localTrivAt_apply_mk, Trivialization.coe_coe, ← (embedding_prod_mk b).nhds_eq_comap] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b✝ : B a : F b : B x : Fiber Z b ⊢ 𝓝 x = 𝓝 x ⊓ 𝓟 (TotalSpace.mk b ⁻¹' (localTrivAt Z b).toLocalHomeomorph.toLocalEquiv.source) [PROOFSTEP] convert_to 𝓝 x = 𝓝 x ⊓ 𝓟 univ [GOAL] case h.e'_3 ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b✝ : B a : F b : B x : Fiber Z b ⊢ 𝓝 x ⊓ 𝓟 (TotalSpace.mk b ⁻¹' (localTrivAt Z b).toLocalHomeomorph.toLocalEquiv.source) = 𝓝 x ⊓ 𝓟 univ [PROOFSTEP] congr [GOAL] case h.e'_3.e_a.e_s ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b✝ : B a : F b : B x : Fiber Z b ⊢ TotalSpace.mk b ⁻¹' (localTrivAt Z b).toLocalHomeomorph.toLocalEquiv.source = univ [PROOFSTEP] exact eq_univ_of_forall (mk_mem_localTrivAt_source Z _) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F Z : FiberBundleCore ι B F i : ι b✝ : B a : F b : B x : Fiber Z b ⊢ 𝓝 x = 𝓝 x ⊓ 𝓟 univ [PROOFSTEP] rw [principal_univ, inf_top_eq] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas ⊢ ContinuousOn (↑(LocalEquiv.symm e.toLocalEquiv)) e.target [PROOFSTEP] refine' fun z H U h => preimage_nhdsWithin_coinduced' H (le_def.1 (nhds_mono _) U h) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas z : B × F H : z ∈ e.target U : Set (TotalSpace F E) h : U ∈ 𝓝 (↑(LocalEquiv.symm e.toLocalEquiv) z) ⊢ coinduced (fun x => ↑(LocalEquiv.symm e.toLocalEquiv) ↑x) inferInstance ≤ totalSpaceTopology a [PROOFSTEP] exact le_iSup₂ (α := TopologicalSpace (TotalSpace F E)) e he [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ e : Pretrivialization F TotalSpace.proj ⊢ IsOpen e.source [PROOFSTEP] refine isOpen_iSup_iff.mpr fun e' => isOpen_iSup_iff.mpr fun _ => ?_ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ e e' : Pretrivialization F TotalSpace.proj x✝ : e' ∈ a.pretrivializationAtlas ⊢ IsOpen e.source [PROOFSTEP] refine' isOpen_coinduced.mpr (isOpen_induced_iff.mpr ⟨e.target, e.open_target, _⟩) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ e e' : Pretrivialization F TotalSpace.proj x✝ : e' ∈ a.pretrivializationAtlas ⊢ Subtype.val ⁻¹' e.target = Pretrivialization.setSymm e' ⁻¹' e.source [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case h.mk ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ e e' : Pretrivialization F TotalSpace.proj x✝ : e' ∈ a.pretrivializationAtlas x : B × F hx : x ∈ e'.target ⊢ { val := x, property := hx } ∈ Subtype.val ⁻¹' e.target ↔ { val := x, property := hx } ∈ Pretrivialization.setSymm e' ⁻¹' e.source [PROOFSTEP] simp only [mem_preimage, Pretrivialization.setSymm, restrict, e.mem_target, e.mem_source, e'.proj_symm_apply hx] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ e e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas ⊢ IsOpen (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) [PROOFSTEP] letI := a.totalSpaceTopology [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ e e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ IsOpen (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) [PROOFSTEP] obtain ⟨u, hu1, hu2⟩ := continuousOn_iff'.mp (a.continuous_symm_of_mem_pretrivializationAtlas he') e.source (a.isOpen_source e) [GOAL] case intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ e e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a u : Set (B × F) hu1 : IsOpen u hu2 : ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source ∩ e'.target = u ∩ e'.target ⊢ IsOpen (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) [PROOFSTEP] rw [inter_comm, hu2] [GOAL] case intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ e e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a u : Set (B × F) hu1 : IsOpen u hu2 : ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source ∩ e'.target = u ∩ e'.target ⊢ IsOpen (u ∩ e'.target) [PROOFSTEP] exact hu1.inter e'.open_target [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ ContinuousOn (↑e.toLocalEquiv) e.source [PROOFSTEP] refine continuousOn_iff'.mpr fun s hs => ⟨e ⁻¹' s ∩ e.source, isOpen_iSup_iff.mpr fun e' => ?_, by rw [inter_assoc, inter_self]; rfl⟩ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s ⊢ ↑e.toLocalEquiv ⁻¹' s ∩ e.source = ↑e ⁻¹' s ∩ e.source ∩ e.source [PROOFSTEP] rw [inter_assoc, inter_self] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s ⊢ ↑e.toLocalEquiv ⁻¹' s ∩ e.source = ↑e ⁻¹' s ∩ e.source [PROOFSTEP] rfl [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj ⊢ IsOpen (↑e ⁻¹' s ∩ e.source) [PROOFSTEP] refine isOpen_iSup_iff.mpr fun he' => ?_ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas ⊢ IsOpen (↑e ⁻¹' s ∩ e.source) [PROOFSTEP] rw [isOpen_coinduced, isOpen_induced_iff] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas ⊢ ∃ t, IsOpen t ∧ Subtype.val ⁻¹' t = Pretrivialization.setSymm e' ⁻¹' (↑e ⁻¹' s ∩ e.source) [PROOFSTEP] obtain ⟨u, hu1, hu2⟩ := continuousOn_iff'.mp (a.continuous_trivChange _ he _ he') s hs [GOAL] case intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas u : Set (B × F) hu1 : IsOpen u hu2 : ↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) ⊢ ∃ t, IsOpen t ∧ Subtype.val ⁻¹' t = Pretrivialization.setSymm e' ⁻¹' (↑e ⁻¹' s ∩ e.source) [PROOFSTEP] have hu3 := congr_arg (fun s => (fun x : e'.target => (x : B × F)) ⁻¹' s) hu2 [GOAL] case intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas u : Set (B × F) hu1 : IsOpen u hu2 : ↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) hu3 : (fun s => (fun x => ↑x) ⁻¹' s) (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source)) = (fun s => (fun x => ↑x) ⁻¹' s) (u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source)) ⊢ ∃ t, IsOpen t ∧ Subtype.val ⁻¹' t = Pretrivialization.setSymm e' ⁻¹' (↑e ⁻¹' s ∩ e.source) [PROOFSTEP] simp only [Subtype.coe_preimage_self, preimage_inter, univ_inter] at hu3 [GOAL] case intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas u : Set (B × F) hu1 : IsOpen u hu2 : ↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) hu3 : (fun x => ↑x) ⁻¹' (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s) ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = (fun x => ↑x) ⁻¹' u ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) ⊢ ∃ t, IsOpen t ∧ Subtype.val ⁻¹' t = Pretrivialization.setSymm e' ⁻¹' (↑e ⁻¹' s ∩ e.source) [PROOFSTEP] refine ⟨u ∩ e'.toLocalEquiv.target ∩ e'.toLocalEquiv.symm ⁻¹' e.source, ?_, by simp only [preimage_inter, inter_univ, Subtype.coe_preimage_self, hu3.symm]; rfl⟩ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas u : Set (B × F) hu1 : IsOpen u hu2 : ↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) hu3 : (fun x => ↑x) ⁻¹' (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s) ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = (fun x => ↑x) ⁻¹' u ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) ⊢ Subtype.val ⁻¹' (u ∩ e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = Pretrivialization.setSymm e' ⁻¹' (↑e ⁻¹' s ∩ e.source) [PROOFSTEP] simp only [preimage_inter, inter_univ, Subtype.coe_preimage_self, hu3.symm] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas u : Set (B × F) hu1 : IsOpen u hu2 : ↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) hu3 : (fun x => ↑x) ⁻¹' (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s) ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = (fun x => ↑x) ⁻¹' u ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) ⊢ (fun x => ↑x) ⁻¹' (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s) ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = Pretrivialization.setSymm e' ⁻¹' (↑e ⁻¹' s) ∩ Pretrivialization.setSymm e' ⁻¹' e.source [PROOFSTEP] rfl [GOAL] case intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas u : Set (B × F) hu1 : IsOpen u hu2 : ↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) hu3 : (fun x => ↑x) ⁻¹' (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s) ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = (fun x => ↑x) ⁻¹' u ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) ⊢ IsOpen (u ∩ e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) [PROOFSTEP] rw [inter_assoc] [GOAL] case intro.intro ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj he : e ∈ a.pretrivializationAtlas x✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a s : Set (B × F) hs : IsOpen s e' : Pretrivialization F TotalSpace.proj he' : e' ∈ a.pretrivializationAtlas u : Set (B × F) hu1 : IsOpen u hu2 : ↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) hu3 : (fun x => ↑x) ⁻¹' (↑e ∘ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' s) ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) = (fun x => ↑x) ⁻¹' u ∩ (fun x => ↑x) ⁻¹' (↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source) ⊢ IsOpen (u ∩ (e'.target ∩ ↑(LocalEquiv.symm e'.toLocalEquiv) ⁻¹' e.source)) [PROOFSTEP] exact hu1.inter (a.isOpen_target_of_mem_pretrivializationAtlas_inter e e' he') [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B x : E b ⊢ { proj := b, snd := x } ∈ (pretrivializationAt a b).source [PROOFSTEP] simp only [(a.pretrivializationAt b).source_eq, mem_preimage, TotalSpace.proj] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B x : E b ⊢ b ∈ (pretrivializationAt a b).baseSet [PROOFSTEP] exact a.mem_base_pretrivializationAt b [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B ⊢ Continuous (TotalSpace.mk b) [PROOFSTEP] letI := a.totalSpaceTopology [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ Continuous (TotalSpace.mk b) [PROOFSTEP] let e := a.trivializationOfMemPretrivializationAtlas (a.pretrivialization_mem_atlas b) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj b : B this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a b ∈ a.pretrivializationAtlas) ⊢ Continuous (TotalSpace.mk b) [PROOFSTEP] rw [e.toLocalHomeomorph.continuous_iff_continuous_comp_left (a.totalSpaceMk_preimage_source b)] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj b : B this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a b ∈ a.pretrivializationAtlas) ⊢ Continuous (↑e.toLocalHomeomorph ∘ TotalSpace.mk b) [PROOFSTEP] exact continuous_iff_le_induced.mpr (le_antisymm_iff.mp (a.totalSpaceMk_inducing b).induced).1 [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B h : Inducing (↑(pretrivializationAt a b) ∘ TotalSpace.mk b) ⊢ Inducing (TotalSpace.mk b) [PROOFSTEP] letI := a.totalSpaceTopology [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B h : Inducing (↑(pretrivializationAt a b) ∘ TotalSpace.mk b) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ Inducing (TotalSpace.mk b) [PROOFSTEP] rw [← restrict_comp_codRestrict (a.mem_pretrivializationAt_source b)] at h [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B h : Inducing (restrict (pretrivializationAt a b).source ↑(pretrivializationAt a b) ∘ codRestrict (fun x => { proj := b, snd := x }) (pretrivializationAt a b).source (_ : ∀ (x : E b), { proj := b, snd := x } ∈ (pretrivializationAt a b).source)) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ Inducing (TotalSpace.mk b) [PROOFSTEP] apply Inducing.of_codRestrict (a.mem_pretrivializationAt_source b) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B h : Inducing (restrict (pretrivializationAt a b).source ↑(pretrivializationAt a b) ∘ codRestrict (fun x => { proj := b, snd := x }) (pretrivializationAt a b).source (_ : ∀ (x : E b), { proj := b, snd := x } ∈ (pretrivializationAt a b).source)) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ Inducing (codRestrict (fun a => { proj := b, snd := a }) (pretrivializationAt a b).source (_ : ∀ (x : E b), { proj := b, snd := x } ∈ (pretrivializationAt a b).source)) [PROOFSTEP] refine inducing_of_inducing_compose ?_ (continuousOn_iff_continuous_restrict.mp (a.trivializationOfMemPretrivializationAtlas (a.pretrivialization_mem_atlas b)).continuous_toFun) h [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj b : B h : Inducing (restrict (pretrivializationAt a b).source ↑(pretrivializationAt a b) ∘ codRestrict (fun x => { proj := b, snd := x }) (pretrivializationAt a b).source (_ : ∀ (x : E b), { proj := b, snd := x } ∈ (pretrivializationAt a b).source)) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ Continuous (codRestrict (fun a => { proj := b, snd := a }) (pretrivializationAt a b).source (_ : ∀ (x : E b), { proj := b, snd := x } ∈ (pretrivializationAt a b).source)) [PROOFSTEP] exact (a.continuous_totalSpaceMk b).codRestrict (a.mem_pretrivializationAt_source b) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj ⊢ Continuous TotalSpace.proj [PROOFSTEP] letI := a.totalSpaceTopology [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ Continuous TotalSpace.proj [PROOFSTEP] letI := a.toFiberBundle [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X : Type u_4 inst✝³ : TopologicalSpace X E : B → Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F inst✝ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj this✝ : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a this : FiberBundle F E := toFiberBundle a ⊢ Continuous TotalSpace.proj [PROOFSTEP] exact FiberBundle.continuous_proj F E [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) ⊢ ContinuousOn f (TotalSpace.proj ⁻¹' s) [PROOFSTEP] letI := a.totalSpaceTopology [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a ⊢ ContinuousOn f (TotalSpace.proj ⁻¹' s) [PROOFSTEP] intro z hz [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s ⊢ ContinuousWithinAt f (TotalSpace.proj ⁻¹' s) z [PROOFSTEP] let e : Trivialization F (π F E) := a.trivializationOfMemPretrivializationAtlas (a.pretrivialization_mem_atlas z.proj) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a z.proj ∈ a.pretrivializationAtlas) ⊢ ContinuousWithinAt f (TotalSpace.proj ⁻¹' s) z [PROOFSTEP] refine' (e.continuousAt_of_comp_right _ ((hf z.proj hz).continuousAt (IsOpen.mem_nhds _ _))).continuousWithinAt [GOAL] case refine'_1 ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a z.proj ∈ a.pretrivializationAtlas) ⊢ z.proj ∈ e.baseSet [PROOFSTEP] exact a.mem_base_pretrivializationAt z.proj [GOAL] case refine'_2 ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a z.proj ∈ a.pretrivializationAtlas) ⊢ IsOpen ((s ∩ (pretrivializationAt a z.proj).baseSet) ×ˢ univ) [PROOFSTEP] exact (hs.inter (a.pretrivializationAt z.proj).open_baseSet).prod isOpen_univ [GOAL] case refine'_3 ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a z.proj ∈ a.pretrivializationAtlas) ⊢ ↑e z ∈ (s ∩ (pretrivializationAt a z.proj).baseSet) ×ˢ univ [PROOFSTEP] refine' ⟨_, mem_univ _⟩ [GOAL] case refine'_3 ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a z.proj ∈ a.pretrivializationAtlas) ⊢ (↑e z).fst ∈ s ∩ (pretrivializationAt a z.proj).baseSet [PROOFSTEP] rw [e.coe_fst] [GOAL] case refine'_3 ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a z.proj ∈ a.pretrivializationAtlas) ⊢ z.proj ∈ s ∩ (pretrivializationAt a z.proj).baseSet [PROOFSTEP] exact ⟨hz, a.mem_base_pretrivializationAt z.proj⟩ [GOAL] case refine'_3 ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a z.proj ∈ a.pretrivializationAtlas) ⊢ z ∈ e.source [PROOFSTEP] rw [e.mem_source] [GOAL] case refine'_3 ι : Type u_1 B : Type u_2 F : Type u_3 X✝ : Type u_4 inst✝⁴ : TopologicalSpace X✝ E : B → Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F inst✝¹ : (x : B) → TopologicalSpace (E x) a : FiberPrebundle F E e✝ : Pretrivialization F TotalSpace.proj X : Type u_6 inst✝ : TopologicalSpace X f : TotalSpace F E → X s : Set B hs : IsOpen s hf : ∀ (b : B), b ∈ s → ContinuousOn (f ∘ ↑(LocalEquiv.symm (pretrivializationAt a b).toLocalEquiv)) ((s ∩ (pretrivializationAt a b).baseSet) ×ˢ univ) this : TopologicalSpace (TotalSpace F E) := totalSpaceTopology a z : TotalSpace F E hz : z ∈ TotalSpace.proj ⁻¹' s e : Trivialization F TotalSpace.proj := trivializationOfMemPretrivializationAtlas a (_ : pretrivializationAt a z.proj ∈ a.pretrivializationAtlas) ⊢ z.proj ∈ e.baseSet [PROOFSTEP] exact a.mem_base_pretrivializationAt z.proj
{"mathlib_filename": "Mathlib.Topology.FiberBundle.Basic", "llama_tokens": 49332}
{"mathlib_filename": "Mathlib.Lean.CoreM", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Exception", "llama_tokens": 0}
[GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set X f g : C(X, R) hf : f ∈ {f | ∀ (x : X), x ∈ sᶜ → ↑f x = 0} hg : g ∈ {f | ∀ (x : X), x ∈ sᶜ → ↑f x = 0} x : X hx : x ∈ sᶜ ⊢ ↑(f + g) x = 0 [PROOFSTEP] simp [hf x hx, hg x hx, coe_add, Pi.add_apply, add_zero] [GOAL] X : Type u_1 R : Type u_2 inst✝⁴ : TopologicalSpace X inst✝³ : Semiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : T2Space R s : Set X ⊢ IsClosed ↑(idealOfSet R s) [PROOFSTEP] simp only [idealOfSet, Submodule.coe_set_mk, Set.setOf_forall] [GOAL] X : Type u_1 R : Type u_2 inst✝⁴ : TopologicalSpace X inst✝³ : Semiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : T2Space R s : Set X ⊢ IsClosed ↑{ toAddSubsemigroup := { carrier := ⋂ (i : X) (_ : i ∈ sᶜ), {x | ↑x i = 0}, add_mem' := (_ : ∀ {a b : C(X, R)}, a ∈ ⋂ (i : X) (_ : i ∈ sᶜ), {x | ↑x i = 0} → b ∈ ⋂ (i : X) (_ : i ∈ sᶜ), {x | ↑x i = 0} → a + b ∈ ⋂ (i : X) (_ : i ∈ sᶜ), {x | ↑x i = 0}) }, zero_mem' := (_ : 0 ∈ { carrier := ⋂ (i : X) (_ : i ∈ sᶜ), {x | ↑x i = 0}, add_mem' := (_ : ∀ {a b : C(X, R)}, a ∈ ⋂ (i : X) (_ : i ∈ sᶜ), {x | ↑x i = 0} → b ∈ ⋂ (i : X) (_ : i ∈ sᶜ), {x | ↑x i = 0} → a + b ∈ ⋂ (i : X) (_ : i ∈ sᶜ), {x | ↑x i = 0}) }.carrier) } [PROOFSTEP] exact isClosed_iInter fun x => isClosed_iInter fun _ => isClosed_eq (continuous_eval_const x) continuous_const [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set X f : C(X, R) ⊢ f ∈ idealOfSet R s ↔ ∀ ⦃x : X⦄, x ∈ sᶜ → ↑f x = 0 [PROOFSTEP] convert Iff.rfl [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set X f : C(X, R) ⊢ ¬f ∈ idealOfSet R s ↔ ∃ x, x ∈ sᶜ ∧ ↑f x ≠ 0 [PROOFSTEP] simp_rw [mem_idealOfSet] [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set X f : C(X, R) ⊢ (¬∀ ⦃x : X⦄, x ∈ sᶜ → ↑f x = 0) ↔ ∃ x, x ∈ sᶜ ∧ ↑f x ≠ 0 [PROOFSTEP] push_neg [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R s : Set X f : C(X, R) ⊢ (Exists fun ⦃x⦄ => x ∈ sᶜ ∧ ↑f x ≠ 0) ↔ ∃ x, x ∈ sᶜ ∧ ↑f x ≠ 0 [PROOFSTEP] rfl [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) x : X ⊢ ¬x ∈ setOfIdeal I ↔ ∀ ⦃f : C(X, R)⦄, f ∈ I → ↑f x = 0 [PROOFSTEP] rw [← Set.mem_compl_iff, setOfIdeal, compl_compl, Set.mem_setOf] [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) x : X ⊢ x ∈ setOfIdeal I ↔ ∃ f, f ∈ I ∧ ↑f x ≠ 0 [PROOFSTEP] simp_rw [setOfIdeal, Set.mem_compl_iff, Set.mem_setOf] [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) x : X ⊢ (¬∀ (f : C(X, R)), f ∈ I → ↑f x = 0) ↔ ∃ f, f ∈ I ∧ ↑f x ≠ 0 [PROOFSTEP] push_neg [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) x : X ⊢ (∃ f, f ∈ I ∧ ↑f x ≠ 0) ↔ ∃ f, f ∈ I ∧ ↑f x ≠ 0 [PROOFSTEP] rfl [GOAL] X : Type u_1 R : Type u_2 inst✝⁴ : TopologicalSpace X inst✝³ : Semiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : T2Space R I : Ideal C(X, R) ⊢ IsOpen (setOfIdeal I) [PROOFSTEP] simp only [setOfIdeal, Set.setOf_forall, isOpen_compl_iff] [GOAL] X : Type u_1 R : Type u_2 inst✝⁴ : TopologicalSpace X inst✝³ : Semiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : T2Space R I : Ideal C(X, R) ⊢ IsClosed (⋂ (i : C(X, R)) (_ : i ∈ I), {x | ↑i x = 0}) [PROOFSTEP] exact isClosed_iInter fun f => isClosed_iInter fun _ => isClosed_eq (map_continuous f) continuous_const [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R f : C(X, R) ⊢ f ∈ idealOfSet R ∅ ↔ f ∈ ⊥ [PROOFSTEP] simp only [mem_idealOfSet, Set.compl_empty, Set.mem_univ, forall_true_left, Ideal.mem_bot, FunLike.ext_iff, zero_apply] [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R x : X f : C(X, R) ⊢ f ∈ idealOfSet R {x}ᶜ ↔ ↑f x = 0 [PROOFSTEP] simp only [mem_idealOfSet, compl_compl, Set.mem_singleton_iff, forall_eq] [GOAL] X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R ⊢ GaloisConnection setOfIdeal (idealOfSet R) [PROOFSTEP] refine' fun I s => ⟨fun h f hf => _, fun h x hx => _⟩ [GOAL] case refine'_1 X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) s : Set X h : setOfIdeal I ≤ s f : C(X, R) hf : f ∈ I ⊢ f ∈ idealOfSet R s [PROOFSTEP] by_contra h' [GOAL] case refine'_1 X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) s : Set X h : setOfIdeal I ≤ s f : C(X, R) hf : f ∈ I h' : ¬f ∈ idealOfSet R s ⊢ False [PROOFSTEP] rcases not_mem_idealOfSet.mp h' with ⟨x, hx, hfx⟩ [GOAL] case refine'_1.intro.intro X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) s : Set X h : setOfIdeal I ≤ s f : C(X, R) hf : f ∈ I h' : ¬f ∈ idealOfSet R s x : X hx : x ∈ sᶜ hfx : ↑f x ≠ 0 ⊢ False [PROOFSTEP] exact hfx (not_mem_setOfIdeal.mp (mt (@h x) hx) hf) [GOAL] case refine'_2 X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) s : Set X h : I ≤ idealOfSet R s x : X hx : x ∈ setOfIdeal I ⊢ x ∈ s [PROOFSTEP] obtain ⟨f, hf, hfx⟩ := mem_setOfIdeal.mp hx [GOAL] case refine'_2.intro.intro X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) s : Set X h : I ≤ idealOfSet R s x : X hx : x ∈ setOfIdeal I f : C(X, R) hf : f ∈ I hfx : ↑f x ≠ 0 ⊢ x ∈ s [PROOFSTEP] by_contra hx' [GOAL] case refine'_2.intro.intro X : Type u_1 R : Type u_2 inst✝³ : TopologicalSpace X inst✝² : Semiring R inst✝¹ : TopologicalSpace R inst✝ : TopologicalSemiring R I : Ideal C(X, R) s : Set X h : I ≤ idealOfSet R s x : X hx : x ∈ setOfIdeal I f : C(X, R) hf : f ∈ I hfx : ↑f x ≠ 0 hx' : ¬x ∈ s ⊢ False [PROOFSTEP] exact not_mem_idealOfSet.mpr ⟨x, hx', hfx⟩ (h hf) [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X f : C(X, ℝ≥0) c : ℝ≥0 hc : 0 < c x : X hx : x ∈ {x | c ≤ ↑f x} ⊢ ↑(mk (↑f ⊔ ↑(const X c))⁻¹ * f) x = OfNat.ofNat 1 x [PROOFSTEP] simpa only [coe_const, ge_iff_le, mul_apply, coe_mk, Pi.inv_apply, Pi.sup_apply, Function.const_apply, sup_eq_left.mpr (Set.mem_setOf.mp hx), ne_eq, Pi.one_apply] using inv_mul_cancel (hc.trans_le hx).ne' [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) ⊢ idealOfSet 𝕜 (setOfIdeal I) = Ideal.closure I [PROOFSTEP] refine' le_antisymm _ ((idealOfSet_closed 𝕜 <| setOfIdeal I).closure_subset_iff.mpr fun f hf x hx => not_mem_setOfIdeal.mp hx hf) [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) ⊢ idealOfSet 𝕜 (setOfIdeal I) ≤ Ideal.closure I [PROOFSTEP] refine' (fun f hf => Metric.mem_closure_iff.mpr fun ε hε => _) [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ hε : ε > 0 ⊢ ∃ b, b ∈ ↑I ∧ dist f b < ε [PROOFSTEP] lift ε to ℝ≥0 using hε.lt.le [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : ↑ε > 0 ⊢ ∃ b, b ∈ ↑I ∧ dist f b < ↑ε [PROOFSTEP] replace hε := show (0 : ℝ≥0) < ε from hε [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε ⊢ ∃ b, b ∈ ↑I ∧ dist f b < ↑ε [PROOFSTEP] simp_rw [dist_nndist] [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε ⊢ ∃ b, b ∈ ↑I ∧ ↑(nndist f b) < ↑ε [PROOFSTEP] norm_cast -- Let `t := {x : X | ε / 2 ≤ ‖f x‖₊}}` which is closed and disjoint from `set_of_ideal I`. [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε ⊢ ∃ b, b ∈ ↑I ∧ nndist f b < ε [PROOFSTEP] set t := {x : X | ε / 2 ≤ ‖f x‖₊} [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ⊢ ∃ b, b ∈ ↑I ∧ nndist f b < ε [PROOFSTEP] have ht : IsClosed t := isClosed_le continuous_const (map_continuous f).nnnorm [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t ⊢ ∃ b, b ∈ ↑I ∧ nndist f b < ε [PROOFSTEP] have htI : Disjoint t (setOfIdeal I)ᶜ := by refine' Set.subset_compl_iff_disjoint_left.mp fun x hx => _ simpa only [Set.mem_setOf, Set.mem_compl_iff, not_le] using (nnnorm_eq_zero.mpr (mem_idealOfSet.mp hf hx)).trans_lt (half_pos hε) /- It suffices to produce `g : C(X, ℝ≥0)` which takes values in `[0,1]` and is constantly `1` on `t` such that when composed with the natural embedding of `ℝ≥0` into `𝕜` lies in the ideal `I`. Indeed, then `‖f - f * ↑g‖ ≤ ‖f * (1 - ↑g)‖ ≤ ⨆ ‖f * (1 - ↑g) x‖`. When `x ∉ t`, `‖f x‖ < ε / 2` and `‖(1 - ↑g) x‖ ≤ 1`, and when `x ∈ t`, `(1 - ↑g) x = 0`, and clearly `f * ↑g ∈ I`. -/ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t ⊢ Disjoint t (setOfIdeal I)ᶜ [PROOFSTEP] refine' Set.subset_compl_iff_disjoint_left.mp fun x hx => _ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t x : X hx : x ∈ (setOfIdeal I)ᶜ ⊢ x ∈ tᶜ [PROOFSTEP] simpa only [Set.mem_setOf, Set.mem_compl_iff, not_le] using (nnnorm_eq_zero.mpr (mem_idealOfSet.mp hf hx)).trans_lt (half_pos hε) /- It suffices to produce `g : C(X, ℝ≥0)` which takes values in `[0,1]` and is constantly `1` on `t` such that when composed with the natural embedding of `ℝ≥0` into `𝕜` lies in the ideal `I`. Indeed, then `‖f - f * ↑g‖ ≤ ‖f * (1 - ↑g)‖ ≤ ⨆ ‖f * (1 - ↑g) x‖`. When `x ∉ t`, `‖f x‖ < ε / 2` and `‖(1 - ↑g) x‖ ≤ 1`, and when `x ∈ t`, `(1 - ↑g) x = 0`, and clearly `f * ↑g ∈ I`. -/ [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ ∃ b, b ∈ ↑I ∧ nndist f b < ε [PROOFSTEP] suffices ∃ g : C(X, ℝ≥0), (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g ∈ I ∧ (∀ x, g x ≤ 1) ∧ t.EqOn g 1 by obtain ⟨g, hgI, hg, hgt⟩ := this refine' ⟨f * (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g, I.mul_mem_left f hgI, _⟩ rw [nndist_eq_nnnorm] refine' (nnnorm_lt_iff _ hε).2 fun x => _ simp only [coe_sub, coe_mul, Pi.sub_apply, Pi.mul_apply] by_cases hx : x ∈ t · simpa only [hgt hx, comp_apply, Pi.one_apply, ContinuousMap.coe_coe, algebraMapClm_apply, map_one, mul_one, sub_self, nnnorm_zero] using hε · refine' lt_of_le_of_lt _ (half_lt_self hε) have := calc ‖((1 - (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g) x : 𝕜)‖₊ = ‖1 - algebraMap ℝ≥0 𝕜 (g x)‖₊ := by simp only [coe_sub, coe_one, coe_comp, ContinuousMap.coe_coe, Pi.sub_apply, Pi.one_apply, Function.comp_apply, algebraMapClm_apply] _ = ‖algebraMap ℝ≥0 𝕜 (1 - g x)‖₊ := by simp only [Algebra.algebraMap_eq_smul_one, NNReal.smul_def, ge_iff_le, NNReal.coe_sub (hg x), NNReal.coe_one, sub_smul, one_smul] _ ≤ 1 := (nnnorm_algebraMap_nNReal 𝕜 (1 - g x)).trans_le tsub_le_self calc ‖f x - f x * (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g x‖₊ = ‖f x * (1 - (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g) x‖₊ := by simp only [mul_sub, coe_sub, coe_one, Pi.sub_apply, Pi.one_apply, mul_one] _ ≤ ε / 2 * ‖(1 - (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g) x‖₊ := ((nnnorm_mul_le _ _).trans (mul_le_mul_right' (not_le.mp <| show ¬ε / 2 ≤ ‖f x‖₊ from hx).le _)) _ ≤ ε / 2 := by simpa only [mul_one] using mul_le_mul_left' this _ /- There is some `g' : C(X, ℝ≥0)` which is strictly positive on `t` such that the composition `↑g` with the natural embedding of `ℝ≥0` into `𝕜` lies in `I`. This follows from compactness of `t` and that we can do it in any neighborhood of a point `x ∈ t`. Indeed, since `x ∈ t`, then `fₓ x ≠ 0` for some `fₓ ∈ I` and so `fun y ↦ ‖(star fₓ * fₓ) y‖₊` is strictly posiive in a neighborhood of `y`. Moreover, `(‖(star fₓ * fₓ) y‖₊ : 𝕜) = (star fₓ * fₓ) y`, so composition of this map with the natural embedding is just `star fₓ * fₓ ∈ I`. -/ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ this : ∃ g, comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I ∧ (∀ (x : X), ↑g x ≤ 1) ∧ Set.EqOn (↑g) 1 t ⊢ ∃ b, b ∈ ↑I ∧ nndist f b < ε [PROOFSTEP] obtain ⟨g, hgI, hg, hgt⟩ := this [GOAL] case intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t ⊢ ∃ b, b ∈ ↑I ∧ nndist f b < ε [PROOFSTEP] refine' ⟨f * (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g, I.mul_mem_left f hgI, _⟩ [GOAL] case intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t ⊢ nndist f (f * comp (↑(algebraMapClm ℝ≥0 𝕜)) g) < ε [PROOFSTEP] rw [nndist_eq_nnnorm] [GOAL] case intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t ⊢ ‖f - f * comp (↑(algebraMapClm ℝ≥0 𝕜)) g‖₊ < ε [PROOFSTEP] refine' (nnnorm_lt_iff _ hε).2 fun x => _ [GOAL] case intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X ⊢ ‖↑(f - f * comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ < ε [PROOFSTEP] simp only [coe_sub, coe_mul, Pi.sub_apply, Pi.mul_apply] [GOAL] case intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X ⊢ ‖↑f x - ↑f x * ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ < ε [PROOFSTEP] by_cases hx : x ∈ t [GOAL] case pos X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X hx : x ∈ t ⊢ ‖↑f x - ↑f x * ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ < ε [PROOFSTEP] simpa only [hgt hx, comp_apply, Pi.one_apply, ContinuousMap.coe_coe, algebraMapClm_apply, map_one, mul_one, sub_self, nnnorm_zero] using hε [GOAL] case neg X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X hx : ¬x ∈ t ⊢ ‖↑f x - ↑f x * ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ < ε [PROOFSTEP] refine' lt_of_le_of_lt _ (half_lt_self hε) [GOAL] case neg X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X hx : ¬x ∈ t ⊢ ‖↑f x - ↑f x * ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ ≤ ε / 2 [PROOFSTEP] have := calc ‖((1 - (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g) x : 𝕜)‖₊ = ‖1 - algebraMap ℝ≥0 𝕜 (g x)‖₊ := by simp only [coe_sub, coe_one, coe_comp, ContinuousMap.coe_coe, Pi.sub_apply, Pi.one_apply, Function.comp_apply, algebraMapClm_apply] _ = ‖algebraMap ℝ≥0 𝕜 (1 - g x)‖₊ := by simp only [Algebra.algebraMap_eq_smul_one, NNReal.smul_def, ge_iff_le, NNReal.coe_sub (hg x), NNReal.coe_one, sub_smul, one_smul] _ ≤ 1 := (nnnorm_algebraMap_nNReal 𝕜 (1 - g x)).trans_le tsub_le_self [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X hx : ¬x ∈ t ⊢ ‖↑(1 - comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ = ‖1 - ↑(algebraMap ℝ≥0 𝕜) (↑g x)‖₊ [PROOFSTEP] simp only [coe_sub, coe_one, coe_comp, ContinuousMap.coe_coe, Pi.sub_apply, Pi.one_apply, Function.comp_apply, algebraMapClm_apply] [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X hx : ¬x ∈ t ⊢ ‖1 - ↑(algebraMap ℝ≥0 𝕜) (↑g x)‖₊ = ‖↑(algebraMap ℝ≥0 𝕜) (1 - ↑g x)‖₊ [PROOFSTEP] simp only [Algebra.algebraMap_eq_smul_one, NNReal.smul_def, ge_iff_le, NNReal.coe_sub (hg x), NNReal.coe_one, sub_smul, one_smul] [GOAL] case neg X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X hx : ¬x ∈ t this : ‖↑(1 - comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ ≤ 1 ⊢ ‖↑f x - ↑f x * ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ ≤ ε / 2 [PROOFSTEP] calc ‖f x - f x * (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g x‖₊ = ‖f x * (1 - (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g) x‖₊ := by simp only [mul_sub, coe_sub, coe_one, Pi.sub_apply, Pi.one_apply, mul_one] _ ≤ ε / 2 * ‖(1 - (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g) x‖₊ := ((nnnorm_mul_le _ _).trans (mul_le_mul_right' (not_le.mp <| show ¬ε / 2 ≤ ‖f x‖₊ from hx).le _)) _ ≤ ε / 2 := by simpa only [mul_one] using mul_le_mul_left' this _ /- There is some `g' : C(X, ℝ≥0)` which is strictly positive on `t` such that the composition `↑g` with the natural embedding of `ℝ≥0` into `𝕜` lies in `I`. This follows from compactness of `t` and that we can do it in any neighborhood of a point `x ∈ t`. Indeed, since `x ∈ t`, then `fₓ x ≠ 0` for some `fₓ ∈ I` and so `fun y ↦ ‖(star fₓ * fₓ) y‖₊` is strictly posiive in a neighborhood of `y`. Moreover, `(‖(star fₓ * fₓ) y‖₊ : 𝕜) = (star fₓ * fₓ) y`, so composition of this map with the natural embedding is just `star fₓ * fₓ ∈ I`. -/ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X hx : ¬x ∈ t this : ‖↑(1 - comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ ≤ 1 ⊢ ‖↑f x - ↑f x * ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ = ‖↑f x * ↑(1 - comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ [PROOFSTEP] simp only [mul_sub, coe_sub, coe_one, Pi.sub_apply, Pi.one_apply, mul_one] [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g : C(X, ℝ≥0) hgI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hg : ∀ (x : X), ↑g x ≤ 1 hgt : Set.EqOn (↑g) 1 t x : X hx : ¬x ∈ t this : ‖↑(1 - comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ ≤ 1 ⊢ ε / 2 * ‖↑(1 - comp (↑(algebraMapClm ℝ≥0 𝕜)) g) x‖₊ ≤ ε / 2 [PROOFSTEP] simpa only [mul_one] using mul_le_mul_left' this _ /- There is some `g' : C(X, ℝ≥0)` which is strictly positive on `t` such that the composition `↑g` with the natural embedding of `ℝ≥0` into `𝕜` lies in `I`. This follows from compactness of `t` and that we can do it in any neighborhood of a point `x ∈ t`. Indeed, since `x ∈ t`, then `fₓ x ≠ 0` for some `fₓ ∈ I` and so `fun y ↦ ‖(star fₓ * fₓ) y‖₊` is strictly posiive in a neighborhood of `y`. Moreover, `(‖(star fₓ * fₓ) y‖₊ : 𝕜) = (star fₓ * fₓ) y`, so composition of this map with the natural embedding is just `star fₓ * fₓ ∈ I`. -/ [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ ∃ g, comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I ∧ (∀ (x : X), ↑g x ≤ 1) ∧ Set.EqOn (↑g) 1 t [PROOFSTEP] have : ∃ g' : C(X, ℝ≥0), (algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g' ∈ I ∧ ∀ x ∈ t, 0 < g' x := by refine' ht.isCompact.induction_on _ _ _ _ · refine' ⟨0, _, fun x hx => False.elim hx⟩ convert I.zero_mem ext simp only [comp_apply, zero_apply, ContinuousMap.coe_coe, map_zero] · rintro s₁ s₂ hs ⟨g, hI, hgt⟩; exact ⟨g, hI, fun x hx => hgt x (hs hx)⟩ · rintro s₁ s₂ ⟨g₁, hI₁, hgt₁⟩ ⟨g₂, hI₂, hgt₂⟩ refine' ⟨g₁ + g₂, _, fun x hx => _⟩ · convert I.add_mem hI₁ hI₂ ext y simp only [coe_add, Pi.add_apply, map_add, coe_comp, Function.comp_apply, ContinuousMap.coe_coe] · rcases hx with (hx | hx) simpa only [zero_add] using add_lt_add_of_lt_of_le (hgt₁ x hx) zero_le' simpa only [zero_add] using add_lt_add_of_le_of_lt zero_le' (hgt₂ x hx) · intro x hx replace hx := htI.subset_compl_right hx rw [compl_compl, mem_setOfIdeal] at hx obtain ⟨g, hI, hgx⟩ := hx have := (map_continuous g).continuousAt.eventually_ne hgx refine' ⟨{y : X | g y ≠ 0} ∩ t, mem_nhdsWithin_iff_exists_mem_nhds_inter.mpr ⟨_, this, Set.Subset.rfl⟩, ⟨⟨fun x => ‖g x‖₊ ^ 2, (map_continuous g).nnnorm.pow 2⟩, _, fun x hx => pow_pos (norm_pos_iff.mpr hx.1) 2⟩⟩ convert I.mul_mem_left (star g) hI ext simp only [comp_apply, ContinuousMap.coe_coe, coe_mk, algebraMapClm_toFun, map_pow, mul_apply, star_apply, star_def] simp only [normSq_eq_def', IsROrC.conj_mul, ofReal_pow] rfl /- Get the function `g'` which is guaranteed to exist above. By the extreme value theorem and compactness of `t`, there is some `0 < c` such that `c ≤ g' x` for all `x ∈ t`. Then by `exists_mul_le_one_eqOn_ge` there is some `g` for which `g * g'` is the desired function. -/ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t → 0 < ↑g' x [PROOFSTEP] refine' ht.isCompact.induction_on _ _ _ _ [GOAL] case refine'_1 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ ∅ → 0 < ↑g' x [PROOFSTEP] refine' ⟨0, _, fun x hx => False.elim hx⟩ [GOAL] case refine'_1 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ comp (↑(algebraMapClm ℝ≥0 𝕜)) 0 ∈ I [PROOFSTEP] convert I.zero_mem [GOAL] case h.e'_4 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ comp (↑(algebraMapClm ℝ≥0 𝕜)) 0 = 0 [PROOFSTEP] ext [GOAL] case h.e'_4.h X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ a✝ : X ⊢ ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) 0) a✝ = ↑0 a✝ [PROOFSTEP] simp only [comp_apply, zero_apply, ContinuousMap.coe_coe, map_zero] [GOAL] case refine'_2 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ ∀ ⦃s t : Set X⦄, s ⊆ t → (∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t → 0 < ↑g' x) → ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ s → 0 < ↑g' x [PROOFSTEP] rintro s₁ s₂ hs ⟨g, hI, hgt⟩ [GOAL] case refine'_2.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X hs : s₁ ⊆ s₂ g : C(X, ℝ≥0) hI : comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I hgt : ∀ (x : X), x ∈ s₂ → 0 < ↑g x ⊢ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ s₁ → 0 < ↑g' x [PROOFSTEP] exact ⟨g, hI, fun x hx => hgt x (hs hx)⟩ [GOAL] case refine'_3 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ ∀ ⦃s t : Set X⦄, (∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ s → 0 < ↑g' x) → (∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t → 0 < ↑g' x) → ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ s ∪ t → 0 < ↑g' x [PROOFSTEP] rintro s₁ s₂ ⟨g₁, hI₁, hgt₁⟩ ⟨g₂, hI₂, hgt₂⟩ [GOAL] case refine'_3.intro.intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X g₁ : C(X, ℝ≥0) hI₁ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ ∈ I hgt₁ : ∀ (x : X), x ∈ s₁ → 0 < ↑g₁ x g₂ : C(X, ℝ≥0) hI₂ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ ∈ I hgt₂ : ∀ (x : X), x ∈ s₂ → 0 < ↑g₂ x ⊢ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ s₁ ∪ s₂ → 0 < ↑g' x [PROOFSTEP] refine' ⟨g₁ + g₂, _, fun x hx => _⟩ [GOAL] case refine'_3.intro.intro.intro.intro.refine'_1 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X g₁ : C(X, ℝ≥0) hI₁ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ ∈ I hgt₁ : ∀ (x : X), x ∈ s₁ → 0 < ↑g₁ x g₂ : C(X, ℝ≥0) hI₂ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ ∈ I hgt₂ : ∀ (x : X), x ∈ s₂ → 0 < ↑g₂ x ⊢ comp (↑(algebraMapClm ℝ≥0 𝕜)) (g₁ + g₂) ∈ I [PROOFSTEP] convert I.add_mem hI₁ hI₂ [GOAL] case h.e'_4 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X g₁ : C(X, ℝ≥0) hI₁ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ ∈ I hgt₁ : ∀ (x : X), x ∈ s₁ → 0 < ↑g₁ x g₂ : C(X, ℝ≥0) hI₂ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ ∈ I hgt₂ : ∀ (x : X), x ∈ s₂ → 0 < ↑g₂ x ⊢ comp (↑(algebraMapClm ℝ≥0 𝕜)) (g₁ + g₂) = comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ + comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ [PROOFSTEP] ext y [GOAL] case h.e'_4.h X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X g₁ : C(X, ℝ≥0) hI₁ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ ∈ I hgt₁ : ∀ (x : X), x ∈ s₁ → 0 < ↑g₁ x g₂ : C(X, ℝ≥0) hI₂ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ ∈ I hgt₂ : ∀ (x : X), x ∈ s₂ → 0 < ↑g₂ x y : X ⊢ ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) (g₁ + g₂)) y = ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ + comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂) y [PROOFSTEP] simp only [coe_add, Pi.add_apply, map_add, coe_comp, Function.comp_apply, ContinuousMap.coe_coe] [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X g₁ : C(X, ℝ≥0) hI₁ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ ∈ I hgt₁ : ∀ (x : X), x ∈ s₁ → 0 < ↑g₁ x g₂ : C(X, ℝ≥0) hI₂ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ ∈ I hgt₂ : ∀ (x : X), x ∈ s₂ → 0 < ↑g₂ x x : X hx : x ∈ s₁ ∪ s₂ ⊢ 0 < ↑(g₁ + g₂) x [PROOFSTEP] rcases hx with (hx | hx) [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2.inl X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X g₁ : C(X, ℝ≥0) hI₁ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ ∈ I hgt₁ : ∀ (x : X), x ∈ s₁ → 0 < ↑g₁ x g₂ : C(X, ℝ≥0) hI₂ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ ∈ I hgt₂ : ∀ (x : X), x ∈ s₂ → 0 < ↑g₂ x x : X hx : x ∈ s₁ ⊢ 0 < ↑(g₁ + g₂) x case refine'_3.intro.intro.intro.intro.refine'_2.inr X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X g₁ : C(X, ℝ≥0) hI₁ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ ∈ I hgt₁ : ∀ (x : X), x ∈ s₁ → 0 < ↑g₁ x g₂ : C(X, ℝ≥0) hI₂ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ ∈ I hgt₂ : ∀ (x : X), x ∈ s₂ → 0 < ↑g₂ x x : X hx : x ∈ s₂ ⊢ 0 < ↑(g₁ + g₂) x [PROOFSTEP] simpa only [zero_add] using add_lt_add_of_lt_of_le (hgt₁ x hx) zero_le' [GOAL] case refine'_3.intro.intro.intro.intro.refine'_2.inr X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ s₁ s₂ : Set X g₁ : C(X, ℝ≥0) hI₁ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₁ ∈ I hgt₁ : ∀ (x : X), x ∈ s₁ → 0 < ↑g₁ x g₂ : C(X, ℝ≥0) hI₂ : comp (↑(algebraMapClm ℝ≥0 𝕜)) g₂ ∈ I hgt₂ : ∀ (x : X), x ∈ s₂ → 0 < ↑g₂ x x : X hx : x ∈ s₂ ⊢ 0 < ↑(g₁ + g₂) x [PROOFSTEP] simpa only [zero_add] using add_lt_add_of_le_of_lt zero_le' (hgt₂ x hx) [GOAL] case refine'_4 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ ⊢ ∀ (x : X), x ∈ t → ∃ t_1, t_1 ∈ nhdsWithin x t ∧ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t_1 → 0 < ↑g' x [PROOFSTEP] intro x hx [GOAL] case refine'_4 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X hx : x ∈ t ⊢ ∃ t_1, t_1 ∈ nhdsWithin x t ∧ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t_1 → 0 < ↑g' x [PROOFSTEP] replace hx := htI.subset_compl_right hx [GOAL] case refine'_4 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X hx : x ∈ (setOfIdeal I)ᶜᶜ ⊢ ∃ t_1, t_1 ∈ nhdsWithin x t ∧ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t_1 → 0 < ↑g' x [PROOFSTEP] rw [compl_compl, mem_setOfIdeal] at hx [GOAL] case refine'_4 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X hx : ∃ f, f ∈ I ∧ ↑f x ≠ 0 ⊢ ∃ t_1, t_1 ∈ nhdsWithin x t ∧ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t_1 → 0 < ↑g' x [PROOFSTEP] obtain ⟨g, hI, hgx⟩ := hx [GOAL] case refine'_4.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X g : C(X, 𝕜) hI : g ∈ I hgx : ↑g x ≠ 0 ⊢ ∃ t_1, t_1 ∈ nhdsWithin x t ∧ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t_1 → 0 < ↑g' x [PROOFSTEP] have := (map_continuous g).continuousAt.eventually_ne hgx [GOAL] case refine'_4.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X g : C(X, 𝕜) hI : g ∈ I hgx : ↑g x ≠ 0 this : ∀ᶠ (z : X) in nhds x, ↑g z ≠ 0 ⊢ ∃ t_1, t_1 ∈ nhdsWithin x t ∧ ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t_1 → 0 < ↑g' x [PROOFSTEP] refine' ⟨{y : X | g y ≠ 0} ∩ t, mem_nhdsWithin_iff_exists_mem_nhds_inter.mpr ⟨_, this, Set.Subset.rfl⟩, ⟨⟨fun x => ‖g x‖₊ ^ 2, (map_continuous g).nnnorm.pow 2⟩, _, fun x hx => pow_pos (norm_pos_iff.mpr hx.1) 2⟩⟩ [GOAL] case refine'_4.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X g : C(X, 𝕜) hI : g ∈ I hgx : ↑g x ≠ 0 this : ∀ᶠ (z : X) in nhds x, ↑g z ≠ 0 ⊢ comp (↑(algebraMapClm ℝ≥0 𝕜)) (mk fun x => ‖↑g x‖₊ ^ 2) ∈ I [PROOFSTEP] convert I.mul_mem_left (star g) hI [GOAL] case h.e'_4 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X g : C(X, 𝕜) hI : g ∈ I hgx : ↑g x ≠ 0 this : ∀ᶠ (z : X) in nhds x, ↑g z ≠ 0 ⊢ comp (↑(algebraMapClm ℝ≥0 𝕜)) (mk fun x => ‖↑g x‖₊ ^ 2) = star g * g [PROOFSTEP] ext [GOAL] case h.e'_4.h X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X g : C(X, 𝕜) hI : g ∈ I hgx : ↑g x ≠ 0 this : ∀ᶠ (z : X) in nhds x, ↑g z ≠ 0 a✝ : X ⊢ ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) (mk fun x => ‖↑g x‖₊ ^ 2)) a✝ = ↑(star g * g) a✝ [PROOFSTEP] simp only [comp_apply, ContinuousMap.coe_coe, coe_mk, algebraMapClm_toFun, map_pow, mul_apply, star_apply, star_def] [GOAL] case h.e'_4.h X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X g : C(X, 𝕜) hI : g ∈ I hgx : ↑g x ≠ 0 this : ∀ᶠ (z : X) in nhds x, ↑g z ≠ 0 a✝ : X ⊢ ↑(algebraMap ℝ≥0 𝕜) ‖↑g a✝‖₊ ^ 2 = ↑(starRingEnd 𝕜) (↑g a✝) * ↑g a✝ [PROOFSTEP] simp only [normSq_eq_def', IsROrC.conj_mul, ofReal_pow] [GOAL] case h.e'_4.h X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ x : X g : C(X, 𝕜) hI : g ∈ I hgx : ↑g x ≠ 0 this : ∀ᶠ (z : X) in nhds x, ↑g z ≠ 0 a✝ : X ⊢ ↑(algebraMap ℝ≥0 𝕜) ‖↑g a✝‖₊ ^ 2 = ↑‖↑g a✝‖ ^ 2 [PROOFSTEP] rfl /- Get the function `g'` which is guaranteed to exist above. By the extreme value theorem and compactness of `t`, there is some `0 < c` such that `c ≤ g' x` for all `x ∈ t`. Then by `exists_mul_le_one_eqOn_ge` there is some `g` for which `g * g'` is the desired function. -/ [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ this : ∃ g', comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I ∧ ∀ (x : X), x ∈ t → 0 < ↑g' x ⊢ ∃ g, comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I ∧ (∀ (x : X), ↑g x ≤ 1) ∧ Set.EqOn (↑g) 1 t [PROOFSTEP] obtain ⟨g', hI', hgt'⟩ := this [GOAL] case intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g' : C(X, ℝ≥0) hI' : comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I hgt' : ∀ (x : X), x ∈ t → 0 < ↑g' x ⊢ ∃ g, comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I ∧ (∀ (x : X), ↑g x ≤ 1) ∧ Set.EqOn (↑g) 1 t [PROOFSTEP] obtain ⟨c, hc, hgc'⟩ : ∃ (c : _) (_ : 0 < c), ∀ y : X, y ∈ t → c ≤ g' y := t.eq_empty_or_nonempty.elim (fun ht' => ⟨1, zero_lt_one, fun y hy => False.elim (by rwa [ht'] at hy )⟩) fun ht' => let ⟨x, hx, hx'⟩ := ht.isCompact.exists_forall_le ht' (map_continuous g').continuousOn ⟨g' x, hgt' x hx, hx'⟩ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g' : C(X, ℝ≥0) hI' : comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I hgt' : ∀ (x : X), x ∈ t → 0 < ↑g' x ht' : t = ∅ y : X hy : y ∈ t ⊢ False [PROOFSTEP] rwa [ht'] at hy [GOAL] case intro.intro.intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g' : C(X, ℝ≥0) hI' : comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I hgt' : ∀ (x : X), x ∈ t → 0 < ↑g' x c : ℝ≥0 hc : 0 < c hgc' : ∀ (y : X), y ∈ t → c ≤ ↑g' y ⊢ ∃ g, comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I ∧ (∀ (x : X), ↑g x ≤ 1) ∧ Set.EqOn (↑g) 1 t [PROOFSTEP] obtain ⟨g, hg, hgc⟩ := exists_mul_le_one_eqOn_ge g' hc [GOAL] case intro.intro.intro.intro.intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g' : C(X, ℝ≥0) hI' : comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I hgt' : ∀ (x : X), x ∈ t → 0 < ↑g' x c : ℝ≥0 hc : 0 < c hgc' : ∀ (y : X), y ∈ t → c ≤ ↑g' y g : C(X, ℝ≥0) hg : ∀ (x : X), ↑(g * g') x ≤ 1 hgc : Set.EqOn (↑(g * g')) 1 {x | c ≤ ↑g' x} ⊢ ∃ g, comp (↑(algebraMapClm ℝ≥0 𝕜)) g ∈ I ∧ (∀ (x : X), ↑g x ≤ 1) ∧ Set.EqOn (↑g) 1 t [PROOFSTEP] refine' ⟨g * g', _, hg, hgc.mono hgc'⟩ [GOAL] case intro.intro.intro.intro.intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g' : C(X, ℝ≥0) hI' : comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I hgt' : ∀ (x : X), x ∈ t → 0 < ↑g' x c : ℝ≥0 hc : 0 < c hgc' : ∀ (y : X), y ∈ t → c ≤ ↑g' y g : C(X, ℝ≥0) hg : ∀ (x : X), ↑(g * g') x ≤ 1 hgc : Set.EqOn (↑(g * g')) 1 {x | c ≤ ↑g' x} ⊢ comp (↑(algebraMapClm ℝ≥0 𝕜)) (g * g') ∈ I [PROOFSTEP] convert I.mul_mem_left ((algebraMapClm ℝ≥0 𝕜 : C(ℝ≥0, 𝕜)).comp g) hI' [GOAL] case h.e'_4 X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g' : C(X, ℝ≥0) hI' : comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I hgt' : ∀ (x : X), x ∈ t → 0 < ↑g' x c : ℝ≥0 hc : 0 < c hgc' : ∀ (y : X), y ∈ t → c ≤ ↑g' y g : C(X, ℝ≥0) hg : ∀ (x : X), ↑(g * g') x ≤ 1 hgc : Set.EqOn (↑(g * g')) 1 {x | c ≤ ↑g' x} ⊢ comp (↑(algebraMapClm ℝ≥0 𝕜)) (g * g') = comp (↑(algebraMapClm ℝ≥0 𝕜)) g * comp (↑(algebraMapClm ℝ≥0 𝕜)) g' [PROOFSTEP] ext [GOAL] case h.e'_4.h X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) f : C(X, 𝕜) hf : f ∈ idealOfSet 𝕜 (setOfIdeal I) ε : ℝ≥0 hε : 0 < ε t : Set X := {x | ε / 2 ≤ ‖↑f x‖₊} ht : IsClosed t htI : Disjoint t (setOfIdeal I)ᶜ g' : C(X, ℝ≥0) hI' : comp (↑(algebraMapClm ℝ≥0 𝕜)) g' ∈ I hgt' : ∀ (x : X), x ∈ t → 0 < ↑g' x c : ℝ≥0 hc : 0 < c hgc' : ∀ (y : X), y ∈ t → c ≤ ↑g' y g : C(X, ℝ≥0) hg : ∀ (x : X), ↑(g * g') x ≤ 1 hgc : Set.EqOn (↑(g * g')) 1 {x | c ≤ ↑g' x} a✝ : X ⊢ ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) (g * g')) a✝ = ↑(comp (↑(algebraMapClm ℝ≥0 𝕜)) g * comp (↑(algebraMapClm ℝ≥0 𝕜)) g') a✝ [PROOFSTEP] simp only [algebraMapClm_coe, comp_apply, mul_apply, ContinuousMap.coe_coe, map_mul] [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X ⊢ setOfIdeal (idealOfSet 𝕜 s) = interior s [PROOFSTEP] refine' Set.Subset.antisymm ((setOfIdeal_open (idealOfSet 𝕜 s)).subset_interior_iff.mpr fun x hx => let ⟨f, hf, hfx⟩ := mem_setOfIdeal.mp hx Set.not_mem_compl_iff.mp (mt (@hf x) hfx)) fun x hx => _ -- If `x ∉ closure sᶜ`, we must produce `f : C(X, 𝕜)` which is zero on `sᶜ` and `f x ≠ 0`. [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X x : X hx : x ∈ interior s ⊢ x ∈ setOfIdeal (idealOfSet 𝕜 s) [PROOFSTEP] rw [← compl_compl (interior s), ← closure_compl] at hx [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X x : X hx : x ∈ (closure sᶜ)ᶜ ⊢ x ∈ setOfIdeal (idealOfSet 𝕜 s) [PROOFSTEP] simp_rw [mem_setOfIdeal, mem_idealOfSet] [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X x : X hx : x ∈ (closure sᶜ)ᶜ ⊢ ∃ f, (∀ ⦃x : X⦄, x ∈ sᶜ → ↑f x = 0) ∧ ↑f x ≠ 0 [PROOFSTEP] haveI : NormalSpace X := normalOfCompactT2 [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X x : X hx : x ∈ (closure sᶜ)ᶜ this : NormalSpace X ⊢ ∃ f, (∀ ⦃x : X⦄, x ∈ sᶜ → ↑f x = 0) ∧ ↑f x ≠ 0 [PROOFSTEP] obtain ⟨g, hgs, hgx : Set.EqOn g 1 { x }, -⟩ := exists_continuous_zero_one_of_closed isClosed_closure isClosed_singleton (Set.disjoint_singleton_right.mpr hx) [GOAL] case intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X x : X hx : x ∈ (closure sᶜ)ᶜ this : NormalSpace X g : C(X, ℝ) hgs : Set.EqOn (↑g) 0 (closure sᶜ) hgx : Set.EqOn (↑g) 1 {x} ⊢ ∃ f, (∀ ⦃x : X⦄, x ∈ sᶜ → ↑f x = 0) ∧ ↑f x ≠ 0 [PROOFSTEP] exact ⟨⟨fun x => g x, continuous_ofReal.comp (map_continuous g)⟩, by simpa only [coe_mk, ofReal_eq_zero] using fun x hx => hgs (subset_closure hx), by simpa only [coe_mk, hgx (Set.mem_singleton x), Pi.one_apply, IsROrC.ofReal_one] using one_ne_zero⟩ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X x : X hx : x ∈ (closure sᶜ)ᶜ this : NormalSpace X g : C(X, ℝ) hgs : Set.EqOn (↑g) 0 (closure sᶜ) hgx : Set.EqOn (↑g) 1 {x} ⊢ ∀ ⦃x : X⦄, x ∈ sᶜ → ↑(mk fun x => ↑(↑g x)) x = 0 [PROOFSTEP] simpa only [coe_mk, ofReal_eq_zero] using fun x hx => hgs (subset_closure hx) [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Set X x : X hx : x ∈ (closure sᶜ)ᶜ this : NormalSpace X g : C(X, ℝ) hgs : Set.EqOn (↑g) 0 (closure sᶜ) hgx : Set.EqOn (↑g) 1 {x} ⊢ ↑(mk fun x => ↑(↑g x)) x ≠ 0 [PROOFSTEP] simpa only [coe_mk, hgx (Set.mem_singleton x), Pi.one_apply, IsROrC.ofReal_one] using one_ne_zero [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Opens X ⊢ Ideal.IsMaximal (idealOfSet 𝕜 ↑s) ↔ IsCoatom s [PROOFSTEP] rw [Ideal.isMaximal_def] [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Opens X ⊢ IsCoatom (idealOfSet 𝕜 ↑s) ↔ IsCoatom s [PROOFSTEP] refine' (idealOpensGI X 𝕜).isCoatom_iff (fun I hI => _) s [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Opens X I : Ideal C(X, 𝕜) hI : IsCoatom I ⊢ idealOfSet 𝕜 ↑(opensOfIdeal I) = I [PROOFSTEP] rw [← Ideal.isMaximal_def] at hI [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X s : Opens X I : Ideal C(X, 𝕜) hI : Ideal.IsMaximal I ⊢ idealOfSet 𝕜 ↑(opensOfIdeal I) = I [PROOFSTEP] exact idealOfSet_ofIdeal_isClosed inferInstance [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) hI : Ideal.IsMaximal I ⊢ ∃ x, setOfIdeal I = {x}ᶜ [PROOFSTEP] have h : (idealOfSet 𝕜 (setOfIdeal I)).IsMaximal := (idealOfSet_ofIdeal_isClosed (inferInstance : IsClosed (I : Set C(X, 𝕜)))).symm ▸ hI [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) hI : Ideal.IsMaximal I h : Ideal.IsMaximal (idealOfSet 𝕜 (setOfIdeal I)) ⊢ ∃ x, setOfIdeal I = {x}ᶜ [PROOFSTEP] obtain ⟨x, hx⟩ := Opens.isCoatom_iff.1 ((idealOfSet_isMaximal_iff 𝕜 (opensOfIdeal I)).1 h) [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) hI : Ideal.IsMaximal I h : Ideal.IsMaximal (idealOfSet 𝕜 (setOfIdeal I)) x : X hx : opensOfIdeal I = Closeds.compl (Closeds.singleton x) ⊢ ∃ x, setOfIdeal I = {x}ᶜ [PROOFSTEP] refine ⟨x, congr_arg (fun (s : Opens X) => (s : Set X)) hx⟩ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) hI : IsClosed ↑I ⊢ Ideal.IsMaximal I ↔ ∃ x, idealOfSet 𝕜 {x}ᶜ = I [PROOFSTEP] refine' ⟨_, fun h => let ⟨x, hx⟩ := h hx ▸ idealOf_compl_singleton_isMaximal 𝕜 x⟩ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) hI : IsClosed ↑I ⊢ Ideal.IsMaximal I → ∃ x, idealOfSet 𝕜 {x}ᶜ = I [PROOFSTEP] intro hI' [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) hI : IsClosed ↑I hI' : Ideal.IsMaximal I ⊢ ∃ x, idealOfSet 𝕜 {x}ᶜ = I [PROOFSTEP] obtain ⟨x, hx⟩ := setOfIdeal_eq_compl_singleton I [GOAL] case intro X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) hI : IsClosed ↑I hI' : Ideal.IsMaximal I x : X hx : setOfIdeal I = {x}ᶜ ⊢ ∃ x, idealOfSet 𝕜 {x}ᶜ = I [PROOFSTEP] exact ⟨x, by simpa only [idealOfSet_ofIdeal_eq_closure, I.closure_eq_of_isClosed hI] using congr_arg (idealOfSet 𝕜) hx.symm⟩ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : IsROrC 𝕜 inst✝² : TopologicalSpace X inst✝¹ : CompactSpace X inst✝ : T2Space X I : Ideal C(X, 𝕜) hI : IsClosed ↑I hI' : Ideal.IsMaximal I x : X hx : setOfIdeal I = {x}ᶜ ⊢ idealOfSet 𝕜 {x}ᶜ = I [PROOFSTEP] simpa only [idealOfSet_ofIdeal_eq_closure, I.closure_eq_of_isClosed hI] using congr_arg (idealOfSet 𝕜) hx.symm [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝⁶ : TopologicalSpace X inst✝⁵ : LocallyCompactSpace X inst✝⁴ : CommRing 𝕜 inst✝³ : TopologicalSpace 𝕜 inst✝² : TopologicalRing 𝕜 inst✝¹ : Nontrivial 𝕜 inst✝ : NoZeroDivisors 𝕜 x : X ⊢ ContinuousLinearMap.mk { toAddHom := { toFun := fun f => ↑f x, map_add' := (_ : ∀ (f g : C(X, 𝕜)), (fun f => ↑f x) (f + g) = (fun f => ↑f x) (f + g)) }, map_smul' := (_ : ∀ (z : 𝕜) (f : C(X, 𝕜)), AddHom.toFun { toFun := fun f => ↑f x, map_add' := (_ : ∀ (f g : C(X, 𝕜)), (fun f => ↑f x) (f + g) = (fun f => ↑f x) (f + g)) } (z • f) = AddHom.toFun { toFun := fun f => ↑f x, map_add' := (_ : ∀ (f g : C(X, 𝕜)), (fun f => ↑f x) (f + g) = (fun f => ↑f x) (f + g)) } (z • f)) } ∈ characterSpace 𝕜 C(X, 𝕜) [PROOFSTEP] rw [CharacterSpace.eq_set_map_one_map_mul] [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝⁶ : TopologicalSpace X inst✝⁵ : LocallyCompactSpace X inst✝⁴ : CommRing 𝕜 inst✝³ : TopologicalSpace 𝕜 inst✝² : TopologicalRing 𝕜 inst✝¹ : Nontrivial 𝕜 inst✝ : NoZeroDivisors 𝕜 x : X ⊢ ContinuousLinearMap.mk { toAddHom := { toFun := fun f => ↑f x, map_add' := (_ : ∀ (f g : C(X, 𝕜)), (fun f => ↑f x) (f + g) = (fun f => ↑f x) (f + g)) }, map_smul' := (_ : ∀ (z : 𝕜) (f : C(X, 𝕜)), AddHom.toFun { toFun := fun f => ↑f x, map_add' := (_ : ∀ (f g : C(X, 𝕜)), (fun f => ↑f x) (f + g) = (fun f => ↑f x) (f + g)) } (z • f) = AddHom.toFun { toFun := fun f => ↑f x, map_add' := (_ : ∀ (f g : C(X, 𝕜)), (fun f => ↑f x) (f + g) = (fun f => ↑f x) (f + g)) } (z • f)) } ∈ {φ | ↑φ 1 = 1 ∧ ∀ (x y : C(X, 𝕜)), ↑φ (x * y) = ↑φ x * ↑φ y} [PROOFSTEP] exact ⟨rfl, fun f g => rfl⟩ [GOAL] X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 ⊢ Bijective ↑(continuousMapEval X 𝕜) [PROOFSTEP] refine' ⟨fun x y hxy => _, fun φ => _⟩ [GOAL] case refine'_1 X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 x y : X hxy : ↑(continuousMapEval X 𝕜) x = ↑(continuousMapEval X 𝕜) y ⊢ x = y [PROOFSTEP] contrapose! hxy [GOAL] case refine'_1 X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 x y : X hxy : x ≠ y ⊢ ↑(continuousMapEval X 𝕜) x ≠ ↑(continuousMapEval X 𝕜) y [PROOFSTEP] haveI := @normalOfCompactT2 X _ _ _ [GOAL] case refine'_1 X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 x y : X hxy : x ≠ y this : NormalSpace X ⊢ ↑(continuousMapEval X 𝕜) x ≠ ↑(continuousMapEval X 𝕜) y [PROOFSTEP] rcases exists_continuous_zero_one_of_closed (isClosed_singleton : _root_.IsClosed { x }) (isClosed_singleton : _root_.IsClosed { y }) (Set.disjoint_singleton.mpr hxy) with ⟨f, fx, fy, -⟩ [GOAL] case refine'_1.intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 x y : X hxy : x ≠ y this : NormalSpace X f : C(X, ℝ) fx : Set.EqOn (↑f) 0 {x} fy : Set.EqOn (↑f) 1 {y} ⊢ ↑(continuousMapEval X 𝕜) x ≠ ↑(continuousMapEval X 𝕜) y [PROOFSTEP] rw [FunLike.ne_iff] [GOAL] case refine'_1.intro.intro.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 x y : X hxy : x ≠ y this : NormalSpace X f : C(X, ℝ) fx : Set.EqOn (↑f) 0 {x} fy : Set.EqOn (↑f) 1 {y} ⊢ ∃ a, ↑(↑(continuousMapEval X 𝕜) x) a ≠ ↑(↑(continuousMapEval X 𝕜) y) a [PROOFSTEP] use(⟨fun (x : ℝ) => (x : 𝕜), IsROrC.continuous_ofReal⟩ : C(ℝ, 𝕜)).comp f [GOAL] case h X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 x y : X hxy : x ≠ y this : NormalSpace X f : C(X, ℝ) fx : Set.EqOn (↑f) 0 {x} fy : Set.EqOn (↑f) 1 {y} ⊢ ↑(↑(continuousMapEval X 𝕜) x) (ContinuousMap.comp (mk fun x => ↑x) f) ≠ ↑(↑(continuousMapEval X 𝕜) y) (ContinuousMap.comp (mk fun x => ↑x) f) [PROOFSTEP] simpa only [continuousMapEval_apply_apply, ContinuousMap.comp_apply, coe_mk, Ne.def, IsROrC.ofReal_inj] using ((fx (Set.mem_singleton x)).symm ▸ (fy (Set.mem_singleton y)).symm ▸ zero_ne_one : f x ≠ f y) [GOAL] case refine'_2 X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 φ : ↑(characterSpace 𝕜 C(X, 𝕜)) ⊢ ∃ a, ↑(continuousMapEval X 𝕜) a = φ [PROOFSTEP] obtain ⟨x, hx⟩ := (ideal_isMaximal_iff (RingHom.ker φ)).mp inferInstance [GOAL] case refine'_2.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 φ : ↑(characterSpace 𝕜 C(X, 𝕜)) x : X hx : idealOfSet 𝕜 {x}ᶜ = RingHom.ker φ ⊢ ∃ a, ↑(continuousMapEval X 𝕜) a = φ [PROOFSTEP] refine' ⟨x, CharacterSpace.ext_ker <| Ideal.ext fun f => _⟩ [GOAL] case refine'_2.intro X : Type u_1 𝕜 : Type u_2 inst✝³ : TopologicalSpace X inst✝² : CompactSpace X inst✝¹ : T2Space X inst✝ : IsROrC 𝕜 φ : ↑(characterSpace 𝕜 C(X, 𝕜)) x : X hx : idealOfSet 𝕜 {x}ᶜ = RingHom.ker φ f : C(X, 𝕜) ⊢ f ∈ RingHom.ker (↑(continuousMapEval X 𝕜) x) ↔ f ∈ RingHom.ker φ [PROOFSTEP] simpa only [RingHom.mem_ker, continuousMapEval_apply_apply, mem_idealOfSet_compl_singleton, RingHom.mem_ker] using SetLike.ext_iff.mp hx f
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Ideals", "llama_tokens": 32827}
[GOAL] X Y Z : TopCat U : (Opens ↑X)ᵒᵖ ⊢ (map (𝟙 X)).op.obj U = U [PROOFSTEP] simp [GOAL] X Y Z : TopCat f : X ⟶ Y ι : Type u_1 U : ι → Opens ↑Y ⊢ (map f).obj (iSup U) = iSup ((map f).toPrefunctor.obj ∘ U) [PROOFSTEP] ext1 [GOAL] case h X Y Z : TopCat f : X ⟶ Y ι : Type u_1 U : ι → Opens ↑Y ⊢ ↑((map f).obj (iSup U)) = ↑(iSup ((map f).toPrefunctor.obj ∘ U)) [PROOFSTEP] rw [iSup_def, iSup_def, map_obj] [GOAL] case h X Y Z : TopCat f : X ⟶ Y ι : Type u_1 U : ι → Opens ↑Y ⊢ ↑{ carrier := ↑f ⁻¹' ⋃ (i : ι), ↑(U i), is_open' := (_ : IsOpen (↑f ⁻¹' ⋃ (i : ι), ↑(U i))) } = ↑{ carrier := ⋃ (i : ι), ↑(((map f).toPrefunctor.obj ∘ U) i), is_open' := (_ : IsOpen (⋃ (i : ι), ↑(((map f).toPrefunctor.obj ∘ U) i))) } [PROOFSTEP] dsimp [GOAL] case h X Y Z : TopCat f : X ⟶ Y ι : Type u_1 U : ι → Opens ↑Y ⊢ ↑f ⁻¹' ⋃ (i : ι), ↑(U i) = ⋃ (i : ι), ↑((map f).obj (U i)) [PROOFSTEP] rw [Set.preimage_iUnion] [GOAL] case h X Y Z : TopCat f : X ⟶ Y ι : Type u_1 U : ι → Opens ↑Y ⊢ ⋃ (i : ι), ↑f ⁻¹' ↑(U i) = ⋃ (i : ι), ↑((map f).obj (U i)) [PROOFSTEP] rfl [GOAL] X Y Z : TopCat ⊢ map (𝟙 X) = 𝟭 (Opens ↑X) [PROOFSTEP] rfl [GOAL] X Y Z : TopCat f g : X ⟶ Y h : f = g U : Opens ↑Y ⊢ (map f).obj U = (map g).obj U [PROOFSTEP] rw [congr_arg map h] [GOAL] X Y Z : TopCat f g : X ⟶ Y h : f = g ⊢ map f = map g [PROOFSTEP] subst h [GOAL] X Y Z : TopCat f : X ⟶ Y ⊢ map f = map f [PROOFSTEP] rfl [GOAL] X Y Z : TopCat f g : X ⟶ Y h : f = g U : Opens ↑Y ⊢ (map f).obj U = (map g).obj U [PROOFSTEP] rw [h] [GOAL] X Y Z : TopCat f g : X ⟶ Y h : f = g U : Opens ↑Y ⊢ (map g).obj U = (map f).obj U [PROOFSTEP] rw [h] [GOAL] X✝ Y✝ Z X Y : TopCat H : X ≅ Y U : Opens ↑Y ⊢ (𝟭 (Opens ↑Y)).obj U = (map H.hom ⋙ map H.inv).obj U [PROOFSTEP] simp [map, Set.preimage_preimage] [GOAL] X✝ Y✝ Z X Y : TopCat H : X ≅ Y U : Opens ↑X ⊢ (map H.inv ⋙ map H.hom).obj U = (𝟭 (Opens ↑X)).obj U [PROOFSTEP] simp [map, Set.preimage_preimage] [GOAL] X Y : TopCat f : X ⟶ Y hf : IsOpenMap ↑f H : Mono f X✝ Y✝ : Opens ↑X i : (functor hf).obj X✝ ⟶ (functor hf).obj Y✝ x : ↑X hx : x ∈ ↑X✝ ⊢ x ∈ ↑Y✝ [PROOFSTEP] obtain ⟨y, hy, eq⟩ := i.le ⟨x, hx, rfl⟩ [GOAL] case intro.intro X Y : TopCat f : X ⟶ Y hf : IsOpenMap ↑f H : Mono f X✝ Y✝ : Opens ↑X i : (functor hf).obj X✝ ⟶ (functor hf).obj Y✝ x : ↑X hx : x ∈ ↑X✝ y : (forget TopCat).obj X hy : y ∈ ↑Y✝ eq : ↑f y = ↑f x ⊢ x ∈ ↑Y✝ [PROOFSTEP] exact (TopCat.mono_iff_injective f).mp H eq ▸ hy [GOAL] X : TopCat U : Opens ↑X ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj ⊤ = U [PROOFSTEP] ext1 [GOAL] case h X : TopCat U : Opens ↑X ⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj ⊤) = ↑U [PROOFSTEP] exact Set.image_univ.trans Subtype.range_coe [GOAL] X : TopCat U : Opens ↑X ⊢ (map (inclusion U)).obj U = ⊤ [PROOFSTEP] ext1 [GOAL] case h X : TopCat U : Opens ↑X ⊢ ↑((map (inclusion U)).obj U) = ↑⊤ [PROOFSTEP] exact Subtype.coe_preimage_self _ [GOAL] X : TopCat U : Opens ↑X ⊢ (map (inclusion U) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj U = (𝟭 (Opens ↑X)).obj U [PROOFSTEP] simp [GOAL] X : TopCat ⊢ IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤)) = map (inclusionTopIso X).inv [PROOFSTEP] refine' CategoryTheory.Functor.ext _ _ [GOAL] case refine'_1 X : TopCat ⊢ ∀ (X_1 : Opens ↑((toTopCat X).obj ⊤)), (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).obj X_1 = (map (inclusionTopIso X).inv).obj X_1 [PROOFSTEP] intro U [GOAL] case refine'_1 X : TopCat U : Opens ↑((toTopCat X).obj ⊤) ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).obj U = (map (inclusionTopIso X).inv).obj U [PROOFSTEP] ext x [GOAL] case refine'_1.h.h X : TopCat U : Opens ↑((toTopCat X).obj ⊤) x : ↑X ⊢ x ∈ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).obj U) ↔ x ∈ ↑((map (inclusionTopIso X).inv).obj U) [PROOFSTEP] exact ⟨fun ⟨⟨_, _⟩, h, rfl⟩ => h, fun h => ⟨⟨x, trivial⟩, h, rfl⟩⟩ [GOAL] case refine'_2 X : TopCat ⊢ ∀ (X_1 Y : Opens ↑((toTopCat X).obj ⊤)) (f : X_1 ⟶ Y), (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).map f = eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).obj X_1 = (map (inclusionTopIso X).inv).obj X_1) ≫ (map (inclusionTopIso X).inv).map f ≫ eqToHom (_ : (map (inclusionTopIso X).inv).obj Y = (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).obj Y) [PROOFSTEP] intros U V f [GOAL] case refine'_2 X : TopCat U V : Opens ↑((toTopCat X).obj ⊤) f : U ⟶ V ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).map f = eqToHom (_ : (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).obj U = (map (inclusionTopIso X).inv).obj U) ≫ (map (inclusionTopIso X).inv).map f ≫ eqToHom (_ : (map (inclusionTopIso X).inv).obj V = (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion ⊤))).obj V) [PROOFSTEP] apply Subsingleton.elim [GOAL] X Y : TopCat f : X ⟶ Y hf : IsOpenMap ↑f U : Opens ↑Y ⊢ (IsOpenMap.functor hf).obj ((map f).obj U) = (IsOpenMap.functor hf).obj ⊤ ⊓ U [PROOFSTEP] ext [GOAL] case h.h X Y : TopCat f : X ⟶ Y hf : IsOpenMap ↑f U : Opens ↑Y x✝ : ↑Y ⊢ x✝ ∈ ↑((IsOpenMap.functor hf).obj ((map f).obj U)) ↔ x✝ ∈ ↑((IsOpenMap.functor hf).obj ⊤ ⊓ U) [PROOFSTEP] constructor [GOAL] case h.h.mp X Y : TopCat f : X ⟶ Y hf : IsOpenMap ↑f U : Opens ↑Y x✝ : ↑Y ⊢ x✝ ∈ ↑((IsOpenMap.functor hf).obj ((map f).obj U)) → x✝ ∈ ↑((IsOpenMap.functor hf).obj ⊤ ⊓ U) [PROOFSTEP] rintro ⟨x, hx, rfl⟩ [GOAL] case h.h.mp.intro.intro X Y : TopCat f : X ⟶ Y hf : IsOpenMap ↑f U : Opens ↑Y x : (forget TopCat).obj X hx : x ∈ ↑((map f).obj U) ⊢ ↑f x ∈ ↑((IsOpenMap.functor hf).obj ⊤ ⊓ U) [PROOFSTEP] exact ⟨⟨x, trivial, rfl⟩, hx⟩ [GOAL] case h.h.mpr X Y : TopCat f : X ⟶ Y hf : IsOpenMap ↑f U : Opens ↑Y x✝ : ↑Y ⊢ x✝ ∈ ↑((IsOpenMap.functor hf).obj ⊤ ⊓ U) → x✝ ∈ ↑((IsOpenMap.functor hf).obj ((map f).obj U)) [PROOFSTEP] rintro ⟨⟨x, -, rfl⟩, hx⟩ [GOAL] case h.h.mpr.intro.intro.intro X Y : TopCat f : X ⟶ Y hf : IsOpenMap ↑f U : Opens ↑Y x : (forget TopCat).obj X hx : ↑f x ∈ ↑U ⊢ ↑f x ∈ ↑((IsOpenMap.functor hf).obj ((map f).obj U)) [PROOFSTEP] exact ⟨x, hx, rfl⟩ [GOAL] X : TopCat U : Opens ↑X ⊢ Set.range ((forget TopCat).map (inclusion U)) = ↑U [PROOFSTEP] ext x [GOAL] case h X : TopCat U : Opens ↑X x : (forget TopCat).obj X ⊢ x ∈ Set.range ((forget TopCat).map (inclusion U)) ↔ x ∈ ↑U [PROOFSTEP] constructor [GOAL] case h.mp X : TopCat U : Opens ↑X x : (forget TopCat).obj X ⊢ x ∈ Set.range ((forget TopCat).map (inclusion U)) → x ∈ ↑U [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case h.mp.intro X : TopCat U : Opens ↑X x : (forget TopCat).obj ((toTopCat X).obj U) ⊢ (forget TopCat).map (inclusion U) x ∈ ↑U [PROOFSTEP] exact x.2 [GOAL] case h.mpr X : TopCat U : Opens ↑X x : (forget TopCat).obj X ⊢ x ∈ ↑U → x ∈ Set.range ((forget TopCat).map (inclusion U)) [PROOFSTEP] intro h [GOAL] case h.mpr X : TopCat U : Opens ↑X x : (forget TopCat).obj X h : x ∈ ↑U ⊢ x ∈ Set.range ((forget TopCat).map (inclusion U)) [PROOFSTEP] exact ⟨⟨x, h⟩, rfl⟩ [GOAL] X : TopCat U V : Opens ↑X ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj ((map (inclusion U)).obj V) = V ⊓ U [PROOFSTEP] ext1 [GOAL] case h X : TopCat U V : Opens ↑X ⊢ ↑((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj ((map (inclusion U)).obj V)) = ↑(V ⊓ U) [PROOFSTEP] refine' Set.image_preimage_eq_inter_range.trans _ [GOAL] case h X : TopCat U V : Opens ↑X ⊢ (V.1 ∩ Set.range fun x => ↑(inclusion U) x) = ↑(V ⊓ U) [PROOFSTEP] erw [set_range_forget_map_inclusion U] [GOAL] case h X : TopCat U V : Opens ↑X ⊢ V.1 ∩ ↑U = ↑(V ⊓ U) [PROOFSTEP] rfl [GOAL] X : TopCat U : Opens ↑X V : Opens { x // x ∈ U } ⊢ (map (inclusion U) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj V) = (𝟭 (Opens ↑X)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj V) [PROOFSTEP] dsimp [GOAL] X : TopCat U : Opens ↑X V : Opens { x // x ∈ U } ⊢ (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj ((map (inclusion U)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj V)) = (IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj V [PROOFSTEP] rw [map_functor_eq V] [GOAL] X : TopCat U : Opens ↑X V : Opens { x // x ∈ U } ⊢ NatTrans.app (IsOpenMap.adjunction (_ : IsOpenMap ↑(inclusion U))).counit ((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj V) = eqToHom (_ : (map (inclusion U) ⋙ IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj V) = (𝟭 (Opens ↑X)).obj ((IsOpenMap.functor (_ : IsOpenMap ↑(inclusion U))).obj V)) [PROOFSTEP] apply Subsingleton.elim
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.Opens", "llama_tokens": 4438}
[GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y Z : TopCat F : Presheaf C X U V : Opens ↑X i : U ⟶ V x : { x // x ∈ U } inst✝ : ConcreteCategory C s : (forget C).obj (F.obj (op V)) ⊢ ↑(germ F x) (↑(F.map i.op) s) = ↑(germ F ((fun x => { val := ↑x, property := (_ : ↑x ∈ ↑V) }) x)) s [PROOFSTEP] rw [← comp_apply, germ_res] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y✝ Z : TopCat F : Presheaf C X x : ↑X Y : C f₁ f₂ : stalk F x ⟶ Y ih : ∀ (U : Opens ↑X) (hxU : x ∈ U), germ F { val := x, property := hxU } ≫ f₁ = germ F { val := x, property := hxU } ≫ f₂ U : (OpenNhds x)ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U ≫ f₁ = colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U ≫ f₂ [PROOFSTEP] induction' U using Opposite.rec with U [GOAL] case mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y✝ Z : TopCat F : Presheaf C X x : ↑X Y : C f₁ f₂ : stalk F x ⟶ Y ih : ∀ (U : Opens ↑X) (hxU : x ∈ U), germ F { val := x, property := hxU } ≫ f₁ = germ F { val := x, property := hxU } ≫ f₂ U : OpenNhds x ⊢ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) { unop := U } ≫ f₁ = colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) { unop := U } ≫ f₂ [PROOFSTEP] cases' U with U hxU [GOAL] case mk.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y✝ Z : TopCat F : Presheaf C X x : ↑X Y : C f₁ f₂ : stalk F x ⟶ Y ih : ∀ (U : Opens ↑X) (hxU : x ∈ U), germ F { val := x, property := hxU } ≫ f₁ = germ F { val := x, property := hxU } ≫ f₂ U : Opens ↑X hxU : x ∈ U ⊢ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) { unop := { obj := U, property := hxU } } ≫ f₁ = colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) { unop := { obj := U, property := hxU } } ≫ f₂ [PROOFSTEP] exact ih U hxU [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X x : ↑X ⊢ stalk (f _* F) (↑f x) ⟶ stalk F x [PROOFSTEP] refine' ?_ ≫ colimit.pre _ (OpenNhds.map f x).op [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X x : ↑X ⊢ stalk (f _* F) (↑f x) ⟶ colimit ((OpenNhds.map f x).op ⋙ ((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) [PROOFSTEP] exact colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) F) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X U : Opens ↑Y x : { x // x ∈ (Opens.map f).obj U } ⊢ germ (f _* F) { val := ↑f ↑x, property := (_ : ↑x ∈ (Opens.map f).obj U) } ≫ stalkPushforward C f F ↑x = germ F x [PROOFSTEP] rw [stalkPushforward, germ, colimit.ι_map_assoc, colimit.ι_pre, whiskerRight_app] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X U : Opens ↑Y x : { x // x ∈ (Opens.map f).obj U } ⊢ F.map (NatTrans.app (NatTrans.op (OpenNhds.inclusionMapIso f ↑x).inv) (op { obj := U, property := (_ : ↑{ val := ↑f ↑x, property := (_ : ↑x ∈ (Opens.map f).obj U) } ∈ U) })) ≫ colimit.ι (((whiskeringLeft (OpenNhds ↑x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion ↑x).op).obj F) ((OpenNhds.map f ↑x).op.obj (op { obj := U, property := (_ : ↑{ val := ↑f ↑x, property := (_ : ↑x ∈ (Opens.map f).obj U) } ∈ U) })) = germ F x [PROOFSTEP] erw [CategoryTheory.Functor.map_id, Category.id_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X U : Opens ↑Y x : { x // x ∈ (Opens.map f).obj U } ⊢ colimit.ι (((whiskeringLeft (OpenNhds ↑x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion ↑x).op).obj F) ((OpenNhds.map f ↑x).op.obj (op { obj := U, property := (_ : ↑{ val := ↑f ↑x, property := (_ : ↑x ∈ (Opens.map f).obj U) } ∈ U) })) = germ F x [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X x : ↑X ⊢ stalkPushforward C (𝟙 X) ℱ x = (stalkFunctor C x).map (Pushforward.id ℱ).hom [PROOFSTEP] change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X x : ↑X ⊢ stalkPushforward C (𝟙 X) ℱ x = (stalkFunctor C x).map (Pushforward.id ℱ).hom [PROOFSTEP] ext1 j [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X x : ↑X j : (OpenNhds (↑(𝟙 X) x))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(𝟙 X) x))ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(𝟙 X) x)).op).obj (𝟙 X _* ℱ)) j ≫ stalkPushforward C (𝟙 X) ℱ x = colimit.ι (((whiskeringLeft (OpenNhds (↑(𝟙 X) x))ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(𝟙 X) x)).op).obj (𝟙 X _* ℱ)) j ≫ (stalkFunctor C x).map (Pushforward.id ℱ).hom [PROOFSTEP] induction' j with j [GOAL] case w.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X x : ↑X j : OpenNhds (↑(𝟙 X) x) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(𝟙 X) x))ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(𝟙 X) x)).op).obj (𝟙 X _* ℱ)) (op j) ≫ stalkPushforward C (𝟙 X) ℱ x = colimit.ι (((whiskeringLeft (OpenNhds (↑(𝟙 X) x))ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(𝟙 X) x)).op).obj (𝟙 X _* ℱ)) (op j) ≫ (stalkFunctor C x).map (Pushforward.id ℱ).hom [PROOFSTEP] rcases j with ⟨⟨_, _⟩, _⟩ [GOAL] case w.h.mk.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X x : ↑X carrier✝ : Set ↑X is_open'✝ : IsOpen carrier✝ property✝ : ↑(𝟙 X) x ∈ { carrier := carrier✝, is_open' := is_open'✝ } ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(𝟙 X) x))ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(𝟙 X) x)).op).obj (𝟙 X _* ℱ)) (op { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ }) ≫ stalkPushforward C (𝟙 X) ℱ x = colimit.ι (((whiskeringLeft (OpenNhds (↑(𝟙 X) x))ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(𝟙 X) x)).op).obj (𝟙 X _* ℱ)) (op { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ }) ≫ (stalkFunctor C x).map (Pushforward.id ℱ).hom [PROOFSTEP] erw [colimit.ι_map_assoc] [GOAL] case w.h.mk.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X x : ↑X carrier✝ : Set ↑X is_open'✝ : IsOpen carrier✝ property✝ : ↑(𝟙 X) x ∈ { carrier := carrier✝, is_open' := is_open'✝ } ⊢ NatTrans.app (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso (𝟙 X) x).inv) ℱ) (op { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ }) ≫ colimit.ι ((OpenNhds.map (𝟙 X) x).op ⋙ ((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ℱ) (op { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ }) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ℱ) (OpenNhds.map (𝟙 X) x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑(𝟙 X) x))ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion (↑(𝟙 X) x)).op).obj (𝟙 X _* ℱ)) (op { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ }) ≫ (stalkFunctor C x).map (Pushforward.id ℱ).hom [PROOFSTEP] simp [stalkFunctor, stalkPushforward] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X f : X ⟶ Y g : Y ⟶ Z x : ↑X ⊢ stalkPushforward C (f ≫ g) ℱ x = stalkPushforward C g (f _* ℱ) (↑f x) ≫ stalkPushforward C f ℱ x [PROOFSTEP] change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X f : X ⟶ Y g : Y ⟶ Z x : ↑X ⊢ stalkPushforward C (f ≫ g) ℱ x = stalkPushforward C g (f _* ℱ) (↑f x) ≫ stalkPushforward C f ℱ x [PROOFSTEP] ext U [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X f : X ⟶ Y g : Y ⟶ Z x : ↑X U : (OpenNhds (↑(f ≫ g) x))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(f ≫ g) x)).op).obj ((f ≫ g) _* ℱ)) U ≫ stalkPushforward C (f ≫ g) ℱ x = colimit.ι (((whiskeringLeft (OpenNhds (↑(f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(f ≫ g) x)).op).obj ((f ≫ g) _* ℱ)) U ≫ stalkPushforward C g (f _* ℱ) (↑f x) ≫ stalkPushforward C f ℱ x [PROOFSTEP] rcases U with ⟨⟨_, _⟩, _⟩ [GOAL] case w.mk.mk.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X f : X ⟶ Y g : Y ⟶ Z x : ↑X carrier✝ : Set ↑Z is_open'✝ : IsOpen carrier✝ property✝ : ↑(f ≫ g) x ∈ { carrier := carrier✝, is_open' := is_open'✝ } ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(f ≫ g) x)).op).obj ((f ≫ g) _* ℱ)) { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫ stalkPushforward C (f ≫ g) ℱ x = colimit.ι (((whiskeringLeft (OpenNhds (↑(f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(f ≫ g) x)).op).obj ((f ≫ g) _* ℱ)) { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫ stalkPushforward C g (f _* ℱ) (↑f x) ≫ stalkPushforward C f ℱ x [PROOFSTEP] simp only [colimit.ι_map_assoc, colimit.ι_pre_assoc, whiskerRight_app, Category.assoc] [GOAL] case w.mk.mk.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat ℱ : Presheaf C X f : X ⟶ Y g : Y ⟶ Z x : ↑X carrier✝ : Set ↑Z is_open'✝ : IsOpen carrier✝ property✝ : ↑(f ≫ g) x ∈ { carrier := carrier✝, is_open' := is_open'✝ } ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑(f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(f ≫ g) x)).op).obj ((f ≫ g) _* ℱ)) { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫ stalkPushforward C (f ≫ g) ℱ x = colimit.ι (((whiskeringLeft (OpenNhds (↑(f ≫ g) x))ᵒᵖ (Opens ↑Z)ᵒᵖ C).obj (OpenNhds.inclusion (↑(f ≫ g) x)).op).obj ((f ≫ g) _* ℱ)) { unop := { obj := { carrier := carrier✝, is_open' := is_open'✝ }, property := property✝ } } ≫ stalkPushforward C g (f _* ℱ) (↑f x) ≫ stalkPushforward C f ℱ x [PROOFSTEP] simp [stalkFunctor, stalkPushforward] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X ⊢ IsIso (stalkPushforward C f F x) [PROOFSTEP] haveI := Functor.initial_of_adjunction (hf.isOpenMap.adjunctionNhds x) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) ⊢ IsIso (stalkPushforward C f F x) [PROOFSTEP] convert IsIso.of_iso ((Functor.Final.colimitIso (hf.isOpenMap.functorNhds x).op ((OpenNhds.inclusion (f x)).op ⋙ f _* F) : _).symm ≪≫ colim.mapIso _) [GOAL] case h.e'_5.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) ⊢ stalkPushforward C f F x = ((Functor.Final.colimitIso (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F)).symm ≪≫ colim.mapIso ?convert_2).hom case convert_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) ⊢ (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ⋙ (OpenNhds.inclusion (↑f x)).op ⋙ f _* F ≅ ((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F [PROOFSTEP] swap [GOAL] case convert_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) ⊢ (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ⋙ (OpenNhds.inclusion (↑f x)).op ⋙ f _* F ≅ ((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F [PROOFSTEP] fapply NatIso.ofComponents [GOAL] case convert_2.app C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) ⊢ (X_1 : (OpenNhds x)ᵒᵖ) → ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ⋙ (OpenNhds.inclusion (↑f x)).op ⋙ f _* F).obj X_1 ≅ (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F).obj X_1 [PROOFSTEP] intro U [GOAL] case convert_2.app C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) U : (OpenNhds x)ᵒᵖ ⊢ ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ⋙ (OpenNhds.inclusion (↑f x)).op ⋙ f _* F).obj U ≅ (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F).obj U [PROOFSTEP] refine' F.mapIso (eqToIso _) [GOAL] case convert_2.app C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) U : (OpenNhds x)ᵒᵖ ⊢ (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U [PROOFSTEP] dsimp only [Functor.op] [GOAL] case convert_2.app C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) U : (OpenNhds x)ᵒᵖ ⊢ op ((Opens.map f).obj (op ((OpenNhds.inclusion (↑f x)).obj (op ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj U.unop)).unop)).unop) = op ((OpenNhds.inclusion x).obj U.unop) [PROOFSTEP] exact congr_arg op (Opens.ext <| Set.preimage_image_eq (unop U).1.1 hf.inj) [GOAL] case convert_2.naturality C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) ⊢ autoParam (∀ {X_1 Y_1 : (OpenNhds x)ᵒᵖ} (f_1 : X_1 ⟶ Y_1), ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ⋙ (OpenNhds.inclusion (↑f x)).op ⋙ f _* F).map f_1 ≫ (F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj Y_1)) = (OpenNhds.inclusion x).op.obj Y_1))).hom = (F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj X_1)) = (OpenNhds.inclusion x).op.obj X_1))).hom ≫ (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F).map f_1) _auto✝ [PROOFSTEP] intro U V i [GOAL] case convert_2.naturality C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) U V : (OpenNhds x)ᵒᵖ i : U ⟶ V ⊢ ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ⋙ (OpenNhds.inclusion (↑f x)).op ⋙ f _* F).map i ≫ (F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj V)) = (OpenNhds.inclusion x).op.obj V))).hom = (F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U))).hom ≫ (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F).map i [PROOFSTEP] erw [← F.map_comp, ← F.map_comp] [GOAL] case convert_2.naturality C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) U V : (OpenNhds x)ᵒᵖ i : U ⟶ V ⊢ F.map ((Opens.map f).op.map ((OpenNhds.inclusion (↑f x)).op.map ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.map i)) ≫ (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj V)) = (OpenNhds.inclusion x).op.obj V)).hom) = F.map ((eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U)).hom ≫ (OpenNhds.inclusion x).op.map i) [PROOFSTEP] congr 1 [GOAL] case h.e'_5.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) ⊢ stalkPushforward C f F x = ((Functor.Final.colimitIso (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F)).symm ≪≫ colim.mapIso (NatIso.ofComponents fun U => F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U)))).hom [PROOFSTEP] change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _) [GOAL] case h.e'_5.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) ⊢ stalkPushforward C f F x = ((Functor.Final.colimitIso (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F)).symm ≪≫ colim.mapIso (NatIso.ofComponents fun U => F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U)))).hom [PROOFSTEP] ext U [GOAL] case h.e'_5.h.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U : (OpenNhds (↑f x))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj (f _* F)) U ≫ stalkPushforward C f F x = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj (f _* F)) U ≫ ((Functor.Final.colimitIso (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F)).symm ≪≫ colim.mapIso (NatIso.ofComponents fun U => F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U)))).hom [PROOFSTEP] rw [← Iso.comp_inv_eq] [GOAL] case h.e'_5.h.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U : (OpenNhds (↑f x))ᵒᵖ ⊢ (colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj (f _* F)) U ≫ stalkPushforward C f F x) ≫ ((Functor.Final.colimitIso (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F)).symm ≪≫ colim.mapIso (NatIso.ofComponents fun U => F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U)))).inv = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj (f _* F)) U [PROOFSTEP] erw [colimit.ι_map_assoc] [GOAL] case h.e'_5.h.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U : (OpenNhds (↑f x))ᵒᵖ ⊢ (NatTrans.app (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) F) U ≫ colimit.ι ((OpenNhds.map f x).op ⋙ ((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) (OpenNhds.map f x).op) ≫ ((Functor.Final.colimitIso (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F)).symm ≪≫ colim.mapIso (NatIso.ofComponents fun U => F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U)))).inv = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj (f _* F)) U [PROOFSTEP] rw [colimit.ι_pre, Category.assoc] [GOAL] case h.e'_5.h.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U : (OpenNhds (↑f x))ᵒᵖ ⊢ NatTrans.app (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) F) U ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) ((OpenNhds.map f x).op.obj U) ≫ ((Functor.Final.colimitIso (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F)).symm ≪≫ colim.mapIso (NatIso.ofComponents fun U => F.mapIso (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj U)) = (OpenNhds.inclusion x).op.obj U)))).inv = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj (f _* F)) U [PROOFSTEP] erw [colimit.ι_map_assoc, colimit.ι_pre, ← F.map_comp_assoc] [GOAL] case h.e'_5.h.w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U : (OpenNhds (↑f x))ᵒᵖ ⊢ F.map (NatTrans.app (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) U ≫ (eqToIso (_ : (Opens.map f).op.obj ((OpenNhds.inclusion (↑f x)).op.obj ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj ((OpenNhds.map f x).op.obj U))) = (OpenNhds.inclusion x).op.obj ((OpenNhds.map f x).op.obj U))).inv) ≫ colimit.ι ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj ((OpenNhds.map f x).op.obj U)) = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj (f _* F)) U [PROOFSTEP] apply colimit.w ((OpenNhds.inclusion (f x)).op ⋙ f _* F) _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U : (OpenNhds (↑f x))ᵒᵖ ⊢ U ⟶ (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).op.obj ((OpenNhds.map f x).op.obj U) [PROOFSTEP] dsimp only [Functor.op] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U : (OpenNhds (↑f x))ᵒᵖ ⊢ U ⟶ op ((IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj (op ((OpenNhds.map f x).obj U.unop)).unop) [PROOFSTEP] refine' ((homOfLE _).op : op (unop U) ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y hf : OpenEmbedding ↑f F : Presheaf C X x : ↑X this : Functor.Initial (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x) e_3✝ : stalk (f _* F) (↑f x) = colimit ((OpenNhds.inclusion (↑f x)).op ⋙ f _* F) e_4✝ : stalk F x = colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) U : (OpenNhds (↑f x))ᵒᵖ ⊢ (IsOpenMap.functorNhds (_ : IsOpenMap ↑f) x).obj (op ((OpenNhds.map f x).obj U.unop)).unop ≤ U.unop [PROOFSTEP] exact Set.image_preimage_subset _ _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y U : Opens ↑X x : { x // x ∈ U } x✝¹ x✝ : CostructuredArrow (Opens.map f).op (op U) i : x✝¹ ⟶ x✝ ⊢ (Lan.diagram (Opens.map f).op F (op U)).map i ≫ (fun V => germ F { val := ↑f ↑x, property := (_ : ↑x ∈ ↑((Opens.map f).op.obj V.left).unop) }) x✝ = (fun V => germ F { val := ↑f ↑x, property := (_ : ↑x ∈ ↑((Opens.map f).op.obj V.left).unop) }) x✝¹ ≫ ((Functor.const (CostructuredArrow (Opens.map f).op (op U))).obj (stalk F (↑f ↑x))).map i [PROOFSTEP] erw [Category.comp_id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y U : Opens ↑X x : { x // x ∈ U } x✝¹ x✝ : CostructuredArrow (Opens.map f).op (op U) i : x✝¹ ⟶ x✝ ⊢ (Lan.diagram (Opens.map f).op F (op U)).map i ≫ (fun V => germ F { val := ↑f ↑x, property := (_ : ↑x ∈ ↑((Opens.map f).op.obj V.left).unop) }) x✝ = (fun V => germ F { val := ↑f ↑x, property := (_ : ↑x ∈ ↑((Opens.map f).op.obj V.left).unop) }) x✝¹ [PROOFSTEP] exact F.germ_res i.left.unop _ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X x✝² x✝¹ : (OpenNhds x)ᵒᵖ x✝ : x✝² ⟶ x✝¹ ⊢ ((OpenNhds.inclusion x).op ⋙ pullbackObj f F).map x✝ ≫ (fun U => germToPullbackStalk C f F U.unop.obj { val := x, property := (_ : x ∈ U.unop.obj) }) x✝¹ = (fun U => germToPullbackStalk C f F U.unop.obj { val := x, property := (_ : x ∈ U.unop.obj) }) x✝² ≫ ((Functor.const (OpenNhds x)ᵒᵖ).obj (stalk F (↑f x))).map x✝ [PROOFSTEP] erw [colimit.pre_desc, Category.comp_id] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X x✝² x✝¹ : (OpenNhds x)ᵒᵖ x✝ : x✝² ⟶ x✝¹ ⊢ colimit.desc (CostructuredArrow.map ((OpenNhds.inclusion x).op.map x✝) ⋙ Lan.diagram (Opens.map f).op F ((OpenNhds.inclusion x).op.obj x✝¹)) (Cocone.whisker (CostructuredArrow.map ((OpenNhds.inclusion x).op.map x✝)) { pt := stalk F (↑f ↑{ val := x, property := (_ : x ∈ x✝¹.unop.obj) }), ι := NatTrans.mk fun V => germ F { val := ↑f ↑{ val := x, property := (_ : x ∈ x✝¹.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ x✝¹.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) } }) = (fun U => germToPullbackStalk C f F U.unop.obj { val := x, property := (_ : x ∈ U.unop.obj) }) x✝² [PROOFSTEP] congr [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X ⊢ stalkPullbackHom C f F x ≫ stalkPullbackInv C f F x = 𝟙 (stalk F (↑f x)) [PROOFSTEP] delta stalkPullbackHom stalkPullbackInv stalkFunctor Presheaf.pullback stalkPushforward germToPullbackStalk germ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X ⊢ (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op) ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => colimit.desc (Lan.diagram (Opens.map f).op F (op U.unop.obj)) { pt := stalk F (↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }), ι := NatTrans.mk fun V => colimit.ι ((OpenNhds.inclusion ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) }).op ⋙ F) (op { obj := V.left.unop, property := (_ : ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) } ∈ V.left.unop) }) } } = 𝟙 (stalk F (↑f x)) [PROOFSTEP] change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X ⊢ (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op) ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => colimit.desc (Lan.diagram (Opens.map f).op F (op U.unop.obj)) { pt := stalk F (↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }), ι := NatTrans.mk fun V => colimit.ι ((OpenNhds.inclusion ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) }).op ⋙ F) (op { obj := V.left.unop, property := (_ : ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) } ∈ V.left.unop) }) } } = 𝟙 (stalk F (↑f x)) [PROOFSTEP] ext j [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X j : (OpenNhds (↑f x))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj F) j ≫ (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op) ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => colimit.desc (Lan.diagram (Opens.map f).op F (op U.unop.obj)) { pt := stalk F (↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }), ι := NatTrans.mk fun V => colimit.ι ((OpenNhds.inclusion ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) }).op ⋙ F) (op { obj := V.left.unop, property := (_ : ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) } ∈ V.left.unop) }) } } = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj F) j ≫ 𝟙 (stalk F (↑f x)) [PROOFSTEP] induction' j with j [GOAL] case w.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X j : OpenNhds (↑f x) ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj F) (op j) ≫ (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op) ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => colimit.desc (Lan.diagram (Opens.map f).op F (op U.unop.obj)) { pt := stalk F (↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }), ι := NatTrans.mk fun V => colimit.ι ((OpenNhds.inclusion ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) }).op ⋙ F) (op { obj := V.left.unop, property := (_ : ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) } ∈ V.left.unop) }) } } = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj F) (op j) ≫ 𝟙 (stalk F (↑f x)) [PROOFSTEP] cases j [GOAL] case w.h.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X obj✝ : Opens ↑Y property✝ : ↑f x ∈ obj✝ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj F) (op { obj := obj✝, property := property✝ }) ≫ (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op) ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => colimit.desc (Lan.diagram (Opens.map f).op F (op U.unop.obj)) { pt := stalk F (↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }), ι := NatTrans.mk fun V => colimit.ι ((OpenNhds.inclusion ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) }).op ⋙ F) (op { obj := V.left.unop, property := (_ : ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ U.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) } ∈ V.left.unop) }) } } = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj F) (op { obj := obj✝, property := property✝ }) ≫ 𝟙 (stalk F (↑f x)) [PROOFSTEP] simp only [TopologicalSpace.OpenNhds.inclusionMapIso_inv, whiskerRight_app, whiskerLeft_app, whiskeringLeft_obj_map, Functor.comp_map, colimit.ι_map_assoc, NatTrans.op_id, lan_obj_map, pushforwardPullbackAdjunction_unit_app_app, Category.assoc, colimit.ι_pre_assoc] [GOAL] case w.h.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X obj✝ : Opens ↑Y property✝ : ↑f x ∈ obj✝ ⊢ colimit.ι (Lan.diagram (Opens.map f).op F (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := obj✝, property := property✝ })).unop))) (CostructuredArrow.mk (𝟙 (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := obj✝, property := property✝ })).unop)))) ≫ colimit.pre (Lan.diagram (Opens.map f).op F ((OpenNhds.map f x ⋙ OpenNhds.inclusion x).op.obj (op { obj := obj✝, property := property✝ }))) (CostructuredArrow.map (NatTrans.app (𝟙 (OpenNhds.map f x ⋙ OpenNhds.inclusion x).op) (op { obj := obj✝, property := property✝ }))) ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) ((OpenNhds.map f x).op.obj (op { obj := obj✝, property := property✝ })) ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => colimit.desc (Lan.diagram (Opens.map f).op F (op U.unop.obj)) { pt := stalk F (↑f x), ι := NatTrans.mk fun V => colimit.ι ((OpenNhds.inclusion (↑f x)).op ⋙ F) (op { obj := V.left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ U.unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) } ∈ V.left.unop) }) } } = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj F) (op { obj := obj✝, property := property✝ }) ≫ 𝟙 (stalk F (↑f x)) [PROOFSTEP] erw [colimit.ι_desc, colimit.pre_desc, colimit.ι_desc, Category.comp_id] [GOAL] case w.h.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X obj✝ : Opens ↑Y property✝ : ↑f x ∈ obj✝ ⊢ NatTrans.app (Cocone.whisker (CostructuredArrow.map (NatTrans.app (𝟙 (OpenNhds.map f x ⋙ OpenNhds.inclusion x).op) (op { obj := obj✝, property := property✝ }))) { pt := stalk F (↑f x), ι := NatTrans.mk fun V => colimit.ι ((OpenNhds.inclusion (↑f x)).op ⋙ F) (op { obj := V.left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ ((OpenNhds.map f x).op.obj (op { obj := obj✝, property := property✝ })).unop.obj) } ∈ ↑((Opens.map f).op.obj V.left).unop) } ∈ V.left.unop) }) }).ι (CostructuredArrow.mk (𝟙 (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := obj✝, property := property✝ })).unop)))) = colimit.ι (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).obj F) (op { obj := obj✝, property := property✝ }) [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X ⊢ stalkPullbackInv C f F x ≫ stalkPullbackHom C f F x = 𝟙 (stalk (pullbackObj f F) x) [PROOFSTEP] delta stalkPullbackHom stalkPullbackInv stalkFunctor Presheaf.pullback stalkPushforward [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X ⊢ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => germToPullbackStalk C f F U.unop.obj { val := x, property := (_ : x ∈ U.unop.obj) } } ≫ ((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op = 𝟙 (stalk (pullbackObj f F) x) [PROOFSTEP] change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X ⊢ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => germToPullbackStalk C f F U.unop.obj { val := x, property := (_ : x ∈ U.unop.obj) } } ≫ ((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op = 𝟙 (stalk (pullbackObj f F) x) [PROOFSTEP] ext ⟨U_obj, U_property⟩ [GOAL] case w.mk.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X U_obj : Opens ↑X U_property : x ∈ U_obj ⊢ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => germToPullbackStalk C f F U.unop.obj { val := x, property := (_ : x ∈ U.unop.obj) } } ≫ ((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op = colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } ≫ 𝟙 (stalk (pullbackObj f F) x) [PROOFSTEP] change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _) [GOAL] case w.mk.mk C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X U_obj : Opens ↑X U_property : x ∈ U_obj ⊢ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => germToPullbackStalk C f F U.unop.obj { val := x, property := (_ : x ∈ U.unop.obj) } } ≫ ((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op = colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } ≫ 𝟙 (stalk (pullbackObj f F) x) [PROOFSTEP] ext ⟨j_left, ⟨⟨⟩⟩, j_hom⟩ [GOAL] case w.mk.mk.w.mk.mk.unit C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X U_obj : Opens ↑X U_property : x ∈ U_obj j_left : (Opens ↑Y)ᵒᵖ j_hom : (Opens.map f).op.obj j_left ⟶ (Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit } ⊢ colimit.ι (Lan.diagram (Opens.map f).op F ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })) { left := j_left, right := { as := PUnit.unit }, hom := j_hom } ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } ≫ colimit.desc ((OpenNhds.inclusion x).op ⋙ pullbackObj f F) { pt := stalk F (↑f x), ι := NatTrans.mk fun U => germToPullbackStalk C f F U.unop.obj { val := x, property := (_ : x ∈ U.unop.obj) } } ≫ ((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op ⋙ colim).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F)) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (OpenNhds.map f x).op = colimit.ι (Lan.diagram (Opens.map f).op F ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })) { left := j_left, right := { as := PUnit.unit }, hom := j_hom } ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } ≫ 𝟙 (stalk (pullbackObj f F) x) [PROOFSTEP] erw [colimit.map_desc, colimit.map_desc, colimit.ι_desc_assoc, colimit.ι_desc_assoc, colimit.ι_desc, Category.comp_id] [GOAL] case w.mk.mk.w.mk.mk.unit C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X U_obj : Opens ↑X U_property : x ∈ U_obj j_left : (Opens ↑Y)ᵒᵖ j_hom : (Opens.map f).op.obj j_left ⟶ (Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit } ⊢ NatTrans.app ((Cocones.precompose (((whiskeringLeft (OpenNhds (↑f x))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f x)).op).map (NatTrans.app (pushforwardPullbackAdjunction C f).unit F))).obj ((Cocones.precompose (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) ((lan (Opens.map f).op).obj F))).obj (Cocone.whisker (OpenNhds.map f x).op (colimit.cocone (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)))))).ι (op { obj := { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left.unop, property := (_ : ↑{ val := ↑f ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) }, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left.unop) }) = colimit.ι (Lan.diagram (Opens.map f).op F ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })) { left := j_left, right := { as := PUnit.unit }, hom := j_hom } ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } [PROOFSTEP] simp only [Cocone.whisker_ι, colimit.cocone_ι, OpenNhds.inclusionMapIso_inv, Cocones.precompose_obj_ι, whiskerRight_app, whiskerLeft_app, NatTrans.comp_app, whiskeringLeft_obj_map, NatTrans.op_id, lan_obj_map, pushforwardPullbackAdjunction_unit_app_app] [GOAL] case w.mk.mk.w.mk.mk.unit C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X U_obj : Opens ↑X U_property : x ∈ U_obj j_left : (Opens ↑Y)ᵒᵖ j_hom : (Opens.map f).op.obj j_left ⟶ (Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit } ⊢ colimit.ι (Lan.diagram (Opens.map f).op F (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) })).unop))) (CostructuredArrow.mk (𝟙 (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) })).unop)))) ≫ colimit.pre (Lan.diagram (Opens.map f).op F ((OpenNhds.map f x ⋙ OpenNhds.inclusion x).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) }))) (CostructuredArrow.map (NatTrans.app (𝟙 (OpenNhds.map f x ⋙ OpenNhds.inclusion x).op) (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) }))) ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) ((OpenNhds.map f x).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) })) = colimit.ι (Lan.diagram (Opens.map f).op F ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })) { left := j_left, right := { as := PUnit.unit }, hom := j_hom } ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } [PROOFSTEP] erw [← colimit.w _ (@homOfLE (OpenNhds x) _ ⟨_, U_property⟩ ⟨(Opens.map f).obj (unop j_left), j_hom.unop.le U_property⟩ j_hom.unop.le).op] [GOAL] case w.mk.mk.w.mk.mk.unit C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X U_obj : Opens ↑X U_property : x ∈ U_obj j_left : (Opens ↑Y)ᵒᵖ j_hom : (Opens.map f).op.obj j_left ⟶ (Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit } ⊢ colimit.ι (Lan.diagram (Opens.map f).op F (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) })).unop))) (CostructuredArrow.mk (𝟙 (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) })).unop)))) ≫ colimit.pre (Lan.diagram (Opens.map f).op F ((OpenNhds.map f x ⋙ OpenNhds.inclusion x).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) }))) (CostructuredArrow.map (NatTrans.app (𝟙 (OpenNhds.map f x ⋙ OpenNhds.inclusion x).op) (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) }))) ≫ (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)).map (homOfLE (_ : ((Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit }).unop ≤ ((Opens.map f).op.obj j_left).unop)).op ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (op { obj := U_obj, property := U_property }) = colimit.ι (Lan.diagram (Opens.map f).op F ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })) { left := j_left, right := { as := PUnit.unit }, hom := j_hom } ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } [PROOFSTEP] erw [colimit.ι_pre_assoc (Lan.diagram _ F _) (CostructuredArrow.map _)] [GOAL] case w.mk.mk.w.mk.mk.unit C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X U_obj : Opens ↑X U_property : x ∈ U_obj j_left : (Opens ↑Y)ᵒᵖ j_hom : (Opens.map f).op.obj j_left ⟶ (Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit } ⊢ colimit.ι (Lan.diagram (Opens.map f).op F (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) })).unop))) ((CostructuredArrow.map (NatTrans.app (𝟙 (OpenNhds.map f x ⋙ OpenNhds.inclusion x).op) (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) }))).obj (CostructuredArrow.mk (𝟙 (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) })).unop))))) ≫ (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)).map (homOfLE (_ : ((Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit }).unop ≤ ((Opens.map f).op.obj j_left).unop)).op ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (op { obj := U_obj, property := U_property }) = colimit.ι (Lan.diagram (Opens.map f).op F ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })) { left := j_left, right := { as := PUnit.unit }, hom := j_hom } ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } [PROOFSTEP] erw [colimit.ι_pre_assoc (Lan.diagram _ F (op U_obj)) (CostructuredArrow.map _)] [GOAL] case w.mk.mk.w.mk.mk.unit C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C Y x : ↑X U_obj : Opens ↑X U_property : x ∈ U_obj j_left : (Opens ↑Y)ᵒᵖ j_hom : (Opens.map f).op.obj j_left ⟶ (Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit } ⊢ colimit.ι (Lan.diagram (Opens.map f).op F (op U_obj)) ((CostructuredArrow.map ((OpenNhds.inclusion x).op.map (homOfLE (_ : ((Functor.fromPUnit ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })).obj { as := PUnit.unit }).unop ≤ ((Opens.map f).op.obj j_left).unop)).op)).obj ((CostructuredArrow.map (NatTrans.app (𝟙 (OpenNhds.map f x ⋙ OpenNhds.inclusion x).op) (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) }))).obj (CostructuredArrow.mk (𝟙 (op ((Opens.map f).obj ((OpenNhds.inclusion (↑f x)).op.obj (op { obj := j_left.unop, property := (_ : ↑{ val := ↑f x, property := (_ : ↑{ val := x, property := (_ : x ∈ { unop := { obj := U_obj, property := U_property } }.unop.obj) } ∈ ↑((Opens.map f).op.obj { left := j_left, right := { as := PUnit.unit }, hom := j_hom }.left).unop) } ∈ j_left.unop) })).unop)))))) ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj ((lan (Opens.map f).op).obj F)) (op { obj := U_obj, property := U_property }) = colimit.ι (Lan.diagram (Opens.map f).op F ((OpenNhds.inclusion x).op.obj { unop := { obj := U_obj, property := U_property } })) { left := j_left, right := { as := PUnit.unit }, hom := j_hom } ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj (pullbackObj f F)) { unop := { obj := U_obj, property := U_property } } [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F : Presheaf C X x y : ↑X h : x ⤳ y ⊢ stalk F y ⟶ stalk F x [PROOFSTEP] refine' colimit.desc _ ⟨_, fun U => _, _⟩ [GOAL] case refine'_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F : Presheaf C X x y : ↑X h : x ⤳ y U : (OpenNhds y)ᵒᵖ ⊢ (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F).obj U ⟶ ((Functor.const (OpenNhds y)ᵒᵖ).obj (colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).obj U [PROOFSTEP] exact colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op ⟨(unop U).1, (specializes_iff_forall_open.mp h _ (unop U).1.2 (unop U).2 : _)⟩) [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F : Presheaf C X x y : ↑X h : x ⤳ y ⊢ ∀ ⦃X_1 Y : (OpenNhds y)ᵒᵖ⦄ (f : X_1 ⟶ Y), (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F).map f ≫ (fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) })) Y = (fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) })) X_1 ≫ ((Functor.const (OpenNhds y)ᵒᵖ).obj (colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).map f [PROOFSTEP] intro U V i [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F : Presheaf C X x y : ↑X h : x ⤳ y U V : (OpenNhds y)ᵒᵖ i : U ⟶ V ⊢ (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F).map i ≫ (fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) })) V = (fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) })) U ≫ ((Functor.const (OpenNhds y)ᵒᵖ).obj (colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).map i [PROOFSTEP] dsimp [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F : Presheaf C X x y : ↑X h : x ⤳ y U V : (OpenNhds y)ᵒᵖ i : U ⟶ V ⊢ F.map ((OpenNhds.inclusion y).map i.unop).op ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := V.unop.obj, property := (_ : x ∈ ↑V.unop.obj) }) = colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ ↑U.unop.obj) }) ≫ 𝟙 (colimit ((OpenNhds.inclusion x).op ⋙ F)) [PROOFSTEP] rw [Category.comp_id] [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F : Presheaf C X x y : ↑X h : x ⤳ y U V : (OpenNhds y)ᵒᵖ i : U ⟶ V ⊢ F.map ((OpenNhds.inclusion y).map i.unop).op ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := V.unop.obj, property := (_ : x ∈ ↑V.unop.obj) }) = colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ ↑U.unop.obj) }) [PROOFSTEP] let U' : OpenNhds x := ⟨_, (specializes_iff_forall_open.mp h _ (unop U).1.2 (unop U).2 : _)⟩ [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F : Presheaf C X x y : ↑X h : x ⤳ y U V : (OpenNhds y)ᵒᵖ i : U ⟶ V U' : OpenNhds x := { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) } ⊢ F.map ((OpenNhds.inclusion y).map i.unop).op ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := V.unop.obj, property := (_ : x ∈ ↑V.unop.obj) }) = colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ ↑U.unop.obj) }) [PROOFSTEP] let V' : OpenNhds x := ⟨_, (specializes_iff_forall_open.mp h _ (unop V).1.2 (unop V).2 : _)⟩ [GOAL] case refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F : Presheaf C X x y : ↑X h : x ⤳ y U V : (OpenNhds y)ᵒᵖ i : U ⟶ V U' : OpenNhds x := { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) } V' : OpenNhds x := { obj := V.unop.obj, property := (_ : x ∈ V.unop.obj.carrier) } ⊢ F.map ((OpenNhds.inclusion y).map i.unop).op ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := V.unop.obj, property := (_ : x ∈ ↑V.unop.obj) }) = colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ ↑U.unop.obj) }) [PROOFSTEP] exact colimit.w ((OpenNhds.inclusion x).op ⋙ F) (show V' ⟶ U' from i.unop).op [GOAL] C✝ : Type u inst✝³ : Category.{v, u} C✝ inst✝² : HasColimits C✝ X✝ Y Z : TopCat C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasColimits C X : TopCat F : Presheaf C X x : ↑X ⊢ stalkSpecializes F (_ : x ⤳ x) = 𝟙 (stalk F x) [PROOFSTEP] ext [GOAL] case ih C✝ : Type u inst✝³ : Category.{v, u} C✝ inst✝² : HasColimits C✝ X✝ Y Z : TopCat C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasColimits C X : TopCat F : Presheaf C X x : ↑X U✝ : Opens ↑X hxU✝ : x ∈ U✝ ⊢ germ F { val := x, property := hxU✝ } ≫ stalkSpecializes F (_ : x ⤳ x) = germ F { val := x, property := hxU✝ } ≫ 𝟙 (stalk F x) [PROOFSTEP] simp [GOAL] C✝ : Type u inst✝³ : Category.{v, u} C✝ inst✝² : HasColimits C✝ X✝ Y Z : TopCat C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasColimits C X : TopCat F : Presheaf C X x y z : ↑X h : x ⤳ y h' : y ⤳ z ⊢ stalkSpecializes F h' ≫ stalkSpecializes F h = stalkSpecializes F (_ : x ⤳ z) [PROOFSTEP] ext [GOAL] case ih C✝ : Type u inst✝³ : Category.{v, u} C✝ inst✝² : HasColimits C✝ X✝ Y Z : TopCat C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : HasColimits C X : TopCat F : Presheaf C X x y z : ↑X h : x ⤳ y h' : y ⤳ z U✝ : Opens ↑X hxU✝ : z ∈ U✝ ⊢ germ F { val := z, property := hxU✝ } ≫ stalkSpecializes F h' ≫ stalkSpecializes F h = germ F { val := z, property := hxU✝ } ≫ stalkSpecializes F (_ : x ⤳ z) [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F G : Presheaf C X f : F ⟶ G x y : ↑X h : x ⤳ y ⊢ stalkSpecializes F h ≫ (stalkFunctor C x).map f = (stalkFunctor C y).map f ≫ stalkSpecializes G h [PROOFSTEP] change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F G : Presheaf C X f : F ⟶ G x y : ↑X h : x ⤳ y ⊢ stalkSpecializes F h ≫ (stalkFunctor C x).map f = (stalkFunctor C y).map f ≫ stalkSpecializes G h [PROOFSTEP] ext [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F G : Presheaf C X f : F ⟶ G x y : ↑X h : x ⤳ y j✝ : (OpenNhds y)ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F) j✝ ≫ stalkSpecializes F h ≫ (stalkFunctor C x).map f = colimit.ι (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F) j✝ ≫ (stalkFunctor C y).map f ≫ stalkSpecializes G h [PROOFSTEP] delta stalkFunctor [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F G : Presheaf C X f : F ⟶ G x y : ↑X h : x ⤳ y j✝ : (OpenNhds y)ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F) j✝ ≫ stalkSpecializes F h ≫ ((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op ⋙ colim).map f = colimit.ι (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F) j✝ ≫ ((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op ⋙ colim).map f ≫ stalkSpecializes G h [PROOFSTEP] simpa [stalkSpecializes] using by rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat F G : Presheaf C X f : F ⟶ G x y : ↑X h : x ⤳ y j✝ : (OpenNhds y)ᵒᵖ ⊢ NatTrans.app f (op j✝.unop.obj) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ G) (op { obj := j✝.unop.obj, property := (_ : x ∈ j✝.unop.obj.carrier) }) = NatTrans.app f (op ((OpenNhds.inclusion y).obj j✝.unop)) ≫ colimit.ι ((OpenNhds.inclusion x).op ⋙ G) (op { obj := j✝.unop.obj, property := (_ : x ∈ j✝.unop.obj.carrier) }) [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X x y : ↑X h : x ⤳ y ⊢ stalkSpecializes (f _* F) (_ : ↑f x ⤳ ↑f y) ≫ stalkPushforward C f F x = stalkPushforward C f F y ≫ stalkSpecializes F h [PROOFSTEP] change (_ : colimit _ ⟶ _) = (_ : colimit _ ⟶ _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X x y : ↑X h : x ⤳ y ⊢ stalkSpecializes (f _* F) (_ : ↑f x ⤳ ↑f y) ≫ stalkPushforward C f F x = stalkPushforward C f F y ≫ stalkSpecializes F h [PROOFSTEP] ext [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X x y : ↑X h : x ⤳ y j✝ : (OpenNhds (↑f y))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f y))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f y)).op).obj (f _* F)) j✝ ≫ stalkSpecializes (f _* F) (_ : ↑f x ⤳ ↑f y) ≫ stalkPushforward C f F x = colimit.ι (((whiskeringLeft (OpenNhds (↑f y))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f y)).op).obj (f _* F)) j✝ ≫ stalkPushforward C f F y ≫ stalkSpecializes F h [PROOFSTEP] delta stalkPushforward [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X x y : ↑X h : x ⤳ y j✝ : (OpenNhds (↑f y))ᵒᵖ ⊢ colimit.ι (((whiskeringLeft (OpenNhds (↑f y))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f y)).op).obj (f _* F)) j✝ ≫ stalkSpecializes (f _* F) (_ : ↑f x ⤳ ↑f y) ≫ colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) F) ≫ colimit.pre (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) (OpenNhds.map f x).op = colimit.ι (((whiskeringLeft (OpenNhds (↑f y))ᵒᵖ (Opens ↑Y)ᵒᵖ C).obj (OpenNhds.inclusion (↑f y)).op).obj (f _* F)) j✝ ≫ (colim.map (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f y).inv) F) ≫ colimit.pre (((whiskeringLeft (OpenNhds y)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion y).op).obj F) (OpenNhds.map f y).op) ≫ stalkSpecializes F h [PROOFSTEP] simp only [stalkSpecializes, colimit.ι_desc_assoc, colimit.ι_map_assoc, colimit.ι_pre, Category.assoc, colimit.pre_desc, colimit.ι_desc] [GOAL] case w C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasColimits C X Y Z : TopCat f : X ⟶ Y F : Presheaf C X x y : ↑X h : x ⤳ y j✝ : (OpenNhds (↑f y))ᵒᵖ ⊢ NatTrans.app (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f x).inv) F) (op { obj := j✝.unop.obj, property := (_ : ↑f x ∈ j✝.unop.obj.carrier) }) ≫ colimit.ι (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F) ((OpenNhds.map f x).op.obj (op { obj := j✝.unop.obj, property := (_ : ↑f x ∈ j✝.unop.obj.carrier) })) = NatTrans.app (whiskerRight (NatTrans.op (OpenNhds.inclusionMapIso f y).inv) F) j✝ ≫ NatTrans.app (Cocone.whisker (OpenNhds.map f y).op { pt := colim.obj (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F), ι := NatTrans.mk fun U => colimit.ι ((OpenNhds.inclusion x).op ⋙ F) (op { obj := U.unop.obj, property := (_ : x ∈ U.unop.obj.carrier) }) }).ι j✝ [PROOFSTEP] rfl [GOAL] C✝ : Type u inst✝³ : Category.{v, u} C✝ inst✝² : HasColimits C✝ X✝ Y Z : TopCat X : TopCat C : Type u_1 inst✝¹ : Category.{?u.182834, u_1} C inst✝ : HasColimits C F : Presheaf C X x y : ↑X e : Inseparable x y ⊢ stalkSpecializes F (_ : nhds y ≤ nhds x) ≫ stalkSpecializes F (_ : nhds x ≤ nhds y) = 𝟙 (stalk F x) [PROOFSTEP] simp [GOAL] C✝ : Type u inst✝³ : Category.{v, u} C✝ inst✝² : HasColimits C✝ X✝ Y Z : TopCat X : TopCat C : Type u_1 inst✝¹ : Category.{?u.182834, u_1} C inst✝ : HasColimits C F : Presheaf C X x y : ↑X e : Inseparable x y ⊢ stalkSpecializes F (_ : nhds x ≤ nhds y) ≫ stalkSpecializes F (_ : nhds y ≤ nhds x) = 𝟙 (stalk F y) [PROOFSTEP] simp [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasColimits C X Y Z : TopCat inst✝ : ConcreteCategory C F : Presheaf C X U V : Opens ↑X x : ↑X hxU : x ∈ U hxV : x ∈ V W : Opens ↑X hxW : x ∈ W iWU : W ⟶ U iWV : W ⟶ V sU : (forget C).obj (F.obj (op U)) sV : (forget C).obj (F.obj (op V)) ih : ↑(F.map iWU.op) sU = ↑(F.map iWV.op) sV ⊢ ↑(germ F { val := x, property := hxU }) sU = ↑(germ F { val := x, property := hxV }) sV [PROOFSTEP] erw [← F.germ_res iWU ⟨x, hxW⟩, ← F.germ_res iWV ⟨x, hxW⟩, comp_apply, comp_apply, ih] [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X x : ↑X t : (forget C).obj (stalk F x) ⊢ ∃ U m s, ↑(germ F { val := x, property := m }) s = t [PROOFSTEP] obtain ⟨U, s, e⟩ := Types.jointly_surjective.{v, v} _ (isColimitOfPreserves (forget C) (colimit.isColimit _)) t [GOAL] case intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X x : ↑X t : (forget C).obj (stalk F x) U : (OpenNhds x)ᵒᵖ s : (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F ⋙ forget C).obj U e : NatTrans.app ((forget C).mapCocone (colimit.cocone (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).ι U s = t ⊢ ∃ U m s, ↑(germ F { val := x, property := m }) s = t [PROOFSTEP] revert s e [GOAL] case intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X x : ↑X t : (forget C).obj (stalk F x) U : (OpenNhds x)ᵒᵖ ⊢ ∀ (s : (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F ⋙ forget C).obj U), NatTrans.app ((forget C).mapCocone (colimit.cocone (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).ι U s = t → ∃ U m s, ↑(germ F { val := x, property := m }) s = t [PROOFSTEP] induction U with | h U => ?_ [GOAL] case intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X x : ↑X t : (forget C).obj (stalk F x) U : (OpenNhds x)ᵒᵖ ⊢ ∀ (s : (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F ⋙ forget C).obj U), NatTrans.app ((forget C).mapCocone (colimit.cocone (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).ι U s = t → ∃ U m s, ↑(germ F { val := x, property := m }) s = t [PROOFSTEP] induction U with | h U => ?_ [GOAL] case intro.intro.h C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X x : ↑X t : (forget C).obj (stalk F x) U : OpenNhds x ⊢ ∀ (s : (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F ⋙ forget C).obj (op U)), NatTrans.app ((forget C).mapCocone (colimit.cocone (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).ι (op U) s = t → ∃ U m s, ↑(germ F { val := x, property := m }) s = t [PROOFSTEP] cases' U with V m [GOAL] case intro.intro.h.mk C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X x : ↑X t : (forget C).obj (stalk F x) V : Opens ↑X m : x ∈ V ⊢ ∀ (s : (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F ⋙ forget C).obj (op { obj := V, property := m })), NatTrans.app ((forget C).mapCocone (colimit.cocone (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).ι (op { obj := V, property := m }) s = t → ∃ U m s, ↑(germ F { val := x, property := m }) s = t [PROOFSTEP] intro s e [GOAL] case intro.intro.h.mk C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X x : ↑X t : (forget C).obj (stalk F x) V : Opens ↑X m : x ∈ V s : (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F ⋙ forget C).obj (op { obj := V, property := m }) e : NatTrans.app ((forget C).mapCocone (colimit.cocone (((whiskeringLeft (OpenNhds x)ᵒᵖ (Opens ↑X)ᵒᵖ C).obj (OpenNhds.inclusion x).op).obj F))).ι (op { obj := V, property := m }) s = t ⊢ ∃ U m s, ↑(germ F { val := x, property := m }) s = t [PROOFSTEP] exact ⟨V, m, s, e⟩ [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X U V : Opens ↑X x : ↑X mU : x ∈ U mV : x ∈ V s : (forget C).obj (F.obj (op U)) t : (forget C).obj (F.obj (op V)) h : ↑(germ F { val := x, property := mU }) s = ↑(germ F { val := x, property := mV }) t ⊢ ∃ W _m iU iV, ↑(F.map iU.op) s = ↑(F.map iV.op) t [PROOFSTEP] obtain ⟨W, iU, iV, e⟩ := (Types.FilteredColimit.isColimit_eq_iff.{v, v} _ (isColimitOfPreserves _ (colimit.isColimit ((OpenNhds.inclusion x).op ⋙ F)))).mp h [GOAL] case intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F : Presheaf C X U V : Opens ↑X x : ↑X mU : x ∈ U mV : x ∈ V s : (forget C).obj (F.obj (op U)) t : (forget C).obj (F.obj (op V)) h : ↑(germ F { val := x, property := mU }) s = ↑(germ F { val := x, property := mV }) t W : (OpenNhds x)ᵒᵖ iU : op { obj := U, property := (_ : ↑{ val := x, property := mU } ∈ U) } ⟶ W iV : op { obj := V, property := (_ : ↑{ val := x, property := mV } ∈ V) } ⟶ W e : (((OpenNhds.inclusion x).op ⋙ F) ⋙ forget C).map iU s = (((OpenNhds.inclusion x).op ⋙ F) ⋙ forget C).map iV t ⊢ ∃ W _m iU iV, ↑(F.map iU.op) s = ↑(F.map iV.op) t [PROOFSTEP] exact ⟨(unop W).1, (unop W).2, iU.unop, iV.unop, e⟩ [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X s t : (forget C).obj ((stalkFunctor C x).obj F) hst : ↑((stalkFunctor C x).map f) s = ↑((stalkFunctor C x).map f) t ⊢ s = t [PROOFSTEP] rcases germ_exist F x s with ⟨U₁, hxU₁, s, rfl⟩ [GOAL] case intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X t : (forget C).obj ((stalkFunctor C x).obj F) U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) hst : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) t ⊢ ↑(germ F { val := x, property := hxU₁ }) s = t [PROOFSTEP] rcases germ_exist F x t with ⟨U₂, hxU₂, t, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) U₂ : Opens ↑X hxU₂ : x ∈ U₂ t : (forget C).obj (F.obj (op U₂)) hst : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) ⊢ ↑(germ F { val := x, property := hxU₁ }) s = ↑(germ F { val := x, property := hxU₂ }) t [PROOFSTEP] erw [stalkFunctor_map_germ_apply _ ⟨x, _⟩] at hst [GOAL] case intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) U₂ : Opens ↑X hxU₂ : x ∈ U₂ t : (forget C).obj (F.obj (op U₂)) hst✝ : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) ⊢ ↑(germ F { val := x, property := hxU₁ }) s = ↑(germ F { val := x, property := hxU₂ }) t [PROOFSTEP] erw [stalkFunctor_map_germ_apply _ ⟨x, _⟩] at hst [GOAL] case intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) U₂ : Opens ↑X hxU₂ : x ∈ U₂ t : (forget C).obj (F.obj (op U₂)) hst✝¹ : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst✝ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₂ }).op ⋙ G) (op { obj := U₂, property := (_ : ↑{ val := x, property := hxU₂ } ∈ U₂) })) (↑(NatTrans.app f (op U₂)) t) ⊢ ↑(germ F { val := x, property := hxU₁ }) s = ↑(germ F { val := x, property := hxU₂ }) t [PROOFSTEP] obtain ⟨W, hxW, iWU₁, iWU₂, heq⟩ := G.germ_eq x hxU₁ hxU₂ _ _ hst [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) U₂ : Opens ↑X hxU₂ : x ∈ U₂ t : (forget C).obj (F.obj (op U₂)) hst✝¹ : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst✝ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₂ }).op ⋙ G) (op { obj := U₂, property := (_ : ↑{ val := x, property := hxU₂ } ∈ U₂) })) (↑(NatTrans.app f (op U₂)) t) W : Opens ↑X hxW : x ∈ W iWU₁ : W ⟶ U₁ iWU₂ : W ⟶ U₂ heq : ↑(G.map iWU₁.op) (↑(NatTrans.app f (op U₁)) s) = ↑(G.map iWU₂.op) (↑(NatTrans.app f (op U₂)) t) ⊢ ↑(germ F { val := x, property := hxU₁ }) s = ↑(germ F { val := x, property := hxU₂ }) t [PROOFSTEP] rw [← comp_apply, ← comp_apply, ← f.naturality, ← f.naturality, comp_apply, comp_apply] at heq [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) U₂ : Opens ↑X hxU₂ : x ∈ U₂ t : (forget C).obj (F.obj (op U₂)) hst✝¹ : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst✝ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₂ }).op ⋙ G) (op { obj := U₂, property := (_ : ↑{ val := x, property := hxU₂ } ∈ U₂) })) (↑(NatTrans.app f (op U₂)) t) W : Opens ↑X hxW : x ∈ W iWU₁ : W ⟶ U₁ iWU₂ : W ⟶ U₂ heq : ↑(NatTrans.app f (op W)) (↑(F.map iWU₁.op) s) = ↑(NatTrans.app f (op W)) (↑(F.map iWU₂.op) t) ⊢ ↑(germ F { val := x, property := hxU₁ }) s = ↑(germ F { val := x, property := hxU₂ }) t [PROOFSTEP] replace heq := h W heq [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) U₂ : Opens ↑X hxU₂ : x ∈ U₂ t : (forget C).obj (F.obj (op U₂)) hst✝¹ : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst✝ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₂ }).op ⋙ G) (op { obj := U₂, property := (_ : ↑{ val := x, property := hxU₂ } ∈ U₂) })) (↑(NatTrans.app f (op U₂)) t) W : Opens ↑X hxW : x ∈ W iWU₁ : W ⟶ U₁ iWU₂ : W ⟶ U₂ heq : ↑(F.map iWU₁.op) s = ↑(F.map iWU₂.op) t ⊢ ↑(germ F { val := x, property := hxU₁ }) s = ↑(germ F { val := x, property := hxU₂ }) t [PROOFSTEP] convert congr_arg (F.germ ⟨x, hxW⟩) heq using 1 [GOAL] case h.e'_2.h C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) U₂ : Opens ↑X hxU₂ : x ∈ U₂ t : (forget C).obj (F.obj (op U₂)) hst✝¹ : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst✝ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₂ }).op ⋙ G) (op { obj := U₂, property := (_ : ↑{ val := x, property := hxU₂ } ∈ U₂) })) (↑(NatTrans.app f (op U₂)) t) W : Opens ↑X hxW : x ∈ W iWU₁ : W ⟶ U₁ iWU₂ : W ⟶ U₂ heq : ↑(F.map iWU₁.op) s = ↑(F.map iWU₂.op) t e_1✝ : (forget C).obj ((stalkFunctor C x).obj F) = (forget C).obj (stalk F ↑{ val := x, property := hxW }) ⊢ ↑(germ F { val := x, property := hxU₁ }) s = ↑(germ F { val := x, property := hxW }) (↑(F.map iWU₁.op) s) case h.e'_3.h C : Type u inst✝³ : Category.{v, u} C inst✝² : HasColimits C X Y Z : TopCat inst✝¹ : ConcreteCategory C inst✝ : PreservesFilteredColimits (forget C) F G : Presheaf C X f : F ⟶ G h : ∀ (U : Opens ↑X), Function.Injective ↑(NatTrans.app f (op U)) x : ↑X U₁ : Opens ↑X hxU₁ : x ∈ U₁ s : (forget C).obj (F.obj (op U₁)) U₂ : Opens ↑X hxU₂ : x ∈ U₂ t : (forget C).obj (F.obj (op U₂)) hst✝¹ : ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₁ }) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst✝ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑((stalkFunctor C x).map f) (↑(germ F { val := x, property := hxU₂ }) t) hst : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₁ }).op ⋙ G) (op { obj := U₁, property := (_ : ↑{ val := x, property := hxU₁ } ∈ U₁) })) (↑(NatTrans.app f (op U₁)) s) = ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := x, property := hxU₂ }).op ⋙ G) (op { obj := U₂, property := (_ : ↑{ val := x, property := hxU₂ } ∈ U₂) })) (↑(NatTrans.app f (op U₂)) t) W : Opens ↑X hxW : x ∈ W iWU₁ : W ⟶ U₁ iWU₂ : W ⟶ U₂ heq : ↑(F.map iWU₁.op) s = ↑(F.map iWU₂.op) t e_1✝ : (forget C).obj ((stalkFunctor C x).obj F) = (forget C).obj (stalk F ↑{ val := x, property := hxW }) ⊢ ↑(germ F { val := x, property := hxU₂ }) t = ↑(germ F { val := x, property := hxW }) (↑(F.map iWU₂.op) t) [PROOFSTEP] exacts [(F.germ_res_apply iWU₁ ⟨x, hxW⟩ s).symm, (F.germ_res_apply iWU₂ ⟨x, hxW⟩ t).symm] [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F : Sheaf C X U : Opens ↑X s t : (forget C).obj (F.val.obj (op U)) h : ∀ (x : { x // x ∈ U }), ↑(germ (Sheaf.presheaf F) x) s = ↑(germ (Sheaf.presheaf F) x) t ⊢ s = t [PROOFSTEP] choose V m i₁ i₂ heq using fun x : U => F.presheaf.germ_eq x.1 x.2 x.2 s t (h x) -- Since `F` is a sheaf, we can prove the equality locally, if we can show that these -- neighborhoods form a cover of `U`. [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F : Sheaf C X U : Opens ↑X s t : (forget C).obj (F.val.obj (op U)) h : ∀ (x : { x // x ∈ U }), ↑(germ (Sheaf.presheaf F) x) s = ↑(germ (Sheaf.presheaf F) x) t V : { x // x ∈ U } → Opens ↑X m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x i₁ i₂ : (x : { x // x ∈ U }) → V x ⟶ U heq : ∀ (x : { x // x ∈ U }), ↑((Sheaf.presheaf F).map (i₁ x).op) s = ↑((Sheaf.presheaf F).map (i₂ x).op) t ⊢ s = t [PROOFSTEP] apply F.eq_of_locally_eq' V U i₁ [GOAL] case hcover C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F : Sheaf C X U : Opens ↑X s t : (forget C).obj (F.val.obj (op U)) h : ∀ (x : { x // x ∈ U }), ↑(germ (Sheaf.presheaf F) x) s = ↑(germ (Sheaf.presheaf F) x) t V : { x // x ∈ U } → Opens ↑X m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x i₁ i₂ : (x : { x // x ∈ U }) → V x ⟶ U heq : ∀ (x : { x // x ∈ U }), ↑((Sheaf.presheaf F).map (i₁ x).op) s = ↑((Sheaf.presheaf F).map (i₂ x).op) t ⊢ U ≤ iSup V [PROOFSTEP] intro x hxU [GOAL] case hcover C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F : Sheaf C X U : Opens ↑X s t : (forget C).obj (F.val.obj (op U)) h : ∀ (x : { x // x ∈ U }), ↑(germ (Sheaf.presheaf F) x) s = ↑(germ (Sheaf.presheaf F) x) t V : { x // x ∈ U } → Opens ↑X m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x i₁ i₂ : (x : { x // x ∈ U }) → V x ⟶ U heq : ∀ (x : { x // x ∈ U }), ↑((Sheaf.presheaf F).map (i₁ x).op) s = ↑((Sheaf.presheaf F).map (i₂ x).op) t x : ↑X hxU : x ∈ ↑U ⊢ x ∈ ↑(iSup V) [PROOFSTEP] erw [Opens.mem_iSup] [GOAL] case hcover C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F : Sheaf C X U : Opens ↑X s t : (forget C).obj (F.val.obj (op U)) h : ∀ (x : { x // x ∈ U }), ↑(germ (Sheaf.presheaf F) x) s = ↑(germ (Sheaf.presheaf F) x) t V : { x // x ∈ U } → Opens ↑X m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x i₁ i₂ : (x : { x // x ∈ U }) → V x ⟶ U heq : ∀ (x : { x // x ∈ U }), ↑((Sheaf.presheaf F).map (i₁ x).op) s = ↑((Sheaf.presheaf F).map (i₂ x).op) t x : ↑X hxU : x ∈ ↑U ⊢ ∃ i, x ∈ V i [PROOFSTEP] exact ⟨⟨x, hxU⟩, m ⟨x, hxU⟩⟩ [GOAL] case h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F : Sheaf C X U : Opens ↑X s t : (forget C).obj (F.val.obj (op U)) h : ∀ (x : { x // x ∈ U }), ↑(germ (Sheaf.presheaf F) x) s = ↑(germ (Sheaf.presheaf F) x) t V : { x // x ∈ U } → Opens ↑X m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x i₁ i₂ : (x : { x // x ∈ U }) → V x ⟶ U heq : ∀ (x : { x // x ∈ U }), ↑((Sheaf.presheaf F).map (i₁ x).op) s = ↑((Sheaf.presheaf F).map (i₂ x).op) t ⊢ ∀ (i : { x // x ∈ U }), ↑(F.val.map (i₁ i).op) s = ↑(F.val.map (i₁ i).op) t [PROOFSTEP] intro x [GOAL] case h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F : Sheaf C X U : Opens ↑X s t : (forget C).obj (F.val.obj (op U)) h : ∀ (x : { x // x ∈ U }), ↑(germ (Sheaf.presheaf F) x) s = ↑(germ (Sheaf.presheaf F) x) t V : { x // x ∈ U } → Opens ↑X m : ∀ (x : { x // x ∈ U }), ↑x ∈ V x i₁ i₂ : (x : { x // x ∈ U }) → V x ⟶ U heq : ∀ (x : { x // x ∈ U }), ↑((Sheaf.presheaf F).map (i₁ x).op) s = ↑((Sheaf.presheaf F).map (i₂ x).op) t x : { x // x ∈ U } ⊢ ↑(F.val.map (i₁ x).op) s = ↑(F.val.map (i₁ x).op) t [PROOFSTEP] rw [heq, Subsingleton.elim (i₁ x) (i₂ x)] [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F : Sheaf C X G : Presheaf C X f : F.val ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f) s t : (forget C).obj (F.val.obj (op U)) hst : ↑(NatTrans.app f (op U)) s = ↑(NatTrans.app f (op U)) t x : { x // x ∈ U } ⊢ ↑((stalkFunctor C ↑x).map f) (↑(germ (Sheaf.presheaf F) x) s) = ↑((stalkFunctor C ↑x).map f) (↑(germ (Sheaf.presheaf F) x) t) [PROOFSTEP] erw [stalkFunctor_map_germ_apply, stalkFunctor_map_germ_apply, hst] [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t ⊢ Function.Surjective ↑(NatTrans.app f.val (op U)) [PROOFSTEP] intro t [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) ⊢ ∃ a, ↑(NatTrans.app f.val (op U)) a = t [PROOFSTEP] choose V mV iVU sf heq using hsurj t [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t ⊢ ∃ a, ↑(NatTrans.app f.val (op U)) a = t [PROOFSTEP] have V_cover : U ≤ iSup V := by intro x hxU erw [Opens.mem_iSup] exact ⟨⟨x, hxU⟩, mV ⟨x, hxU⟩⟩ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t ⊢ U ≤ iSup V [PROOFSTEP] intro x hxU [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t x : ↑X hxU : x ∈ ↑U ⊢ x ∈ ↑(iSup V) [PROOFSTEP] erw [Opens.mem_iSup] [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t x : ↑X hxU : x ∈ ↑U ⊢ ∃ i, x ∈ V i [PROOFSTEP] exact ⟨⟨x, hxU⟩, mV ⟨x, hxU⟩⟩ [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V ⊢ ∃ a, ↑(NatTrans.app f.val (op U)) a = t [PROOFSTEP] suffices IsCompatible F.val V sf by -- Since `F` is a sheaf, we can glue all the local preimages together to get a global preimage. obtain ⟨s, s_spec, -⟩ := F.existsUnique_gluing' V U iVU V_cover sf this · use s apply G.eq_of_locally_eq' V U iVU V_cover intro x rw [← comp_apply, ← f.1.naturality, comp_apply, s_spec, heq] [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V this : IsCompatible F.val V sf ⊢ ∃ a, ↑(NatTrans.app f.val (op U)) a = t [PROOFSTEP] obtain ⟨s, s_spec, -⟩ := F.existsUnique_gluing' V U iVU V_cover sf this [GOAL] case intro.intro C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V this : IsCompatible F.val V sf s : (forget C).obj (F.val.obj (op U)) s_spec : ∀ (i : { x // x ∈ U }), ↑(F.val.map (iVU i).op) s = sf i ⊢ ∃ a, ↑(NatTrans.app f.val (op U)) a = t [PROOFSTEP] use s [GOAL] case h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V this : IsCompatible F.val V sf s : (forget C).obj (F.val.obj (op U)) s_spec : ∀ (i : { x // x ∈ U }), ↑(F.val.map (iVU i).op) s = sf i ⊢ ↑(NatTrans.app f.val (op U)) s = t [PROOFSTEP] apply G.eq_of_locally_eq' V U iVU V_cover [GOAL] case h.h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V this : IsCompatible F.val V sf s : (forget C).obj (F.val.obj (op U)) s_spec : ∀ (i : { x // x ∈ U }), ↑(F.val.map (iVU i).op) s = sf i ⊢ ∀ (i : { x // x ∈ U }), ↑(G.val.map (iVU i).op) (↑(NatTrans.app f.val (op U)) s) = ↑(G.val.map (iVU i).op) t [PROOFSTEP] intro x [GOAL] case h.h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V this : IsCompatible F.val V sf s : (forget C).obj (F.val.obj (op U)) s_spec : ∀ (i : { x // x ∈ U }), ↑(F.val.map (iVU i).op) s = sf i x : { x // x ∈ U } ⊢ ↑(G.val.map (iVU x).op) (↑(NatTrans.app f.val (op U)) s) = ↑(G.val.map (iVU x).op) t [PROOFSTEP] rw [← comp_apply, ← f.1.naturality, comp_apply, s_spec, heq] [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V ⊢ IsCompatible F.val V sf [PROOFSTEP] intro x y [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V x y : { x // x ∈ U } ⊢ ↑(F.val.map (Opens.infLELeft (V x) (V y)).op) (sf x) = ↑(F.val.map (Opens.infLERight (V x) (V y)).op) (sf y) [PROOFSTEP] apply section_ext [GOAL] case h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V x y : { x // x ∈ U } ⊢ ∀ (x_1 : { x_1 // x_1 ∈ V x ⊓ V y }), ↑(germ (Sheaf.presheaf F) x_1) (↑(F.val.map (Opens.infLELeft (V x) (V y)).op) (sf x)) = ↑(germ (Sheaf.presheaf F) x_1) (↑(F.val.map (Opens.infLERight (V x) (V y)).op) (sf y)) [PROOFSTEP] intro z [GOAL] case h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V x y : { x // x ∈ U } z : { x_1 // x_1 ∈ V x ⊓ V y } ⊢ ↑(germ (Sheaf.presheaf F) z) (↑(F.val.map (Opens.infLELeft (V x) (V y)).op) (sf x)) = ↑(germ (Sheaf.presheaf F) z) (↑(F.val.map (Opens.infLERight (V x) (V y)).op) (sf y)) [PROOFSTEP] apply hinj ⟨z, (iVU x).le ((inf_le_left : V x ⊓ V y ≤ V x) z.2)⟩ [GOAL] case h.a C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V x y : { x // x ∈ U } z : { x_1 // x_1 ∈ V x ⊓ V y } ⊢ ↑((stalkFunctor C ↑{ val := ↑z, property := (_ : ↑z ∈ ↑U) }).map f.val) (↑(germ (Sheaf.presheaf F) z) (↑(F.val.map (Opens.infLELeft (V x) (V y)).op) (sf x))) = ↑((stalkFunctor C ↑{ val := ↑z, property := (_ : ↑z ∈ ↑U) }).map f.val) (↑(germ (Sheaf.presheaf F) z) (↑(F.val.map (Opens.infLERight (V x) (V y)).op) (sf y))) [PROOFSTEP] dsimp only [GOAL] case h.a C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V x y : { x // x ∈ U } z : { x_1 // x_1 ∈ V x ⊓ V y } ⊢ ↑((stalkFunctor C ↑z).map f.val) (↑(germ (Sheaf.presheaf F) z) (↑(F.val.map (Opens.infLELeft (V x) (V y)).op) (sf x))) = ↑((stalkFunctor C ↑z).map f.val) (↑(germ (Sheaf.presheaf F) z) (↑(F.val.map (Opens.infLERight (V x) (V y)).op) (sf y))) [PROOFSTEP] erw [stalkFunctor_map_germ_apply, stalkFunctor_map_germ_apply] [GOAL] case h.a C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V x y : { x // x ∈ U } z : { x_1 // x_1 ∈ V x ⊓ V y } ⊢ ↑(colimit.ι ((OpenNhds.inclusion ↑z).op ⋙ G.val) (op { obj := V x ⊓ V y, property := (_ : ↑z ∈ V x ⊓ V y) })) (↑(NatTrans.app f.val (op (V x ⊓ V y))) (↑(F.val.map (Opens.infLELeft (V x) (V y)).op) (sf x))) = ↑(colimit.ι ((OpenNhds.inclusion ↑z).op ⋙ G.val) (op { obj := V x ⊓ V y, property := (_ : ↑z ∈ V x ⊓ V y) })) (↑(NatTrans.app f.val (op (V x ⊓ V y))) (↑(F.val.map (Opens.infLERight (V x) (V y)).op) (sf y))) [PROOFSTEP] simp_rw [← comp_apply, f.1.naturality, comp_apply, heq, ← comp_apply, ← G.1.map_comp] [GOAL] case h.a C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X hinj : ∀ (x : { x // x ∈ U }), Function.Injective ↑((stalkFunctor C ↑x).map f.val) hsurj : ∀ (t : (forget C).obj (G.val.obj (op U))) (x : { x // x ∈ U }), ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t t : (forget C).obj (G.val.obj (op U)) V : { x // x ∈ U } → Opens ↑X mV : ∀ (x : { x // x ∈ U }), ↑x ∈ V x iVU : (x : { x // x ∈ U }) → V x ⟶ U sf : (x : { x // x ∈ U }) → (forget C).obj (F.val.obj (op (V x))) heq : ∀ (x : { x // x ∈ U }), ↑(NatTrans.app f.val (op (V x))) (sf x) = ↑(G.val.map (iVU x).op) t V_cover : U ≤ iSup V x y : { x // x ∈ U } z : { x_1 // x_1 ∈ V x ⊓ V y } ⊢ ↑(colimit.ι ((OpenNhds.inclusion ↑z).op ⋙ G.val) (op { obj := V x ⊓ V y, property := (_ : ↑z ∈ V x ⊓ V y) })) (↑(G.val.map ((iVU x).op ≫ (Opens.infLELeft (V x) (V y)).op)) t) = ↑(colimit.ι ((OpenNhds.inclusion ↑z).op ⋙ G.val) (op { obj := V x ⊓ V y, property := (_ : ↑z ∈ V x ⊓ V y) })) (↑(G.val.map ((iVU y).op ≫ (Opens.infLERight (V x) (V y)).op)) t) [PROOFSTEP] rfl [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) ⊢ Function.Surjective ↑(NatTrans.app f.val (op U)) [PROOFSTEP] refine' app_surjective_of_injective_of_locally_surjective f U (fun x => (h x).1) fun t x => _ -- Now we need to prove our initial claim: That we can find preimages of `t` locally. -- Since `f` is surjective on stalks, we can find a preimage `s₀` of the germ of `t` at `x` [GOAL] C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) t : (forget C).obj (G.val.obj (op U)) x : { x // x ∈ U } ⊢ ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t [PROOFSTEP] obtain ⟨s₀, hs₀⟩ := (h x).2 (G.presheaf.germ x t) -- ... and this preimage must come from some section `s₁` defined on some open neighborhood `V₁` [GOAL] case intro C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) t : (forget C).obj (G.val.obj (op U)) x : { x // x ∈ U } s₀ : (forget C).obj ((stalkFunctor C ↑x).obj F.val) hs₀ : ↑((stalkFunctor C ↑x).map f.val) s₀ = ↑(germ (Sheaf.presheaf G) x) t ⊢ ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t [PROOFSTEP] obtain ⟨V₁, hxV₁, s₁, hs₁⟩ := F.presheaf.germ_exist x.1 s₀ [GOAL] case intro.intro.intro.intro C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) t : (forget C).obj (G.val.obj (op U)) x : { x // x ∈ U } s₀ : (forget C).obj ((stalkFunctor C ↑x).obj F.val) hs₀ : ↑((stalkFunctor C ↑x).map f.val) s₀ = ↑(germ (Sheaf.presheaf G) x) t V₁ : Opens ↑X hxV₁ : ↑x ∈ V₁ s₁ : (forget C).obj ((Sheaf.presheaf F).obj (op V₁)) hs₁ : ↑(germ (Sheaf.presheaf F) { val := ↑x, property := hxV₁ }) s₁ = s₀ ⊢ ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t [PROOFSTEP] subst hs₁ [GOAL] case intro.intro.intro.intro C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) t : (forget C).obj (G.val.obj (op U)) x : { x // x ∈ U } V₁ : Opens ↑X hxV₁ : ↑x ∈ V₁ s₁ : (forget C).obj ((Sheaf.presheaf F).obj (op V₁)) hs₀ : ↑((stalkFunctor C ↑x).map f.val) (↑(germ (Sheaf.presheaf F) { val := ↑x, property := hxV₁ }) s₁) = ↑(germ (Sheaf.presheaf G) x) t ⊢ ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t [PROOFSTEP] rename' hs₀ => hs₁ [GOAL] case intro.intro.intro.intro C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) t : (forget C).obj (G.val.obj (op U)) x : { x // x ∈ U } V₁ : Opens ↑X hxV₁ : ↑x ∈ V₁ s₁ : (forget C).obj ((Sheaf.presheaf F).obj (op V₁)) hs₁ : ↑((stalkFunctor C ↑x).map f.val) (↑(germ (Sheaf.presheaf F) { val := ↑x, property := hxV₁ }) s₁) = ↑(germ (Sheaf.presheaf G) x) t ⊢ ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t [PROOFSTEP] erw [stalkFunctor_map_germ_apply V₁ ⟨x.1, hxV₁⟩ f.1 s₁] at hs₁ [GOAL] case intro.intro.intro.intro C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) t : (forget C).obj (G.val.obj (op U)) x : { x // x ∈ U } V₁ : Opens ↑X hxV₁ : ↑x ∈ V₁ s₁ : (forget C).obj ((Sheaf.presheaf F).obj (op V₁)) hs₁ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := ↑x, property := hxV₁ }).op ⋙ G.val) (op { obj := V₁, property := (_ : ↑{ val := ↑x, property := hxV₁ } ∈ V₁) })) (↑(NatTrans.app f.val (op V₁)) s₁) = ↑(germ (Sheaf.presheaf G) x) t ⊢ ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t [PROOFSTEP] obtain ⟨V₂, hxV₂, iV₂V₁, iV₂U, heq⟩ := G.presheaf.germ_eq x.1 hxV₁ x.2 _ _ hs₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) t : (forget C).obj (G.val.obj (op U)) x : { x // x ∈ U } V₁ : Opens ↑X hxV₁ : ↑x ∈ V₁ s₁ : (forget C).obj ((Sheaf.presheaf F).obj (op V₁)) hs₁ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := ↑x, property := hxV₁ }).op ⋙ G.val) (op { obj := V₁, property := (_ : ↑{ val := ↑x, property := hxV₁ } ∈ V₁) })) (↑(NatTrans.app f.val (op V₁)) s₁) = ↑(germ (Sheaf.presheaf G) x) t V₂ : Opens ↑X hxV₂ : ↑x ∈ V₂ iV₂V₁ : V₂ ⟶ V₁ iV₂U : V₂ ⟶ U heq : ↑((Sheaf.presheaf G).map iV₂V₁.op) (↑(NatTrans.app f.val (op V₁)) s₁) = ↑((Sheaf.presheaf G).map iV₂U.op) t ⊢ ∃ V x iVU s, ↑(NatTrans.app f.val (op V)) s = ↑(G.val.map iVU.op) t [PROOFSTEP] use V₂, hxV₂, iV₂U, F.1.map iV₂V₁.op s₁ [GOAL] case h C : Type u inst✝⁶ : Category.{v, u} C inst✝⁵ : HasColimits C X Y Z : TopCat inst✝⁴ : ConcreteCategory C inst✝³ : PreservesFilteredColimits (forget C) inst✝² : HasLimits C inst✝¹ : PreservesLimits (forget C) inst✝ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X h : ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) t : (forget C).obj (G.val.obj (op U)) x : { x // x ∈ U } V₁ : Opens ↑X hxV₁ : ↑x ∈ V₁ s₁ : (forget C).obj ((Sheaf.presheaf F).obj (op V₁)) hs₁ : ↑(colimit.ι ((OpenNhds.inclusion ↑{ val := ↑x, property := hxV₁ }).op ⋙ G.val) (op { obj := V₁, property := (_ : ↑{ val := ↑x, property := hxV₁ } ∈ V₁) })) (↑(NatTrans.app f.val (op V₁)) s₁) = ↑(germ (Sheaf.presheaf G) x) t V₂ : Opens ↑X hxV₂ : ↑x ∈ V₂ iV₂V₁ : V₂ ⟶ V₁ iV₂U : V₂ ⟶ U heq : ↑((Sheaf.presheaf G).map iV₂V₁.op) (↑(NatTrans.app f.val (op V₁)) s₁) = ↑((Sheaf.presheaf G).map iV₂U.op) t ⊢ ↑(NatTrans.app f.val (op V₂)) (↑(F.val.map iV₂V₁.op) s₁) = ↑(G.val.map iV₂U.op) t [PROOFSTEP] rw [← comp_apply, f.1.naturality, comp_apply, heq] [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X inst✝ : ∀ (x : { x // x ∈ U }), IsIso ((stalkFunctor C ↑x).map f.val) ⊢ IsIso (NatTrans.app f.val (op U)) [PROOFSTEP] suffices IsIso ((forget C).map (f.1.app (op U))) by exact isIso_of_reflects_iso (f.1.app (op U)) (forget C) [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X inst✝ : ∀ (x : { x // x ∈ U }), IsIso ((stalkFunctor C ↑x).map f.val) this : IsIso ((forget C).map (NatTrans.app f.val (op U))) ⊢ IsIso (NatTrans.app f.val (op U)) [PROOFSTEP] exact isIso_of_reflects_iso (f.1.app (op U)) (forget C) [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X inst✝ : ∀ (x : { x // x ∈ U }), IsIso ((stalkFunctor C ↑x).map f.val) ⊢ IsIso ((forget C).map (NatTrans.app f.val (op U))) [PROOFSTEP] rw [isIso_iff_bijective] [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X inst✝ : ∀ (x : { x // x ∈ U }), IsIso ((stalkFunctor C ↑x).map f.val) ⊢ Function.Bijective ((forget C).map (NatTrans.app f.val (op U))) [PROOFSTEP] apply app_bijective_of_stalkFunctor_map_bijective [GOAL] case h C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X inst✝ : ∀ (x : { x // x ∈ U }), IsIso ((stalkFunctor C ↑x).map f.val) ⊢ ∀ (x : { x // x ∈ U }), Function.Bijective ↑((stalkFunctor C ↑x).map f.val) [PROOFSTEP] intro x [GOAL] case h C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X inst✝ : ∀ (x : { x // x ∈ U }), IsIso ((stalkFunctor C ↑x).map f.val) x : { x // x ∈ U } ⊢ Function.Bijective ↑((stalkFunctor C ↑x).map f.val) [PROOFSTEP] apply (isIso_iff_bijective _).mp [GOAL] case h C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G U : Opens ↑X inst✝ : ∀ (x : { x // x ∈ U }), IsIso ((stalkFunctor C ↑x).map f.val) x : { x // x ∈ U } ⊢ IsIso ↑((stalkFunctor C ↑x).map f.val) [PROOFSTEP] exact Functor.map_isIso (forget C) ((stalkFunctor C x.1).map f.1) [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G inst✝ : ∀ (x : ↑X), IsIso ((stalkFunctor C x).map f.val) ⊢ IsIso f [PROOFSTEP] suffices IsIso ((Sheaf.forget C X).map f) by exact isIso_of_fully_faithful (Sheaf.forget C X) f [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G inst✝ : ∀ (x : ↑X), IsIso ((stalkFunctor C x).map f.val) this : IsIso ((Sheaf.forget C X).map f) ⊢ IsIso f [PROOFSTEP] exact isIso_of_fully_faithful (Sheaf.forget C X) f [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G inst✝ : ∀ (x : ↑X), IsIso ((stalkFunctor C x).map f.val) ⊢ IsIso ((Sheaf.forget C X).map f) [PROOFSTEP] suffices ∀ U : (Opens X)ᵒᵖ, IsIso (f.1.app U) by exact @NatIso.isIso_of_isIso_app _ _ _ _ F.1 G.1 f.1 this [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G inst✝ : ∀ (x : ↑X), IsIso ((stalkFunctor C x).map f.val) this : ∀ (U : (Opens ↑X)ᵒᵖ), IsIso (NatTrans.app f.val U) ⊢ IsIso ((Sheaf.forget C X).map f) [PROOFSTEP] exact @NatIso.isIso_of_isIso_app _ _ _ _ F.1 G.1 f.1 this [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G inst✝ : ∀ (x : ↑X), IsIso ((stalkFunctor C x).map f.val) ⊢ ∀ (U : (Opens ↑X)ᵒᵖ), IsIso (NatTrans.app f.val U) [PROOFSTEP] intro U [GOAL] C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G inst✝ : ∀ (x : ↑X), IsIso ((stalkFunctor C x).map f.val) U : (Opens ↑X)ᵒᵖ ⊢ IsIso (NatTrans.app f.val U) [PROOFSTEP] induction U [GOAL] case h C : Type u inst✝⁷ : Category.{v, u} C inst✝⁶ : HasColimits C X Y Z : TopCat inst✝⁵ : ConcreteCategory C inst✝⁴ : PreservesFilteredColimits (forget C) inst✝³ : HasLimits C inst✝² : PreservesLimits (forget C) inst✝¹ : ReflectsIsomorphisms (forget C) F G : Sheaf C X f : F ⟶ G inst✝ : ∀ (x : ↑X), IsIso ((stalkFunctor C x).map f.val) X✝ : Opens ↑X ⊢ IsIso (NatTrans.app f.val (op X✝)) [PROOFSTEP] apply app_isIso_of_stalkFunctor_map_iso
{"mathlib_filename": "Mathlib.Topology.Sheaves.Stalks", "llama_tokens": 67644}
{"mathlib_filename": "Mathlib.Lean.Name", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Expr.ReplaceRec", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.System.IO", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Data.NameMap", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Message", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Expr.Traverse", "llama_tokens": 0}
[GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G hs : IsSubgroup s x y : G hx : x ∈ s hy : y ∈ s ⊢ x / y ∈ s [PROOFSTEP] simpa only [div_eq_mul_inv] using hs.mul_mem hx (hs.inv_mem hy) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G ⊢ IsAddSubgroup s → IsSubgroup s [PROOFSTEP] rintro ⟨⟨h₁, h₂⟩, h₃⟩ [GOAL] case mk.mk G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G h₃ : ∀ {a : Additive G}, a ∈ s → -a ∈ s h₁ : 0 ∈ s h₂ : ∀ {a b : Additive G}, a ∈ s → b ∈ s → a + b ∈ s ⊢ IsSubgroup s [PROOFSTEP] exact @IsSubgroup.mk G _ _ ⟨h₁, @h₂⟩ @h₃ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set A ⊢ IsSubgroup s → IsAddSubgroup s [PROOFSTEP] rintro ⟨⟨h₁, h₂⟩, h₃⟩ [GOAL] case mk.mk G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set A h₃ : ∀ {a : Multiplicative A}, a ∈ s → a⁻¹ ∈ s h₁ : 1 ∈ s h₂ : ∀ {a b : Multiplicative A}, a ∈ s → b ∈ s → a * b ∈ s ⊢ IsAddSubgroup s [PROOFSTEP] exact @IsAddSubgroup.mk A _ _ ⟨h₁, @h₂⟩ @h₃ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G one_mem : 1 ∈ s div_mem : ∀ {a b : G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s a : G ha : a ∈ s ⊢ a⁻¹ ∈ s [PROOFSTEP] have : 1 * a⁻¹ ∈ s := div_mem one_mem ha [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G one_mem : 1 ∈ s div_mem : ∀ {a b : G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s a : G ha : a ∈ s this : 1 * a⁻¹ ∈ s ⊢ a⁻¹ ∈ s [PROOFSTEP] convert this using 1 [GOAL] case h.e'_4 G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G one_mem : 1 ∈ s div_mem : ∀ {a b : G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s a : G ha : a ∈ s this : 1 * a⁻¹ ∈ s ⊢ a⁻¹ = 1 * a⁻¹ [PROOFSTEP] rw [one_mul] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G one_mem : 1 ∈ s div_mem : ∀ {a b : G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s inv_mem : ∀ (a : G), a ∈ s → a⁻¹ ∈ s a b : G ha : a ∈ s hb : b ∈ s ⊢ a * b ∈ s [PROOFSTEP] have : a * b⁻¹⁻¹ ∈ s := div_mem ha (inv_mem b hb) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G one_mem : 1 ∈ s div_mem : ∀ {a b : G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s inv_mem : ∀ (a : G), a ∈ s → a⁻¹ ∈ s a b : G ha : a ∈ s hb : b ∈ s this : a * b⁻¹⁻¹ ∈ s ⊢ a * b ∈ s [PROOFSTEP] convert this [GOAL] case h.e'_4.h.e'_6 G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set G one_mem : 1 ∈ s div_mem : ∀ {a b : G}, a ∈ s → b ∈ s → a * b⁻¹ ∈ s inv_mem : ∀ (a : G), a ∈ s → a⁻¹ ∈ s a b : G ha : a ∈ s hb : b ∈ s this : a * b⁻¹⁻¹ ∈ s ⊢ b = b⁻¹⁻¹ [PROOFSTEP] rw [inv_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : AddGroup A s : Set A zero_mem : 0 ∈ s sub_mem : ∀ {a b : A}, a ∈ s → b ∈ s → a - b ∈ s x y : A hx : x ∈ s hy : y ∈ s ⊢ x + -y ∈ s [PROOFSTEP] simpa only [sub_eq_add_neg] using sub_mem hx hy [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G hs : IsSubgroup s h : a⁻¹ ∈ s ⊢ a ∈ s [PROOFSTEP] simpa using hs.inv_mem h [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G hs : IsSubgroup s h : a ∈ s hba : b * a ∈ s ⊢ b ∈ s [PROOFSTEP] simpa using hs.mul_mem hba (hs.inv_mem h) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G hs : IsSubgroup s h : a ∈ s hab : a * b ∈ s ⊢ b ∈ s [PROOFSTEP] simpa using hs.mul_mem (hs.inv_mem h) hab [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : CommGroup G s : Set G hs : IsSubgroup s n : G hn : n ∈ s g : G ⊢ g * n * g⁻¹ ∈ s [PROOFSTEP] rwa [mul_right_comm, mul_right_inv, one_mul] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G ⊢ IsNormalAddSubgroup s → IsNormalSubgroup s [PROOFSTEP] rintro ⟨h₁, h₂⟩ [GOAL] case mk G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G h₁ : IsAddSubgroup s h₂ : ∀ (n : Additive G), n ∈ s → ∀ (g : Additive G), g + n + -g ∈ s ⊢ IsNormalSubgroup s [PROOFSTEP] exact @IsNormalSubgroup.mk G _ _ (Additive.isAddSubgroup_iff.1 h₁) @h₂ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : AddGroup A s : Set A ⊢ IsNormalSubgroup s → IsNormalAddSubgroup s [PROOFSTEP] rintro ⟨h₁, h₂⟩ [GOAL] case mk G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : AddGroup A s : Set A h₁ : IsSubgroup s h₂ : ∀ (n : Multiplicative A), n ∈ s → ∀ (g : Multiplicative A), g * n * g⁻¹ ∈ s ⊢ IsNormalAddSubgroup s [PROOFSTEP] exact @IsNormalAddSubgroup.mk A _ _ (Multiplicative.isSubgroup_iff.1 h₁) @h₂ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝ : Group G s : Set G hs : IsNormalSubgroup s a b : G hab : a * b ∈ s ⊢ b * a ∈ s [PROOFSTEP] have h : a⁻¹ * (a * b) * a⁻¹⁻¹ ∈ s := hs.normal (a * b) hab a⁻¹ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝ : Group G s : Set G hs : IsNormalSubgroup s a b : G hab : a * b ∈ s h : a⁻¹ * (a * b) * a⁻¹⁻¹ ∈ s ⊢ b * a ∈ s [PROOFSTEP] simp at h [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝ : Group G s : Set G hs : IsNormalSubgroup s a b : G hab : a * b ∈ s h : b * a ∈ s ⊢ b * a ∈ s [PROOFSTEP] exact h [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ IsNormalSubgroup (trivial G) [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ 1 ∈ trivial G [PROOFSTEP] simp (config := { contextual := true }) [trivial] [GOAL] case refine'_2 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ ∀ {a b : G}, a ∈ trivial G → b ∈ trivial G → a * b ∈ trivial G [PROOFSTEP] simp (config := { contextual := true }) [trivial] [GOAL] case refine'_3 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ ∀ {a : G}, a ∈ trivial G → a⁻¹ ∈ trivial G [PROOFSTEP] simp (config := { contextual := true }) [trivial] [GOAL] case refine'_4 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ ∀ (n : G), n ∈ trivial G → ∀ (g : G), g * n * g⁻¹ ∈ trivial G [PROOFSTEP] simp (config := { contextual := true }) [trivial] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G hs : IsSubgroup s ⊢ s = trivial G ↔ ∀ (x : G), x ∈ s → x = 1 [PROOFSTEP] simp only [Set.ext_iff, IsSubgroup.mem_trivial] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G hs : IsSubgroup s ⊢ (∀ (x : G), x ∈ s ↔ x = 1) ↔ ∀ (x : G), x ∈ s → x = 1 [PROOFSTEP] exact ⟨fun h x => (h x).1, fun h x => ⟨h x, fun hx => hx.symm ▸ hs.toIsSubmonoid.one_mem⟩⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ IsNormalSubgroup univ [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ 1 ∈ univ [PROOFSTEP] simp [GOAL] case refine'_2 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ ∀ {a b : G}, a ∈ univ → b ∈ univ → a * b ∈ univ [PROOFSTEP] simp [GOAL] case refine'_3 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ ∀ {a : G}, a ∈ univ → a⁻¹ ∈ univ [PROOFSTEP] simp [GOAL] case refine'_4 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ ∀ (n : G), n ∈ univ → ∀ (g : G), g * n * g⁻¹ ∈ univ [PROOFSTEP] simp [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ 1 ∈ center G [PROOFSTEP] simp [center] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G a✝ b✝ : G ha : a✝ ∈ center G hb : b✝ ∈ center G g : G ⊢ g * (a✝ * b✝) = a✝ * b✝ * g [PROOFSTEP] rw [← mul_assoc, mem_center.2 ha g, mul_assoc, mem_center.2 hb g, ← mul_assoc] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G a : G ha : a ∈ center G g : G ⊢ g * a⁻¹ = a⁻¹ * (g * a) * a⁻¹ [PROOFSTEP] simp [ha g] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G a : G ha : a ∈ center G g : G ⊢ a⁻¹ * (g * a) * a⁻¹ = a⁻¹ * g [PROOFSTEP] rw [← mul_assoc, mul_assoc] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G a : G ha : a ∈ center G g : G ⊢ a⁻¹ * g * (a * a⁻¹) = a⁻¹ * g [PROOFSTEP] simp [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G n : G ha : n ∈ center G g h : G ⊢ h * (g * n * g⁻¹) = h * n [PROOFSTEP] simp [ha g, mul_assoc] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G n : G ha : n ∈ center G g h : G ⊢ h * n = g * g⁻¹ * n * h [PROOFSTEP] rw [ha h] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G n : G ha : n ∈ center G g h : G ⊢ n * h = g * g⁻¹ * n * h [PROOFSTEP] simp [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G n : G ha : n ∈ center G g h : G ⊢ g * g⁻¹ * n * h = g * n * g⁻¹ * h [PROOFSTEP] rw [mul_assoc g, ha g⁻¹, ← mul_assoc] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G ⊢ 1 ∈ normalizer s [PROOFSTEP] simp [normalizer] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝ : Group G s : Set G a b : G ha : ∀ (n : G), n ∈ s ↔ a * n * a⁻¹ ∈ s hb : ∀ (n : G), n ∈ s ↔ b * n * b⁻¹ ∈ s n : G ⊢ n ∈ s ↔ a * b * n * (a * b)⁻¹ ∈ s [PROOFSTEP] rw [mul_inv_rev, ← mul_assoc, mul_assoc a, mul_assoc a, ← ha, ← hb] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G s : Set G a : G ha : ∀ (n : G), n ∈ s ↔ a * n * a⁻¹ ∈ s n : G ⊢ n ∈ s ↔ a⁻¹ * n * a⁻¹⁻¹ ∈ s [PROOFSTEP] rw [ha (a⁻¹ * n * a⁻¹⁻¹)] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G s : Set G a : G ha : ∀ (n : G), n ∈ s ↔ a * n * a⁻¹ ∈ s n : G ⊢ n ∈ s ↔ a * (a⁻¹ * n * a⁻¹⁻¹) * a⁻¹ ∈ s [PROOFSTEP] simp [mul_assoc] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G s : Set G hs : IsSubgroup s g : G hg : g ∈ s n : G ⊢ n ∈ s ↔ g * n * g⁻¹ ∈ s [PROOFSTEP] rw [IsSubgroup.mul_mem_cancel_right hs ((IsSubgroup.inv_mem_iff hs).2 hg), IsSubgroup.mul_mem_cancel_left hs hg] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f (a * b⁻¹) = 1 ⊢ f a = f b [PROOFSTEP] rw [hf.map_mul, hf.map_inv] at h [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f a * (f b)⁻¹ = 1 ⊢ f a = f b [PROOFSTEP] rw [← inv_inv (f b), eq_inv_of_mul_eq_one_left h] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f (a⁻¹ * b) = 1 ⊢ f a = f b [PROOFSTEP] rw [hf.map_mul, hf.map_inv] at h [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : (f a)⁻¹ * f b = 1 ⊢ f a = f b [PROOFSTEP] apply inv_injective [GOAL] case a G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : (f a)⁻¹ * f b = 1 ⊢ (f a)⁻¹ = (f b)⁻¹ [PROOFSTEP] rw [eq_inv_of_mul_eq_one_left h] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f a = f b ⊢ f (a * b⁻¹) = 1 [PROOFSTEP] have : f a * (f b)⁻¹ = 1 := by rw [h, mul_right_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f a = f b ⊢ f a * (f b)⁻¹ = 1 [PROOFSTEP] rw [h, mul_right_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f a = f b this : f a * (f b)⁻¹ = 1 ⊢ f (a * b⁻¹) = 1 [PROOFSTEP] rwa [← hf.map_inv, ← hf.map_mul] at this [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f a = f b ⊢ f (a⁻¹ * b) = 1 [PROOFSTEP] have : (f a)⁻¹ * f b = 1 := by rw [h, mul_left_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f a = f b ⊢ (f a)⁻¹ * f b = 1 [PROOFSTEP] rw [h, mul_left_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G h : f a = f b this : (f a)⁻¹ * f b = 1 ⊢ f (a⁻¹ * b) = 1 [PROOFSTEP] rwa [← hf.map_inv, ← hf.map_mul] at this [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G ⊢ f a = f b ↔ a * b⁻¹ ∈ ker f [PROOFSTEP] rw [mem_ker] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G ⊢ f a = f b ↔ f (a * b⁻¹) = 1 [PROOFSTEP] exact one_iff_ker_inv hf _ _ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G ⊢ f a = f b ↔ a⁻¹ * b ∈ ker f [PROOFSTEP] rw [mem_ker] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a b : G ⊢ f a = f b ↔ f (a⁻¹ * b) = 1 [PROOFSTEP] exact one_iff_ker_inv' hf _ _ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁✝ a₂✝ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G hs : IsSubgroup s a₁ a₂ : H x✝¹ : a₁ ∈ f '' s x✝ : a₂ ∈ f '' s b₁ : G hb₁ : b₁ ∈ s eq₁ : f b₁ = a₁ b₂ : G hb₂ : b₂ ∈ s eq₂ : f b₂ = a₂ ⊢ f (b₁ * b₂) = a₁ * a₂ [PROOFSTEP] simp [eq₁, eq₂, hf.map_mul] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G hs : IsSubgroup s a : H x✝ : a ∈ f '' s b : G hb : b ∈ s Eq : f b = a ⊢ f b⁻¹ = a⁻¹ [PROOFSTEP] rw [hf.map_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b✝ c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G hs : IsSubgroup s a : H x✝ : a ∈ f '' s b : G hb : b ∈ s Eq : f b = a ⊢ (f b)⁻¹ = a⁻¹ [PROOFSTEP] simp [*] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set H hs : IsSubgroup s ⊢ IsSubgroup (f ⁻¹' s) [PROOFSTEP] refine' { .. } [GOAL] case refine'_1 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set H hs : IsSubgroup s ⊢ 1 ∈ f ⁻¹' s [PROOFSTEP] simp (config := { contextual := true }) [hs.one_mem, hs.mul_mem, hs.inv_mem, hf.map_mul, hf.map_one, hf.map_inv, InvMemClass.inv_mem] [GOAL] case refine'_2 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set H hs : IsSubgroup s ⊢ ∀ {a b : G}, a ∈ f ⁻¹' s → b ∈ f ⁻¹' s → a * b ∈ f ⁻¹' s [PROOFSTEP] simp (config := { contextual := true }) [hs.one_mem, hs.mul_mem, hs.inv_mem, hf.map_mul, hf.map_one, hf.map_inv, InvMemClass.inv_mem] [GOAL] case refine'_3 G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set H hs : IsSubgroup s ⊢ ∀ {a : G}, a ∈ f ⁻¹' s → a⁻¹ ∈ f ⁻¹' s [PROOFSTEP] simp (config := { contextual := true }) [hs.one_mem, hs.mul_mem, hs.inv_mem, hf.map_mul, hf.map_one, hf.map_inv, InvMemClass.inv_mem] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set H hs : IsNormalSubgroup s ⊢ 1 ∈ f ⁻¹' s [PROOFSTEP] simp [hf.map_one, hs.toIsSubgroup.one_mem] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set H hs : IsNormalSubgroup s ⊢ ∀ {a b : G}, a ∈ f ⁻¹' s → b ∈ f ⁻¹' s → a * b ∈ f ⁻¹' s [PROOFSTEP] simp (config := { contextual := true }) [hf.map_mul, hs.toIsSubgroup.mul_mem] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set H hs : IsNormalSubgroup s ⊢ ∀ {a : G}, a ∈ f ⁻¹' s → a⁻¹ ∈ f ⁻¹' s [PROOFSTEP] simp (config := { contextual := true }) [hf.map_inv, hs.toIsSubgroup.inv_mem] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set H hs : IsNormalSubgroup s ⊢ ∀ (n : G), n ∈ f ⁻¹' s → ∀ (g : G), g * n * g⁻¹ ∈ f ⁻¹' s [PROOFSTEP] simp (config := { contextual := true }) [hs.normal, hf.map_mul, hf.map_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f h : ker f = IsSubgroup.trivial G ⊢ Injective f [PROOFSTEP] intro a₁ a₂ hfa [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁✝ a₂✝ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f h : ker f = IsSubgroup.trivial G a₁ a₂ : G hfa : f a₁ = f a₂ ⊢ a₁ = a₂ [PROOFSTEP] simp [ext_iff, ker, IsSubgroup.trivial] at h [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁✝ a₂✝ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a₁ a₂ : G hfa : f a₁ = f a₂ h : ∀ (x : G), f x = 1 ↔ x = 1 ⊢ a₁ = a₂ [PROOFSTEP] have ha : a₁ * a₂⁻¹ = 1 := by rw [← h]; exact hf.inv_ker_one hfa [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁✝ a₂✝ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a₁ a₂ : G hfa : f a₁ = f a₂ h : ∀ (x : G), f x = 1 ↔ x = 1 ⊢ a₁ * a₂⁻¹ = 1 [PROOFSTEP] rw [← h] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁✝ a₂✝ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a₁ a₂ : G hfa : f a₁ = f a₂ h : ∀ (x : G), f x = 1 ↔ x = 1 ⊢ f (a₁ * a₂⁻¹) = 1 [PROOFSTEP] exact hf.inv_ker_one hfa [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁✝ a₂✝ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f a₁ a₂ : G hfa : f a₁ = f a₂ h : ∀ (x : G), f x = 1 ↔ x = 1 ha : a₁ * a₂⁻¹ = 1 ⊢ a₁ = a₂ [PROOFSTEP] rw [eq_inv_of_mul_eq_one_left ha, inv_inv a₂] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f h : Injective f x : G hx : x ∈ ker f ⊢ x ∈ IsSubgroup.trivial G [PROOFSTEP] suffices f x = f 1 by simpa using h this [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f h : Injective f x : G hx : x ∈ ker f this : f x = f 1 ⊢ x ∈ IsSubgroup.trivial G [PROOFSTEP] simpa using h this [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f h : Injective f x : G hx : x ∈ ker f ⊢ f x = f 1 [PROOFSTEP] simp [hf.map_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f h : Injective f x : G hx : x ∈ ker f ⊢ f x = 1 [PROOFSTEP] rwa [mem_ker] at hx [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f h : Injective f x : G ⊢ x ∈ IsSubgroup.trivial G → x ∈ ker f [PROOFSTEP] simp (config := { contextual := true }) [mem_ker, hf.map_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f ⊢ ker f = IsSubgroup.trivial G ↔ ∀ (x : G), f x = 1 → x = 1 [PROOFSTEP] rw [Set.ext_iff] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f ⊢ (∀ (x : G), x ∈ ker f ↔ x ∈ IsSubgroup.trivial G) ↔ ∀ (x : G), f x = 1 → x = 1 [PROOFSTEP] simp [ker] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f ⊢ (∀ (x : G), f x = 1 ↔ x = 1) ↔ ∀ (x : G), f x = 1 → x = 1 [PROOFSTEP] exact ⟨fun h x hx => (h x).1 hx, fun h x => ⟨h x, fun hx => by rw [hx, hf.map_one]⟩⟩ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G inst✝ : Group H f : G → H hf : IsGroupHom f h : ∀ (x : G), f x = 1 → x = 1 x : G hx : x = 1 ⊢ f x = 1 [PROOFSTEP] rw [hx, hf.map_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G s✝ s t : Set G ht : IsSubgroup t h : s ⊆ t a : G ha : a ∈ closure s ⊢ a ∈ t [PROOFSTEP] induction ha [GOAL] case basic G : Type u_1 H : Type u_2 A : Type u_3 a✝² a₁ a₂ b c : G inst✝ : Group G s✝ s t : Set G ht : IsSubgroup t h : s ⊆ t a a✝¹ : G a✝ : a✝¹ ∈ s ⊢ a✝¹ ∈ t [PROOFSTEP] simp [h _, *, ht.one_mem, ht.mul_mem, IsSubgroup.inv_mem_iff] [GOAL] case one G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G s✝ s t : Set G ht : IsSubgroup t h : s ⊆ t a : G ⊢ 1 ∈ t [PROOFSTEP] simp [h _, *, ht.one_mem, ht.mul_mem, IsSubgroup.inv_mem_iff] [GOAL] case inv G : Type u_1 H : Type u_2 A : Type u_3 a✝² a₁ a₂ b c : G inst✝ : Group G s✝ s t : Set G ht : IsSubgroup t h : s ⊆ t a a✝¹ : G a✝ : InClosure s a✝¹ a_ih✝ : a✝¹ ∈ t ⊢ a✝¹⁻¹ ∈ t [PROOFSTEP] simp [h _, *, ht.one_mem, ht.mul_mem, IsSubgroup.inv_mem_iff] [GOAL] case mul G : Type u_1 H : Type u_2 A : Type u_3 a✝³ a₁ a₂ b c : G inst✝ : Group G s✝ s t : Set G ht : IsSubgroup t h : s ⊆ t a a✝² b✝ : G a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ a_ih✝¹ : a✝² ∈ t a_ih✝ : b✝ ∈ t ⊢ a✝² * b✝ ∈ t [PROOFSTEP] simp [h _, *, ht.one_mem, ht.mul_mem, IsSubgroup.inv_mem_iff] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G s✝ s : Set G a : G h : a ∈ closure s x✝² : G x✝¹ : InClosure s x✝² x✝ : ∃ l, (∀ (x : G), x ∈ l → x ∈ s ∨ x⁻¹ ∈ s) ∧ List.prod l = x✝² L : List G HL1 : ∀ (x : G), x ∈ L → x ∈ s ∨ x⁻¹ ∈ s HL2 : List.prod L = x✝² x : G hx : x ∈ List.map Inv.inv (List.reverse L) y : G hy1 : y ∈ List.reverse L hy2 : y⁻¹ = x ⊢ y ∈ s → y⁻¹⁻¹ ∈ s [PROOFSTEP] rw [inv_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G s✝ s : Set G a : G h : a ∈ closure s x✝² : G x✝¹ : InClosure s x✝² x✝ : ∃ l, (∀ (x : G), x ∈ l → x ∈ s ∨ x⁻¹ ∈ s) ∧ List.prod l = x✝² L : List G HL1 : ∀ (x : G), x ∈ L → x ∈ s ∨ x⁻¹ ∈ s HL2 : List.prod L = x✝² x : G hx : x ∈ List.map Inv.inv (List.reverse L) y : G hy1 : y ∈ List.reverse L hy2 : y⁻¹ = x ⊢ y ∈ s → y ∈ s [PROOFSTEP] exact id [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G s✝ s : Set G a : G h : a ∈ closure s x : G x✝¹ : InClosure s x x✝ : ∃ l, (∀ (x : G), x ∈ l → x ∈ s ∨ x⁻¹ ∈ s) ∧ List.prod l = x L : List G HL1 : ∀ (x : G), x ∈ L → x ∈ s ∨ x⁻¹ ∈ s HL2 : List.prod L = x hd : G tl : List G ih : List.prod (List.map Inv.inv (List.reverse tl)) = (List.prod tl)⁻¹ ⊢ List.prod (List.map Inv.inv (List.reverse (hd :: tl))) = (List.prod (hd :: tl))⁻¹ [PROOFSTEP] rw [List.reverse_cons, List.map_append, List.prod_append, ih, List.map_singleton, List.prod_cons, List.prod_nil, mul_one, List.prod_cons, mul_inv_rev] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G inst✝ : Group G s✝ s : Set G a : G h : a ∈ closure s x y : G x✝³ : InClosure s x x✝² : InClosure s y x✝¹ : ∃ l, (∀ (x : G), x ∈ l → x ∈ s ∨ x⁻¹ ∈ s) ∧ List.prod l = x x✝ : ∃ l, (∀ (x : G), x ∈ l → x ∈ s ∨ x⁻¹ ∈ s) ∧ List.prod l = y L1 : List G HL1 : ∀ (x : G), x ∈ L1 → x ∈ s ∨ x⁻¹ ∈ s HL2 : List.prod L1 = x L2 : List G HL3 : ∀ (x : G), x ∈ L2 → x ∈ s ∨ x⁻¹ ∈ s HL4 : List.prod L2 = y ⊢ List.prod (L1 ++ L2) = x * y [PROOFSTEP] rw [List.prod_append, HL2, HL4] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G ⊢ f '' closure s ≤ closure (f '' s) [PROOFSTEP] rintro _ ⟨x, hx, rfl⟩ [GOAL] case intro.intro G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s ⊢ f x ∈ closure (f '' s) [PROOFSTEP] exact InClosure.recOn hx (by intros _ ha; exact subset_closure (mem_image_of_mem f ha)) (by rw [hf.map_one] apply IsSubmonoid.one_mem (closure.isSubgroup _).toIsSubmonoid) (by intros _ _ rw [hf.map_inv] apply IsSubgroup.inv_mem (closure.isSubgroup _)) (by intros _ _ _ _ ha hb rw [hf.map_mul] exact (closure.isSubgroup (f '' s)).toIsSubmonoid.mul_mem ha hb) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s ⊢ ∀ {a : G}, a ∈ s → f a ∈ closure (f '' s) [PROOFSTEP] intros _ ha [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s a✝ : G ha : a✝ ∈ s ⊢ f a✝ ∈ closure (f '' s) [PROOFSTEP] exact subset_closure (mem_image_of_mem f ha) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s ⊢ f 1 ∈ closure (f '' s) [PROOFSTEP] rw [hf.map_one] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s ⊢ 1 ∈ closure (f '' s) [PROOFSTEP] apply IsSubmonoid.one_mem (closure.isSubgroup _).toIsSubmonoid [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s ⊢ ∀ {a : G}, InClosure s a → f a ∈ closure (f '' s) → f a⁻¹ ∈ closure (f '' s) [PROOFSTEP] intros _ _ [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s a✝¹ : G a✝ : InClosure s a✝¹ ⊢ f a✝¹ ∈ closure (f '' s) → f a✝¹⁻¹ ∈ closure (f '' s) [PROOFSTEP] rw [hf.map_inv] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s a✝¹ : G a✝ : InClosure s a✝¹ ⊢ f a✝¹ ∈ closure (f '' s) → (f a✝¹)⁻¹ ∈ closure (f '' s) [PROOFSTEP] apply IsSubgroup.inv_mem (closure.isSubgroup _) [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s ⊢ ∀ {a b : G}, InClosure s a → InClosure s b → f a ∈ closure (f '' s) → f b ∈ closure (f '' s) → f (a * b) ∈ closure (f '' s) [PROOFSTEP] intros _ _ _ _ ha hb [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s a✝² b✝ : G a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ ha : f a✝² ∈ closure (f '' s) hb : f b✝ ∈ closure (f '' s) ⊢ f (a✝² * b✝) ∈ closure (f '' s) [PROOFSTEP] rw [hf.map_mul] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝¹ : Group G s✝ : Set G inst✝ : Group H f : G → H hf : IsGroupHom f s : Set G x : G hx : x ∈ closure s a✝² b✝ : G a✝¹ : InClosure s a✝² a✝ : InClosure s b✝ ha : f a✝² ∈ closure (f '' s) hb : f b✝ ∈ closure (f '' s) ⊢ f a✝² * f b✝ ∈ closure (f '' s) [PROOFSTEP] exact (closure.isSubgroup (f '' s)).toIsSubmonoid.mul_mem ha hb [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G✝ inst✝¹ : Group G✝ s✝ : Set G✝ G : Type u_4 inst✝ : CommGroup G s t : Set G x : G ⊢ x ∈ closure (s ∪ t) ↔ ∃ y, y ∈ closure s ∧ ∃ z, z ∈ closure t ∧ y * z = x [PROOFSTEP] simp only [closure_eq_mclosure, Monoid.mem_closure_union_iff, exists_prop, preimage_union] [GOAL] G✝ : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G✝ inst✝¹ : Group G✝ s✝ : Set G✝ G : Type u_4 inst✝ : CommGroup G s t : Set G x : G ⊢ (∃ y, (∃ y_1, y_1 ∈ Monoid.Closure s ∧ ∃ z, z ∈ Monoid.Closure t ∧ y_1 * z = y) ∧ ∃ z, (∃ y, y ∈ Monoid.Closure (Inv.inv ⁻¹' s) ∧ ∃ z_1, z_1 ∈ Monoid.Closure (Inv.inv ⁻¹' t) ∧ y * z_1 = z) ∧ y * z = x) ↔ ∃ y, (∃ y_1, y_1 ∈ Monoid.Closure s ∧ ∃ z, z ∈ Monoid.Closure (Inv.inv ⁻¹' s) ∧ y_1 * z = y) ∧ ∃ z, (∃ y, y ∈ Monoid.Closure t ∧ ∃ z_1, z_1 ∈ Monoid.Closure (Inv.inv ⁻¹' t) ∧ y * z_1 = z) ∧ y * z = x [PROOFSTEP] constructor [GOAL] case mp G✝ : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G✝ inst✝¹ : Group G✝ s✝ : Set G✝ G : Type u_4 inst✝ : CommGroup G s t : Set G x : G ⊢ (∃ y, (∃ y_1, y_1 ∈ Monoid.Closure s ∧ ∃ z, z ∈ Monoid.Closure t ∧ y_1 * z = y) ∧ ∃ z, (∃ y, y ∈ Monoid.Closure (Inv.inv ⁻¹' s) ∧ ∃ z_1, z_1 ∈ Monoid.Closure (Inv.inv ⁻¹' t) ∧ y * z_1 = z) ∧ y * z = x) → ∃ y, (∃ y_1, y_1 ∈ Monoid.Closure s ∧ ∃ z, z ∈ Monoid.Closure (Inv.inv ⁻¹' s) ∧ y_1 * z = y) ∧ ∃ z, (∃ y, y ∈ Monoid.Closure t ∧ ∃ z_1, z_1 ∈ Monoid.Closure (Inv.inv ⁻¹' t) ∧ y * z_1 = z) ∧ y * z = x [PROOFSTEP] rintro ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, rfl⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G✝ : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G✝ inst✝¹ : Group G✝ s✝ : Set G✝ G : Type u_4 inst✝ : CommGroup G s t : Set G ys : G hys : ys ∈ Monoid.Closure s yt : G hyt : yt ∈ Monoid.Closure t zs : G hzs : zs ∈ Monoid.Closure (Inv.inv ⁻¹' s) zt : G hzt : zt ∈ Monoid.Closure (Inv.inv ⁻¹' t) ⊢ ∃ y, (∃ y_1, y_1 ∈ Monoid.Closure s ∧ ∃ z, z ∈ Monoid.Closure (Inv.inv ⁻¹' s) ∧ y_1 * z = y) ∧ ∃ z, (∃ y, y ∈ Monoid.Closure t ∧ ∃ z_1, z_1 ∈ Monoid.Closure (Inv.inv ⁻¹' t) ∧ y * z_1 = z) ∧ y * z = ys * yt * (zs * zt) [PROOFSTEP] refine' ⟨_, ⟨_, hys, _, hzs, rfl⟩, _, ⟨_, hyt, _, hzt, rfl⟩, _⟩ [GOAL] case mp.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G✝ : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G✝ inst✝¹ : Group G✝ s✝ : Set G✝ G : Type u_4 inst✝ : CommGroup G s t : Set G ys : G hys : ys ∈ Monoid.Closure s yt : G hyt : yt ∈ Monoid.Closure t zs : G hzs : zs ∈ Monoid.Closure (Inv.inv ⁻¹' s) zt : G hzt : zt ∈ Monoid.Closure (Inv.inv ⁻¹' t) ⊢ ys * zs * (yt * zt) = ys * yt * (zs * zt) [PROOFSTEP] rw [mul_assoc, mul_assoc, mul_left_comm zs] [GOAL] case mpr G✝ : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G✝ inst✝¹ : Group G✝ s✝ : Set G✝ G : Type u_4 inst✝ : CommGroup G s t : Set G x : G ⊢ (∃ y, (∃ y_1, y_1 ∈ Monoid.Closure s ∧ ∃ z, z ∈ Monoid.Closure (Inv.inv ⁻¹' s) ∧ y_1 * z = y) ∧ ∃ z, (∃ y, y ∈ Monoid.Closure t ∧ ∃ z_1, z_1 ∈ Monoid.Closure (Inv.inv ⁻¹' t) ∧ y * z_1 = z) ∧ y * z = x) → ∃ y, (∃ y_1, y_1 ∈ Monoid.Closure s ∧ ∃ z, z ∈ Monoid.Closure t ∧ y_1 * z = y) ∧ ∃ z, (∃ y, y ∈ Monoid.Closure (Inv.inv ⁻¹' s) ∧ ∃ z_1, z_1 ∈ Monoid.Closure (Inv.inv ⁻¹' t) ∧ y * z_1 = z) ∧ y * z = x [PROOFSTEP] rintro ⟨_, ⟨ys, hys, zs, hzs, rfl⟩, _, ⟨yt, hyt, zt, hzt, rfl⟩, rfl⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G✝ : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G✝ inst✝¹ : Group G✝ s✝ : Set G✝ G : Type u_4 inst✝ : CommGroup G s t : Set G ys : G hys : ys ∈ Monoid.Closure s zs : G hzs : zs ∈ Monoid.Closure (Inv.inv ⁻¹' s) yt : G hyt : yt ∈ Monoid.Closure t zt : G hzt : zt ∈ Monoid.Closure (Inv.inv ⁻¹' t) ⊢ ∃ y, (∃ y_1, y_1 ∈ Monoid.Closure s ∧ ∃ z, z ∈ Monoid.Closure t ∧ y_1 * z = y) ∧ ∃ z, (∃ y, y ∈ Monoid.Closure (Inv.inv ⁻¹' s) ∧ ∃ z_1, z_1 ∈ Monoid.Closure (Inv.inv ⁻¹' t) ∧ y * z_1 = z) ∧ y * z = ys * zs * (yt * zt) [PROOFSTEP] refine' ⟨_, ⟨ys, hys, yt, hyt, rfl⟩, _, ⟨zs, hzs, zt, hzt, rfl⟩, _⟩ [GOAL] case mpr.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro G✝ : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G✝ inst✝¹ : Group G✝ s✝ : Set G✝ G : Type u_4 inst✝ : CommGroup G s t : Set G ys : G hys : ys ∈ Monoid.Closure s zs : G hzs : zs ∈ Monoid.Closure (Inv.inv ⁻¹' s) yt : G hyt : yt ∈ Monoid.Closure t zt : G hzt : zt ∈ Monoid.Closure (Inv.inv ⁻¹' t) ⊢ ys * yt * (zs * zt) = ys * zs * (yt * zt) [PROOFSTEP] rw [mul_assoc, mul_assoc, mul_left_comm yt] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ trivial G ⊆ Group.closure ∅ [PROOFSTEP] simp [Set.subset_def, (Group.closure.isSubgroup _).one_mem] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G inst✝ : Group G ⊢ ∅ ⊆ trivial G [PROOFSTEP] simp [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G s : Set G inst✝ : Group G t : Set G ht : IsNormalSubgroup t a : G h : a ∈ t x : G hc : x ∈ conjugatesOf a ⊢ x ∈ t [PROOFSTEP] obtain ⟨c, w⟩ := isConj_iff.1 hc [GOAL] case intro G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c✝ : G s : Set G inst✝ : Group G t : Set G ht : IsNormalSubgroup t a : G h : a ∈ t x : G hc : x ∈ conjugatesOf a c : G w : c * a * c⁻¹ = x ⊢ x ∈ t [PROOFSTEP] have H := IsNormalSubgroup.normal ht a h c [GOAL] case intro G : Type u_1 H✝ : Type u_2 A : Type u_3 a✝ a₁ a₂ b c✝ : G s : Set G inst✝ : Group G t : Set G ht : IsNormalSubgroup t a : G h : a ∈ t x : G hc : x ∈ conjugatesOf a c : G w : c * a * c⁻¹ = x H : c * a * c⁻¹ ∈ t ⊢ x ∈ t [PROOFSTEP] rwa [← w] [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G s : Set G inst✝ : Group G src✝ : IsSubgroup (normalClosure s) := isSubgroup s n : G h : n ∈ normalClosure s g : G ⊢ g * n * g⁻¹ ∈ normalClosure s [PROOFSTEP] induction' h with x hx x hx ihx x y hx hy ihx ihy [GOAL] case basic G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G s : Set G inst✝ : Group G src✝ : IsSubgroup (normalClosure s) := isSubgroup s n g x : G hx : x ∈ conjugatesOfSet s ⊢ g * x * g⁻¹ ∈ normalClosure s [PROOFSTEP] exact conjugatesOfSet_subset_normalClosure (conj_mem_conjugatesOfSet hx) [GOAL] case one G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G s : Set G inst✝ : Group G src✝ : IsSubgroup (normalClosure s) := isSubgroup s n g : G ⊢ g * 1 * g⁻¹ ∈ normalClosure s [PROOFSTEP] simpa using (normalClosure.isSubgroup s).one_mem [GOAL] case inv G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G s : Set G inst✝ : Group G src✝ : IsSubgroup (normalClosure s) := isSubgroup s n g x : G hx : InClosure (conjugatesOfSet s) x ihx : g * x * g⁻¹ ∈ normalClosure s ⊢ g * x⁻¹ * g⁻¹ ∈ normalClosure s [PROOFSTEP] rw [← conj_inv] [GOAL] case inv G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G s : Set G inst✝ : Group G src✝ : IsSubgroup (normalClosure s) := isSubgroup s n g x : G hx : InClosure (conjugatesOfSet s) x ihx : g * x * g⁻¹ ∈ normalClosure s ⊢ (g * x * g⁻¹)⁻¹ ∈ normalClosure s [PROOFSTEP] exact (normalClosure.isSubgroup _).inv_mem ihx [GOAL] case mul G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G s : Set G inst✝ : Group G src✝ : IsSubgroup (normalClosure s) := isSubgroup s n g x y : G hx : InClosure (conjugatesOfSet s) x hy : InClosure (conjugatesOfSet s) y ihx : g * x * g⁻¹ ∈ normalClosure s ihy : g * y * g⁻¹ ∈ normalClosure s ⊢ g * (x * y) * g⁻¹ ∈ normalClosure s [PROOFSTEP] rw [← conj_mul] [GOAL] case mul G : Type u_1 H : Type u_2 A : Type u_3 a a₁ a₂ b c : G s : Set G inst✝ : Group G src✝ : IsSubgroup (normalClosure s) := isSubgroup s n g x y : G hx : InClosure (conjugatesOfSet s) x hy : InClosure (conjugatesOfSet s) y ihx : g * x * g⁻¹ ∈ normalClosure s ihy : g * y * g⁻¹ ∈ normalClosure s ⊢ g * x * g⁻¹ * (g * y * g⁻¹) ∈ normalClosure s [PROOFSTEP] exact (normalClosure.isSubgroup _).toIsSubmonoid.mul_mem ihx ihy [GOAL] G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G s✝ : Set G inst✝ : Group G s t : Set G ht : IsNormalSubgroup t h : s ⊆ t a : G w : a ∈ normalClosure s ⊢ a ∈ t [PROOFSTEP] induction' w with x hx x _ ihx x y _ _ ihx ihy [GOAL] case basic G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G s✝ : Set G inst✝ : Group G s t : Set G ht : IsNormalSubgroup t h : s ⊆ t a x : G hx : x ∈ conjugatesOfSet s ⊢ x ∈ t [PROOFSTEP] exact conjugatesOfSet_subset' ht h <| hx [GOAL] case one G : Type u_1 H : Type u_2 A : Type u_3 a✝ a₁ a₂ b c : G s✝ : Set G inst✝ : Group G s t : Set G ht : IsNormalSubgroup t h : s ⊆ t a : G ⊢ 1 ∈ t [PROOFSTEP] exact ht.toIsSubgroup.toIsSubmonoid.one_mem [GOAL] case inv G : Type u_1 H : Type u_2 A : Type u_3 a✝¹ a₁ a₂ b c : G s✝ : Set G inst✝ : Group G s t : Set G ht : IsNormalSubgroup t h : s ⊆ t a x : G a✝ : InClosure (conjugatesOfSet s) x ihx : x ∈ t ⊢ x⁻¹ ∈ t [PROOFSTEP] exact ht.toIsSubgroup.inv_mem ihx [GOAL] case mul G : Type u_1 H : Type u_2 A : Type u_3 a✝² a₁ a₂ b c : G s✝ : Set G inst✝ : Group G s t : Set G ht : IsNormalSubgroup t h : s ⊆ t a x y : G a✝¹ : InClosure (conjugatesOfSet s) x a✝ : InClosure (conjugatesOfSet s) y ihx : x ∈ t ihy : y ∈ t ⊢ x * y ∈ t [PROOFSTEP] exact ht.toIsSubgroup.toIsSubmonoid.mul_mem ihx ihy
{"mathlib_filename": "Mathlib.Deprecated.Subgroup", "llama_tokens": 20229}
[GOAL] k G✝ : Type u inst✝² : CommRing k n✝ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n : ℕ f : Fin (n + 1) → G ⊢ Hom.hom (actionDiagonalSucc G n).hom f = (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) [PROOFSTEP] induction' n with n hn [GOAL] case zero k G✝ : Type u inst✝² : CommRing k n✝ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n : ℕ f✝ : Fin (n + 1) → G f : Fin (Nat.zero + 1) → G ⊢ Hom.hom (actionDiagonalSucc G Nat.zero).hom f = (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) [PROOFSTEP] exact Prod.ext rfl (funext fun x => Fin.elim0 x) [GOAL] case succ k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin (n✝ + 1) → G n : ℕ hn : ∀ (f : Fin (n + 1) → G), Hom.hom (actionDiagonalSucc G n).hom f = (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) f : Fin (Nat.succ n + 1) → G ⊢ Hom.hom (actionDiagonalSucc G (Nat.succ n)).hom f = (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) [PROOFSTEP] refine' Prod.ext rfl (funext fun x => _) /- Porting note: broken proof was · dsimp only [actionDiagonalSucc] simp only [Iso.trans_hom, comp_hom, types_comp_apply, diagonalSucc_hom_hom, leftRegularTensorIso_hom_hom, tensorIso_hom, mkIso_hom_hom, Equiv.toIso_hom, Action.tensorHom, Equiv.piFinSuccAboveEquiv_symm_apply, tensor_apply, types_id_apply, tensor_rho, MonoidHom.one_apply, End.one_def, hn fun j : Fin (n + 1) => f j.succ, Fin.insertNth_zero'] refine' Fin.cases (Fin.cons_zero _ _) (fun i => _) x · simp only [Fin.cons_succ, mul_left_inj, inv_inj, Fin.castSucc_fin_succ] -/ [GOAL] case succ k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin (n✝ + 1) → G n : ℕ hn : ∀ (f : Fin (n + 1) → G), Hom.hom (actionDiagonalSucc G n).hom f = (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) f : Fin (Nat.succ n + 1) → G x : Fin (Nat.succ n) ⊢ Prod.snd (Hom.hom (actionDiagonalSucc G (Nat.succ n)).hom f) x = Prod.snd (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) x [PROOFSTEP] dsimp [actionDiagonalSucc] [GOAL] case succ k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin (n✝ + 1) → G n : ℕ hn : ∀ (f : Fin (n + 1) → G), Hom.hom (actionDiagonalSucc G n).hom f = (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) f : Fin (Nat.succ n + 1) → G x : Fin (Nat.succ n) ⊢ ↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0).symm (↑(FunctorCategoryEquivalence.inverse.obj (FunctorCategoryEquivalence.functor.obj (leftRegular G) ⊗ FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 })).ρ (↑(Equiv.piFinSuccAboveEquiv (fun a => G) 0) f).fst⁻¹ (Hom.hom (actionDiagonalSucc G n).hom (↑(Equiv.piFinSuccAboveEquiv (fun a => G) 0) f).snd)) x = (f (Fin.castSucc x))⁻¹ * f (Fin.succ x) [PROOFSTEP] erw [hn (fun (j : Fin (n + 1)) => f j.succ)] [GOAL] case succ k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin (n✝ + 1) → G n : ℕ hn : ∀ (f : Fin (n + 1) → G), Hom.hom (actionDiagonalSucc G n).hom f = (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) f : Fin (Nat.succ n + 1) → G x : Fin (Nat.succ n) ⊢ ↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0).symm (↑(FunctorCategoryEquivalence.inverse.obj (FunctorCategoryEquivalence.functor.obj (leftRegular G) ⊗ FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 })).ρ (↑(Equiv.piFinSuccAboveEquiv (fun a => G) 0) f).fst⁻¹ (f (Fin.succ 0), fun i => (f (Fin.succ (Fin.castSucc i)))⁻¹ * f (Fin.succ (Fin.succ i)))) x = (f (Fin.castSucc x))⁻¹ * f (Fin.succ x) [PROOFSTEP] exact Fin.cases rfl (fun i => rfl) x [GOAL] k G✝ : Type u inst✝² : CommRing k n✝ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n : ℕ g : G f : Fin n → G ⊢ Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f [PROOFSTEP] revert g [GOAL] k G✝ : Type u inst✝² : CommRing k n✝ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n : ℕ f : Fin n → G ⊢ ∀ (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f [PROOFSTEP] induction' n with n hn [GOAL] case zero k G✝ : Type u inst✝² : CommRing k n✝ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n : ℕ f✝ : Fin n → G f : Fin Nat.zero → G ⊢ ∀ (g : G), Hom.hom (actionDiagonalSucc G Nat.zero).inv (g, f) = g • partialProd f [PROOFSTEP] intro g [GOAL] case zero k G✝ : Type u inst✝² : CommRing k n✝ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n : ℕ f✝ : Fin n → G f : Fin Nat.zero → G g : G ⊢ Hom.hom (actionDiagonalSucc G Nat.zero).inv (g, f) = g • partialProd f [PROOFSTEP] funext (x : Fin 1) [GOAL] case zero.h k G✝ : Type u inst✝² : CommRing k n✝ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n : ℕ f✝ : Fin n → G f : Fin Nat.zero → G g : G x : Fin 1 ⊢ Hom.hom (actionDiagonalSucc G Nat.zero).inv (g, f) x = (g • partialProd f) x [PROOFSTEP] simp only [Subsingleton.elim x 0, Pi.smul_apply, Fin.partialProd_zero, smul_eq_mul, mul_one] [GOAL] case zero.h k G✝ : Type u inst✝² : CommRing k n✝ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n : ℕ f✝ : Fin n → G f : Fin Nat.zero → G g : G x : Fin 1 ⊢ Hom.hom (actionDiagonalSucc G Nat.zero).inv (g, f) 0 = g [PROOFSTEP] rfl [GOAL] case succ k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin n✝ → G n : ℕ hn : ∀ (f : Fin n → G) (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f f : Fin (Nat.succ n) → G ⊢ ∀ (g : G), Hom.hom (actionDiagonalSucc G (Nat.succ n)).inv (g, f) = g • partialProd f [PROOFSTEP] intro g [GOAL] case succ k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin n✝ → G n : ℕ hn : ∀ (f : Fin n → G) (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f f : Fin (Nat.succ n) → G g : G ⊢ Hom.hom (actionDiagonalSucc G (Nat.succ n)).inv (g, f) = g • partialProd f [PROOFSTEP] funext x [GOAL] case succ.h k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin n✝ → G n : ℕ hn : ∀ (f : Fin n → G) (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f f : Fin (Nat.succ n) → G g : G x : Fin (Nat.succ n + 1) ⊢ Hom.hom (actionDiagonalSucc G (Nat.succ n)).inv (g, f) x = (g • partialProd f) x [PROOFSTEP] dsimp [actionDiagonalSucc] [GOAL] case succ.h k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin n✝ → G n : ℕ hn : ∀ (f : Fin n → G) (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f f : Fin (Nat.succ n) → G g : G x : Fin (Nat.succ n + 1) ⊢ ↑(Equiv.piFinSuccAboveEquiv (fun a => G) 0).symm (g, Hom.hom (actionDiagonalSucc G n).inv (↑(FunctorCategoryEquivalence.inverse.obj (FunctorCategoryEquivalence.functor.obj (leftRegular G) ⊗ FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 })).ρ g (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f))) x = g * partialProd f x [PROOFSTEP] erw [hn, Equiv.piFinSuccAboveEquiv_symm_apply] [GOAL] case succ.h k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin n✝ → G n : ℕ hn : ∀ (f : Fin n → G) (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f f : Fin (Nat.succ n) → G g : G x : Fin (Nat.succ n + 1) ⊢ (fun f => Fin.insertNth 0 f.fst f.snd) (g, Limits.BinaryFan.fst (Limits.BinaryFan.mk (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.left } ≫ (FunctorCategoryEquivalence.functor.obj (leftRegular G)).map g) (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.right } ≫ (FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).map g)) (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f) • partialProd (Limits.BinaryFan.snd (Limits.BinaryFan.mk (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.left } ≫ (FunctorCategoryEquivalence.functor.obj (leftRegular G)).map g) (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.right } ≫ (FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).map g)) (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f))) x = g * partialProd f x [PROOFSTEP] refine' Fin.cases _ (fun i => _) x [GOAL] case succ.h.refine'_1 k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin n✝ → G n : ℕ hn : ∀ (f : Fin n → G) (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f f : Fin (Nat.succ n) → G g : G x : Fin (Nat.succ n + 1) ⊢ (fun f => Fin.insertNth 0 f.fst f.snd) (g, Limits.BinaryFan.fst (Limits.BinaryFan.mk (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.left } ≫ (FunctorCategoryEquivalence.functor.obj (leftRegular G)).map g) (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.right } ≫ (FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).map g)) (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f) • partialProd (Limits.BinaryFan.snd (Limits.BinaryFan.mk (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.left } ≫ (FunctorCategoryEquivalence.functor.obj (leftRegular G)).map g) (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.right } ≫ (FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).map g)) (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f))) 0 = g * partialProd f 0 [PROOFSTEP] simp only [Fin.insertNth_zero, Fin.cons_zero, Fin.partialProd_zero, mul_one] [GOAL] case succ.h.refine'_2 k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin n✝ → G n : ℕ hn : ∀ (f : Fin n → G) (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f f : Fin (Nat.succ n) → G g : G x : Fin (Nat.succ n + 1) i : Fin (n + 1) ⊢ (fun f => Fin.insertNth 0 f.fst f.snd) (g, Limits.BinaryFan.fst (Limits.BinaryFan.mk (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.left } ≫ (FunctorCategoryEquivalence.functor.obj (leftRegular G)).map g) (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.right } ≫ (FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).map g)) (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f) • partialProd (Limits.BinaryFan.snd (Limits.BinaryFan.mk (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.left } ≫ (FunctorCategoryEquivalence.functor.obj (leftRegular G)).map g) (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.right } ≫ (FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).map g)) (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f))) (Fin.succ i) = g * partialProd f (Fin.succ i) [PROOFSTEP] simp only [Fin.cons_succ, Pi.smul_apply, smul_eq_mul, Fin.partialProd_succ', ← mul_assoc] [GOAL] case succ.h.refine'_2 k G✝ : Type u inst✝² : CommRing k n✝¹ : ℕ inst✝¹ : Group G✝ G : Type u inst✝ : Group G n✝ : ℕ f✝ : Fin n✝ → G n : ℕ hn : ∀ (f : Fin n → G) (g : G), Hom.hom (actionDiagonalSucc G n).inv (g, f) = g • partialProd f f : Fin (Nat.succ n) → G g : G x : Fin (Nat.succ n + 1) i : Fin (n + 1) ⊢ Fin.insertNth 0 g (Limits.BinaryFan.fst (Limits.BinaryFan.mk (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.left } ≫ (FunctorCategoryEquivalence.functor.obj (leftRegular G)).map g) (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.right } ≫ (FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).map g)) (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f) • partialProd (Limits.BinaryFan.snd (Limits.BinaryFan.mk (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.left } ≫ (FunctorCategoryEquivalence.functor.obj (leftRegular G)).map g) (NatTrans.app (Limits.Types.binaryProductLimitCone ((FunctorCategoryEquivalence.functor.obj (leftRegular G)).obj PUnit.unit) ((FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).obj PUnit.unit)).cone.π { as := Limits.WalkingPair.right } ≫ (FunctorCategoryEquivalence.functor.obj { V := Fin n → G, ρ := 1 }).map g)) (↑(Equiv.piFinSuccAboveEquiv (fun x => G) 0) f))) (Fin.succ i) = g * f 0 * partialProd (Fin.tail f) i [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G f : Fin (n + 1) → G a : k ⊢ ↑(diagonalSucc k G n).hom.hom (single f a) = single (f 0) 1 ⊗ₜ[k] single (fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) a [PROOFSTEP] change (𝟙 ((linearization k G).1.obj (Action.leftRegular G)).V ⊗ (linearizationTrivialIso k G (Fin n → G)).hom.hom) ((inv ((linearization k G).μ (Action.leftRegular G) { V := Fin n → G, ρ := 1 })).hom ((lmapDomain k k (actionDiagonalSucc G n).hom.hom) (single f a))) = _ [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G f : Fin (n + 1) → G a : k ⊢ ↑(𝟙 ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj (Action.leftRegular G)).V ⊗ (linearizationTrivialIso k G (Fin n → G)).hom.hom) (↑(inv (LaxMonoidalFunctor.μ (linearization k G).toLaxMonoidalFunctor (Action.leftRegular G) { V := Fin n → G, ρ := 1 })).hom (↑(lmapDomain k k (actionDiagonalSucc G n).hom.hom) (single f a))) = single (f 0) 1 ⊗ₜ[k] single (fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) a [PROOFSTEP] simp only [CategoryTheory.Functor.map_id, linearization_μ_inv_hom] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G f : Fin (n + 1) → G a : k ⊢ ↑(𝟙 ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj (Action.leftRegular G)).V ⊗ (linearizationTrivialIso k G (Fin n → G)).hom.hom) (↑↑(LinearEquiv.symm (finsuppTensorFinsupp' k (Action.leftRegular G).V (Fin n → G))) (↑(lmapDomain k k (actionDiagonalSucc G n).hom.hom) (single f a))) = single (f 0) 1 ⊗ₜ[k] single (fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) a [PROOFSTEP] rw [lmapDomain_apply, mapDomain_single, LinearEquiv.coe_toLinearMap, finsuppTensorFinsupp', LinearEquiv.trans_symm, LinearEquiv.trans_apply, lcongr_symm, Equiv.refl_symm] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G f : Fin (n + 1) → G a : k ⊢ ↑(𝟙 ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj (Action.leftRegular G)).V ⊗ (linearizationTrivialIso k G (Fin n → G)).hom.hom) (↑(LinearEquiv.symm (finsuppTensorFinsupp k k k (Action.leftRegular G).V (Fin n → G))) (↑(lcongr (Equiv.refl ((Action.leftRegular G).V × (Fin n → G))) (LinearEquiv.symm (TensorProduct.lid k k))) (single (Action.Hom.hom (actionDiagonalSucc G n).hom f) a))) = single (f 0) 1 ⊗ₜ[k] single (fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) a [PROOFSTEP] erw [lcongr_single] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G f : Fin (n + 1) → G a : k ⊢ ↑(𝟙 ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj (Action.leftRegular G)).V ⊗ (linearizationTrivialIso k G (Fin n → G)).hom.hom) (↑(LinearEquiv.symm (finsuppTensorFinsupp k k k (Action.leftRegular G).V (Fin n → G))) (single (↑(Equiv.refl ((Action.leftRegular G).V × (Fin n → G))) (Action.Hom.hom (actionDiagonalSucc G n).hom f)) (↑(LinearEquiv.symm (TensorProduct.lid k k)) a))) = single (f 0) 1 ⊗ₜ[k] single (fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) a [PROOFSTEP] rw [TensorProduct.lid_symm_apply, actionDiagonalSucc_hom_apply, finsuppTensorFinsupp_symm_single] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G f : Fin (n + 1) → G a : k ⊢ ↑(𝟙 ((linearization k G).toLaxMonoidalFunctor.toFunctor.obj (Action.leftRegular G)).V ⊗ (linearizationTrivialIso k G (Fin n → G)).hom.hom) (single (↑(Equiv.refl ((Action.leftRegular G).V × (Fin n → G))) (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i))).fst 1 ⊗ₜ[k] single (↑(Equiv.refl ((Action.leftRegular G).V × (Fin n → G))) (f 0, fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i))).snd a) = single (f 0) 1 ⊗ₜ[k] single (fun i => (f (Fin.castSucc i))⁻¹ * f (Fin.succ i)) a [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : Fin n → G a b : k ⊢ ↑(diagonalSucc k G n).inv.hom (single g a ⊗ₜ[k] single f b) = single (g • partialProd f) (a * b) [PROOFSTEP] change mapDomain (actionDiagonalSucc G n).inv.hom (lcongr (Equiv.refl (G × (Fin n → G))) (TensorProduct.lid k k) (finsuppTensorFinsupp k k k G (Fin n → G) (single g a ⊗ₜ[k] single f b))) = single (g • partialProd f) (a * b) [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : Fin n → G a b : k ⊢ mapDomain (actionDiagonalSucc G n).inv.hom (↑(lcongr (Equiv.refl (G × (Fin n → G))) (TensorProduct.lid k k)) (↑(finsuppTensorFinsupp k k k G (Fin n → G)) (single g a ⊗ₜ[k] single f b))) = single (g • partialProd f) (a * b) [PROOFSTEP] rw [finsuppTensorFinsupp_single, lcongr_single, mapDomain_single, Equiv.refl_apply, actionDiagonalSucc_inv_apply] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : Fin n → G a b : k ⊢ single (g • partialProd f) (↑(TensorProduct.lid k k) (a ⊗ₜ[k] b)) = single (g • partialProd f) (a * b) [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : (Fin n → G) →₀ k r : k ⊢ ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] f) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) f [PROOFSTEP] refine' f.induction _ _ /- Porting note: broken proof was · simp only [TensorProduct.tmul_zero, map_zero] · intro a b x ha hb hx simp only [lift_apply, smul_single', mul_one, TensorProduct.tmul_add, map_add, diagonalSucc_inv_single_single, hx, Finsupp.sum_single_index, mul_comm b, zero_mul, single_zero] -/ [GOAL] case refine'_1 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : (Fin n → G) →₀ k r : k ⊢ ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] 0) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) 0 [PROOFSTEP] rw [TensorProduct.tmul_zero, map_zero, map_zero] [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : (Fin n → G) →₀ k r : k ⊢ ∀ (a : Fin n → G) (b : k) (f : (Fin n → G) →₀ k), ¬a ∈ f.support → b ≠ 0 → ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] f) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) f → ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] (single a b + f)) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) (single a b + f) [PROOFSTEP] intro _ _ _ _ _ hx [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : (Fin n → G) →₀ k r : k a✝² : Fin n → G b✝ : k f✝ : (Fin n → G) →₀ k a✝¹ : ¬a✝² ∈ f✝.support a✝ : b✝ ≠ 0 hx : ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] f✝) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) f✝ ⊢ ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] (single a✝² b✝ + f✝)) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) (single a✝² b✝ + f✝) [PROOFSTEP] rw [TensorProduct.tmul_add, map_add, map_add, hx] [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : (Fin n → G) →₀ k r : k a✝² : Fin n → G b✝ : k f✝ : (Fin n → G) →₀ k a✝¹ : ¬a✝² ∈ f✝.support a✝ : b✝ ≠ 0 hx : ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] f✝) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) f✝ ⊢ ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] single a✝² b✝) + ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) f✝ = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) (single a✝² b✝) + ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) f✝ [PROOFSTEP] simp_rw [lift_apply, smul_single, smul_eq_mul, diagonalSucc_inv_single_single] [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : (Fin n → G) →₀ k r : k a✝² : Fin n → G b✝ : k f✝ : (Fin n → G) →₀ k a✝¹ : ¬a✝² ∈ f✝.support a✝ : b✝ ≠ 0 hx : ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] f✝) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) f✝ ⊢ (single (g • partialProd a✝²) (r * b✝) + sum f✝ fun x r_1 => single (g • partialProd x) (r_1 * r)) = (sum (single a✝² b✝) fun x r_1 => single (g • partialProd x) (r_1 * r)) + sum f✝ fun x r_1 => single (g • partialProd x) (r_1 * r) [PROOFSTEP] rw [sum_single_index, mul_comm] [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G f : (Fin n → G) →₀ k r : k a✝² : Fin n → G b✝ : k f✝ : (Fin n → G) →₀ k a✝¹ : ¬a✝² ∈ f✝.support a✝ : b✝ ≠ 0 hx : ↑(diagonalSucc k G n).inv.hom (single g r ⊗ₜ[k] f✝) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k (Fin n → G)) fun f => single (g • partialProd f) r) f✝ ⊢ single (g • partialProd a✝²) (0 * r) = 0 [PROOFSTEP] rw [zero_mul, single_zero] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G →₀ k f : Fin n → G r : k ⊢ ↑(diagonalSucc k G n).inv.hom (g ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) g [PROOFSTEP] refine' g.induction _ _ /- Porting note: broken proof was · simp only [TensorProduct.zero_tmul, map_zero] · intro a b x ha hb hx simp only [lift_apply, smul_single', map_add, hx, diagonalSucc_inv_single_single, TensorProduct.add_tmul, Finsupp.sum_single_index, zero_mul, single_zero] -/ [GOAL] case refine'_1 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G →₀ k f : Fin n → G r : k ⊢ ↑(diagonalSucc k G n).inv.hom (0 ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) 0 [PROOFSTEP] rw [TensorProduct.zero_tmul, map_zero, map_zero] [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G →₀ k f : Fin n → G r : k ⊢ ∀ (a : G) (b : k) (f_1 : G →₀ k), ¬a ∈ f_1.support → b ≠ 0 → ↑(diagonalSucc k G n).inv.hom (f_1 ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) f_1 → ↑(diagonalSucc k G n).inv.hom ((single a b + f_1) ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) (single a b + f_1) [PROOFSTEP] intro _ _ _ _ _ hx [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G →₀ k f : Fin n → G r : k a✝² : G b✝ : k f✝ : G →₀ k a✝¹ : ¬a✝² ∈ f✝.support a✝ : b✝ ≠ 0 hx : ↑(diagonalSucc k G n).inv.hom (f✝ ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) f✝ ⊢ ↑(diagonalSucc k G n).inv.hom ((single a✝² b✝ + f✝) ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) (single a✝² b✝ + f✝) [PROOFSTEP] rw [TensorProduct.add_tmul, map_add, map_add, hx] [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G →₀ k f : Fin n → G r : k a✝² : G b✝ : k f✝ : G →₀ k a✝¹ : ¬a✝² ∈ f✝.support a✝ : b✝ ≠ 0 hx : ↑(diagonalSucc k G n).inv.hom (f✝ ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) f✝ ⊢ ↑(diagonalSucc k G n).inv.hom (single a✝² b✝ ⊗ₜ[k] single f r) + ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) f✝ = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) (single a✝² b✝) + ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) f✝ [PROOFSTEP] simp_rw [lift_apply, smul_single', diagonalSucc_inv_single_single] [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G →₀ k f : Fin n → G r : k a✝² : G b✝ : k f✝ : G →₀ k a✝¹ : ¬a✝² ∈ f✝.support a✝ : b✝ ≠ 0 hx : ↑(diagonalSucc k G n).inv.hom (f✝ ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) f✝ ⊢ (single (a✝² • partialProd f) (b✝ * r) + sum f✝ fun x r_1 => single (x • partialProd f) (r_1 * r)) = (sum (single a✝² b✝) fun x r_1 => single (x • partialProd f) (r_1 * r)) + sum f✝ fun x r_1 => single (x • partialProd f) (r_1 * r) [PROOFSTEP] rw [sum_single_index] [GOAL] case refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G g : G →₀ k f : Fin n → G r : k a✝² : G b✝ : k f✝ : G →₀ k a✝¹ : ¬a✝² ∈ f✝.support a✝ : b✝ ≠ 0 hx : ↑(diagonalSucc k G n).inv.hom (f✝ ⊗ₜ[k] single f r) = ↑(↑(Finsupp.lift ((Fin (n + 1) → G) →₀ k) k G) fun a => single (a • partialProd f) r) f✝ ⊢ single (a✝² • partialProd f) (0 * r) = 0 [PROOFSTEP] rw [zero_mul, single_zero] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G src✝ : ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k))) ≃ₗ[MonoidAlgebra k G] ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.diagonal k G (n + 1))) := Iso.toLinearEquiv (Rep.equivalenceModuleMonoidAlgebra.functor.mapIso (diagonalSucc k G n).symm) r : MonoidAlgebra k G x : MonoidAlgebra k G ⊗[k] ((Fin n → G) →₀ k) ⊢ AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id (MonoidAlgebra k G)) r • AddHom.toFun src✝.toAddHom x [PROOFSTEP] rw [RingHom.id_apply, LinearEquiv.toFun_eq_coe, ← LinearEquiv.map_smul] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G src✝ : ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k))) ≃ₗ[MonoidAlgebra k G] ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.diagonal k G (n + 1))) := Iso.toLinearEquiv (Rep.equivalenceModuleMonoidAlgebra.functor.mapIso (diagonalSucc k G n).symm) r : MonoidAlgebra k G x : MonoidAlgebra k G ⊗[k] ((Fin n → G) →₀ k) ⊢ ↑src✝ (r • x) = ↑src✝ (r • x) [PROOFSTEP] congr 1 /- Porting note: broken proof was refine' x.induction_on _ (fun x y => _) fun y z hy hz => _ · simp only [smul_zero] · simp only [TensorProduct.smul_tmul'] show (r * x) ⊗ₜ y = _ rw [← ofMulAction_self_smul_eq_mul, smul_tprod_one_asModule] · rw [smul_add, hz, hy, smul_add] -/ [GOAL] case h.e_6.h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G src✝ : ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k))) ≃ₗ[MonoidAlgebra k G] ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.diagonal k G (n + 1))) := Iso.toLinearEquiv (Rep.equivalenceModuleMonoidAlgebra.functor.mapIso (diagonalSucc k G n).symm) r : MonoidAlgebra k G x : MonoidAlgebra k G ⊗[k] ((Fin n → G) →₀ k) ⊢ r • x = r • x [PROOFSTEP] show _ = Representation.asAlgebraHom (tensorObj (Rep.leftRegular k G) (Rep.trivial k G ((Fin n → G) →₀ k))).ρ r _ [GOAL] case h.e_6.h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G src✝ : ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k))) ≃ₗ[MonoidAlgebra k G] ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.diagonal k G (n + 1))) := Iso.toLinearEquiv (Rep.equivalenceModuleMonoidAlgebra.functor.mapIso (diagonalSucc k G n).symm) r : MonoidAlgebra k G x : MonoidAlgebra k G ⊗[k] ((Fin n → G) →₀ k) ⊢ r • x = ↑(↑(asAlgebraHom (Rep.ρ (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k)))) r) x [PROOFSTEP] refine' x.induction_on _ (fun x y => _) fun y z hy hz => _ [GOAL] case h.e_6.h.refine'_1 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G src✝ : ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k))) ≃ₗ[MonoidAlgebra k G] ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.diagonal k G (n + 1))) := Iso.toLinearEquiv (Rep.equivalenceModuleMonoidAlgebra.functor.mapIso (diagonalSucc k G n).symm) r : MonoidAlgebra k G x : MonoidAlgebra k G ⊗[k] ((Fin n → G) →₀ k) ⊢ r • 0 = ↑(↑(asAlgebraHom (Rep.ρ (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k)))) r) 0 [PROOFSTEP] rw [smul_zero, map_zero] [GOAL] case h.e_6.h.refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G src✝ : ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k))) ≃ₗ[MonoidAlgebra k G] ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.diagonal k G (n + 1))) := Iso.toLinearEquiv (Rep.equivalenceModuleMonoidAlgebra.functor.mapIso (diagonalSucc k G n).symm) r : MonoidAlgebra k G x✝ : MonoidAlgebra k G ⊗[k] ((Fin n → G) →₀ k) x : MonoidAlgebra k G y : (Fin n → G) →₀ k ⊢ r • x ⊗ₜ[k] y = ↑(↑(asAlgebraHom (Rep.ρ (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k)))) r) (x ⊗ₜ[k] y) [PROOFSTEP] rw [TensorProduct.smul_tmul', smul_eq_mul, ← ofMulAction_self_smul_eq_mul] [GOAL] case h.e_6.h.refine'_2 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G src✝ : ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k))) ≃ₗ[MonoidAlgebra k G] ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.diagonal k G (n + 1))) := Iso.toLinearEquiv (Rep.equivalenceModuleMonoidAlgebra.functor.mapIso (diagonalSucc k G n).symm) r : MonoidAlgebra k G x✝ : MonoidAlgebra k G ⊗[k] ((Fin n → G) →₀ k) x : MonoidAlgebra k G y : (Fin n → G) →₀ k ⊢ (r • x) ⊗ₜ[k] y = ↑(↑(asAlgebraHom (Rep.ρ (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k)))) r) (x ⊗ₜ[k] y) [PROOFSTEP] exact (smul_tprod_one_asModule (Representation.ofMulAction k G G) r x y).symm [GOAL] case h.e_6.h.refine'_3 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G src✝ : ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k))) ≃ₗ[MonoidAlgebra k G] ↑(Rep.equivalenceModuleMonoidAlgebra.functor.obj (Rep.diagonal k G (n + 1))) := Iso.toLinearEquiv (Rep.equivalenceModuleMonoidAlgebra.functor.mapIso (diagonalSucc k G n).symm) r : MonoidAlgebra k G x y z : MonoidAlgebra k G ⊗[k] ((Fin n → G) →₀ k) hy : r • y = ↑(↑(asAlgebraHom (Rep.ρ (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k)))) r) y hz : r • z = ↑(↑(asAlgebraHom (Rep.ρ (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k)))) r) z ⊢ r • (y + z) = ↑(↑(asAlgebraHom (Rep.ρ (Rep.leftRegular k G ⊗ Rep.trivial k G ((Fin n → G) →₀ k)))) r) (y + z) [PROOFSTEP] rw [smul_add, hz, hy, map_add] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : ofMulAction k G (Fin (n + 1) → G) ⟶ A x : Fin n → G ⊢ ↑(diagonalHomEquiv n A) f x = ↑f.hom (Finsupp.single (Fin.partialProd x) 1) [PROOFSTEP] change f.hom ((diagonalSucc k G n).inv.hom (Finsupp.single 1 1 ⊗ₜ[k] Finsupp.single x 1)) = _ [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : ofMulAction k G (Fin (n + 1) → G) ⟶ A x : Fin n → G ⊢ ↑f.hom (↑(diagonalSucc k G n).inv.hom (Finsupp.single 1 1 ⊗ₜ[k] Finsupp.single x 1)) = ↑f.hom (Finsupp.single (Fin.partialProd x) 1) [PROOFSTEP] rw [diagonalSucc_inv_single_single, one_smul, one_mul] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(LinearEquiv.symm (diagonalHomEquiv n A)) f).hom (Finsupp.single x 1) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) [PROOFSTEP] unfold diagonalHomEquiv [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(LinearEquiv.symm (LinearEquiv.trans (LinearEquiv.trans (Linear.homCongr k (diagonalSucc k G n ≪≫ Representation.repOfTprodIso (Representation.ofMulAction k G G) 1) (Iso.refl A)) (LinearEquiv.trans (MonoidalClosed.linearHomEquivComm (of (Representation.ofMulAction k G G)) (of 1) A) (leftRegularHomEquiv ((ihom (of 1)).obj A)))) (LinearEquiv.symm (Finsupp.llift (CoeSort.coe A) k k (Fin n → G))))) f).hom (Finsupp.single x 1) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) [PROOFSTEP] simp only [LinearEquiv.trans_symm, LinearEquiv.symm_symm, LinearEquiv.trans_apply, leftRegularHomEquiv_symm_apply, Linear.homCongr_symm_apply, Iso.trans_hom, Iso.refl_inv, Category.comp_id, Action.comp_hom, MonoidalClosed.linearHomEquivComm_symm_hom] -- Porting note: This is a sure sign that coercions for morphisms in `ModuleCat` -- are still not set up properly. [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(((diagonalSucc k G n).hom.hom ≫ (Representation.repOfTprodIso (Representation.ofMulAction k G G) 1).hom.hom) ≫ ↑(TensorProduct.uncurry k (CoeSort.coe (of (Representation.ofMulAction k G G))) (CoeSort.coe (of 1)) (CoeSort.coe A)) (leftRegularHom ((ihom (of 1)).obj A) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f)).hom) (Finsupp.single x 1) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) [PROOFSTEP] rw [ModuleCat.coe_comp] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ (↑(↑(TensorProduct.uncurry k (CoeSort.coe (of (Representation.ofMulAction k G G))) (CoeSort.coe (of 1)) (CoeSort.coe A)) (leftRegularHom ((ihom (of 1)).obj A) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f)).hom) ∘ ↑((diagonalSucc k G n).hom.hom ≫ (Representation.repOfTprodIso (Representation.ofMulAction k G G) 1).hom.hom)) (Finsupp.single x 1) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) [PROOFSTEP] simp only [ModuleCat.coe_comp, Function.comp_apply] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(TensorProduct.uncurry k (CoeSort.coe (of (Representation.ofMulAction k G G))) (CoeSort.coe (of 1)) (CoeSort.coe A)) (leftRegularHom ((ihom (of 1)).obj A) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f)).hom) (↑(Representation.repOfTprodIso (Representation.ofMulAction k G G) 1).hom.hom (↑(diagonalSucc k G n).hom.hom (Finsupp.single x 1))) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) [PROOFSTEP] rw [diagonalSucc_hom_single] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(TensorProduct.uncurry k (CoeSort.coe (of (Representation.ofMulAction k G G))) (CoeSort.coe (of 1)) (CoeSort.coe A)) (leftRegularHom ((ihom (of 1)).obj A) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f)).hom) (↑(Representation.repOfTprodIso (Representation.ofMulAction k G G) 1).hom.hom (Finsupp.single (x 0) 1 ⊗ₜ[k] Finsupp.single (fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) 1)) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) [PROOFSTEP] erw [TensorProduct.uncurry_apply, Finsupp.lift_apply, Finsupp.sum_single_index] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(1 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f)) (Finsupp.single (fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) 1) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ 0 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) = 0 [PROOFSTEP] simp only [one_smul] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f)) (Finsupp.single (fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) 1) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ 0 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) = 0 [PROOFSTEP] erw [Representation.linHom_apply] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(LinearMap.comp (↑(ρ A) (x 0)) (LinearMap.comp (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) (↑(ρ (of 1)) (x 0)⁻¹))) (Finsupp.single (fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) 1) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ 0 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) = 0 [PROOFSTEP] simp only [LinearMap.comp_apply, MonoidHom.one_apply, LinearMap.one_apply] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(ρ A) (x 0)) (↑(↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) (↑(↑(ρ (of 1)) (x 0)⁻¹) (Finsupp.single (fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) 1))) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ 0 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) = 0 [PROOFSTEP] erw [Finsupp.llift_apply] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(ρ A) (x 0)) (↑(↑(Finsupp.lift (CoeSort.coe A) k (Fin n → G)) f) (↑(↑(ρ (of 1)) (x 0)⁻¹) (Finsupp.single (fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) 1))) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ 0 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) = 0 [PROOFSTEP] rw [Finsupp.lift_apply] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(ρ A) (x 0)) (Finsupp.sum (↑(↑(ρ (of 1)) (x 0)⁻¹) (Finsupp.single (fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) 1)) fun x r => r • f x) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ 0 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) = 0 [PROOFSTEP] erw [Finsupp.sum_single_index] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ ↑(↑(ρ A) (x 0)) (1 • f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) = ↑(↑(ρ A) (x 0)) (f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ (0 • f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) = 0 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ 0 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) = 0 [PROOFSTEP] rw [one_smul] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ (0 • f fun i => (x (Fin.castSucc i))⁻¹ * x (Fin.succ i)) = 0 [PROOFSTEP] rw [zero_smul] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A x : Fin (n + 1) → G ⊢ 0 • ↑(↑(ρ ((ihom (of 1)).obj A)) (x 0)) (↑(Finsupp.llift (CoeSort.coe A) k k (Fin n → G)) f) = 0 [PROOFSTEP] rw [zero_smul] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A g : Fin (n + 1) → G a : Fin (n + 1) ⊢ ↑(↑(LinearEquiv.symm (diagonalHomEquiv n A)) f).hom (Finsupp.single (Fin.partialProd g ∘ Fin.succAbove (Fin.succ a)) 1) = f (Fin.contractNth a (fun x x_1 => x * x_1) g) [PROOFSTEP] simp only [diagonalHomEquiv_symm_apply, Function.comp_apply, Fin.succ_succAbove_zero, Fin.partialProd_zero, map_one, Fin.succ_succAbove_succ, LinearMap.one_apply, Fin.partialProd_succ] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A g : Fin (n + 1) → G a : Fin (n + 1) ⊢ (f fun i => (Fin.partialProd g (Fin.succAbove (Fin.succ a) (Fin.castSucc i)))⁻¹ * (Fin.partialProd g (Fin.castSucc (Fin.succAbove a i)) * g (Fin.succAbove a i))) = f (Fin.contractNth a (fun x x_1 => x * x_1) g) [PROOFSTEP] congr [GOAL] case e_a k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A g : Fin (n + 1) → G a : Fin (n + 1) ⊢ (fun i => (Fin.partialProd g (Fin.succAbove (Fin.succ a) (Fin.castSucc i)))⁻¹ * (Fin.partialProd g (Fin.castSucc (Fin.succAbove a i)) * g (Fin.succAbove a i))) = Fin.contractNth a (fun x x_1 => x * x_1) g [PROOFSTEP] ext [GOAL] case e_a.h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Group G A : Rep k G f : (Fin n → G) → CoeSort.coe A g : Fin (n + 1) → G a : Fin (n + 1) x✝ : Fin n ⊢ (Fin.partialProd g (Fin.succAbove (Fin.succ a) (Fin.castSucc x✝)))⁻¹ * (Fin.partialProd g (Fin.castSucc (Fin.succAbove a x✝)) * g (Fin.succAbove a x✝)) = Fin.contractNth a (fun x x_1 => x * x_1) g x✝ [PROOFSTEP] rw [← Fin.partialProd_succ, Fin.inv_partialProd_mul_eq_contractNth] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G X✝ Y✝ : SimplexCategoryᵒᵖ f : X✝ ⟶ Y✝ ⊢ (cechNerveTerminalFrom (Action.ofMulAction G G)).map f ≫ ((fun n => limit.isoLimitCone (Action.ofMulActionLimitCone G fun x => G)) Y✝).hom = ((fun n => limit.isoLimitCone (Action.ofMulActionLimitCone G fun x => G)) X✝).hom ≫ (classifyingSpaceUniversalCover G).map f [PROOFSTEP] refine' IsLimit.hom_ext (Action.ofMulActionLimitCone.{u, 0} G fun _ => G).2 fun j => _ [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G X✝ Y✝ : SimplexCategoryᵒᵖ f : X✝ ⟶ Y✝ j : Discrete (Fin (SimplexCategory.len Y✝.unop + 1)) ⊢ ((cechNerveTerminalFrom (Action.ofMulAction G G)).map f ≫ ((fun n => limit.isoLimitCone (Action.ofMulActionLimitCone G fun x => G)) Y✝).hom) ≫ NatTrans.app (Action.ofMulActionLimitCone G fun x => G).cone.π j = (((fun n => limit.isoLimitCone (Action.ofMulActionLimitCone G fun x => G)) X✝).hom ≫ (classifyingSpaceUniversalCover G).map f) ≫ NatTrans.app (Action.ofMulActionLimitCone G fun x => G).cone.π j [PROOFSTEP] dsimp only [cechNerveTerminalFrom, Pi.lift] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G X✝ Y✝ : SimplexCategoryᵒᵖ f : X✝ ⟶ Y✝ j : Discrete (Fin (SimplexCategory.len Y✝.unop + 1)) ⊢ (limit.lift (Discrete.functor fun b => Action.ofMulAction G G) (Fan.mk (∏ fun x => Action.ofMulAction G G) fun i => Pi.π (fun x => Action.ofMulAction G G) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) ≫ (limit.isoLimitCone (Action.ofMulActionLimitCone G fun x => G)).hom) ≫ NatTrans.app (Action.ofMulActionLimitCone G fun x => G).cone.π j = ((limit.isoLimitCone (Action.ofMulActionLimitCone G fun x => G)).hom ≫ (classifyingSpaceUniversalCover G).map f) ≫ NatTrans.app (Action.ofMulActionLimitCone G fun x => G).cone.π j [PROOFSTEP] rw [Category.assoc, limit.isoLimitCone_hom_π, limit.lift_π, Category.assoc] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G X✝ Y✝ : SimplexCategoryᵒᵖ f : X✝ ⟶ Y✝ j : Discrete (Fin (SimplexCategory.len Y✝.unop + 1)) ⊢ NatTrans.app (Fan.mk (∏ fun x => Action.ofMulAction G G) fun i => Pi.π (fun x => Action.ofMulAction G G) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)).π j = (limit.isoLimitCone (Action.ofMulActionLimitCone G fun x => G)).hom ≫ (classifyingSpaceUniversalCover G).map f ≫ NatTrans.app (Action.ofMulActionLimitCone G fun x => G).cone.π j [PROOFSTEP] exact (limit.isoLimitCone_hom_π _ _).symm [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ ExtraDegeneracy (compForgetAugmented G) [PROOFSTEP] refine' ExtraDegeneracy.ofIso (_ : (Arrow.mk <| terminal.from G).augmentedCechNerve ≅ _) (extraDegeneracyAugmentedCechNerve G) [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ Arrow.augmentedCechNerve (mk (terminal.from G)) ≅ compForgetAugmented G [PROOFSTEP] exact Comma.isoMk (CechNerveTerminalFrom.iso G ≪≫ cechNerveTerminalFromIsoCompForget G) (Iso.refl _) (by ext : 1; exact IsTerminal.hom_ext terminalIsTerminal _ _) [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (𝟭 (SimplicialObject (Type u))).map (CechNerveTerminalFrom.iso G ≪≫ cechNerveTerminalFromIsoCompForget G).hom ≫ (compForgetAugmented G).hom = (Arrow.augmentedCechNerve (mk (terminal.from G))).hom ≫ (const (Type u)).map (Iso.refl (Arrow.augmentedCechNerve (mk (terminal.from G))).right).hom [PROOFSTEP] ext : 1 [GOAL] case h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G n✝ : SimplexCategoryᵒᵖ ⊢ NatTrans.app ((𝟭 (SimplicialObject (Type u))).map (CechNerveTerminalFrom.iso G ≪≫ cechNerveTerminalFromIsoCompForget G).hom ≫ (compForgetAugmented G).hom) n✝ = NatTrans.app ((Arrow.augmentedCechNerve (mk (terminal.from G))).hom ≫ (const (Type u)).map (Iso.refl (Arrow.augmentedCechNerve (mk (terminal.from G))).right).hom) n✝ [PROOFSTEP] exact IsTerminal.hom_ext terminalIsTerminal _ _ [GOAL] k G✝ : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G✝ G : Type u n : ℕ c : Fin (n + 1) → G ⊢ ↑(d k G n) (Finsupp.single c 1) = Finset.sum Finset.univ fun p => Finsupp.single (c ∘ Fin.succAbove p) ((-1) ^ ↑p) [PROOFSTEP] simp [d] [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ ⊢ (HomologicalComplex.d (resolution k G) (n + 1) n).hom = d k G (n + 1) [PROOFSTEP] refine' Finsupp.lhom_ext' fun x => LinearMap.ext_ring _ [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ x : ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk (n + 1)))).V ⊢ ↑(LinearMap.comp (HomologicalComplex.d (resolution k G) (n + 1) n).hom (Finsupp.lsingle x)) 1 = ↑(LinearMap.comp (d k G (n + 1)) (Finsupp.lsingle x)) 1 [PROOFSTEP] dsimp [GroupCohomology.resolution] /- Porting note: broken proof was simpa [← @intCast_smul k, simplicial_object.δ] -/ [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ x : ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk (n + 1)))).V ⊢ ↑(HomologicalComplex.d ((alternatingFaceMapComplex (Rep k G)).obj (classifyingSpaceUniversalCover G ⋙ (Rep.linearization k G).toLaxMonoidalFunctor.toFunctor)) (n + 1) n).hom (Finsupp.single x 1) = ↑(d k G (n + 1)) (Finsupp.single x 1) [PROOFSTEP] simp_rw [alternatingFaceMapComplex_obj_d, AlternatingFaceMapComplex.objD, SimplicialObject.δ, Functor.comp_map, ← intCast_smul (k := k) ((-1) ^ _ : ℤ), Int.cast_pow, Int.cast_neg, Int.cast_one, Action.sum_hom, Action.smul_hom, Rep.linearization_map_hom] [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ x : ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk (n + 1)))).V ⊢ ↑(Finset.sum Finset.univ fun x => (-1) ^ ↑x • Finsupp.lmapDomain k k ((classifyingSpaceUniversalCover G).map (SimplexCategory.δ x).op).hom) (Finsupp.single x 1) = ↑(d k G (n + 1)) (Finsupp.single x 1) [PROOFSTEP] rw [LinearMap.coeFn_sum, Fintype.sum_apply] [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ x : ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk (n + 1)))).V ⊢ (Finset.sum Finset.univ fun c => ↑((-1) ^ ↑c • Finsupp.lmapDomain k k ((classifyingSpaceUniversalCover G).map (SimplexCategory.δ c).op).hom) (Finsupp.single x 1)) = ↑(d k G (n + 1)) (Finsupp.single x 1) [PROOFSTEP] erw [d_of (k := k) x] /- Porting note: want to rewrite `LinearMap.smul_apply` but simp/simp_rw won't do it; I need erw, so using Finset.sum_congr to get rid of the binder -/ [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ x : ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk (n + 1)))).V ⊢ (Finset.sum Finset.univ fun c => ↑((-1) ^ ↑c • Finsupp.lmapDomain k k ((classifyingSpaceUniversalCover G).map (SimplexCategory.δ c).op).hom) (Finsupp.single x 1)) = Finset.sum Finset.univ fun p => Finsupp.single (x ∘ Fin.succAbove p) ((-1) ^ ↑p) [PROOFSTEP] refine' Finset.sum_congr rfl fun _ _ => _ [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ x : ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk (n + 1)))).V x✝¹ : Fin (n + 2) x✝ : x✝¹ ∈ Finset.univ ⊢ ↑((-1) ^ ↑x✝¹ • Finsupp.lmapDomain k k ((classifyingSpaceUniversalCover G).map (SimplexCategory.δ x✝¹).op).hom) (Finsupp.single x 1) = Finsupp.single (x ∘ Fin.succAbove x✝¹) ((-1) ^ ↑x✝¹) [PROOFSTEP] erw [LinearMap.smul_apply] [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ x : ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk (n + 1)))).V x✝¹ : Fin (n + 2) x✝ : x✝¹ ∈ Finset.univ ⊢ (-1) ^ ↑x✝¹ • ↑(Finsupp.lmapDomain k k ((classifyingSpaceUniversalCover G).map (SimplexCategory.δ x✝¹).op).hom) (Finsupp.single x 1) = Finsupp.single (x ∘ Fin.succAbove x✝¹) ((-1) ^ ↑x✝¹) [PROOFSTEP] rw [Finsupp.lmapDomain_apply, Finsupp.mapDomain_single, Finsupp.smul_single', mul_one] [GOAL] k G : Type u inst✝¹ : CommRing k n✝ : ℕ inst✝ : Monoid G n : ℕ x : ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk (n + 1)))).V x✝¹ : Fin (n + 2) x✝ : x✝¹ ∈ Finset.univ ⊢ Finsupp.single (Action.Hom.hom ((classifyingSpaceUniversalCover G).map (SimplexCategory.δ x✝¹).op) x) ((-1) ^ ↑x✝¹) = Finsupp.single (x ∘ Fin.succAbove x✝¹) ((-1) ^ ↑x✝¹) [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G g : ↑(MonCat.of G) x✝ : Fin 1 → G ⊢ ↑(LinearMap.comp (↑(Rep.ofMulAction k G (Fin 1 → G)).ρ g ≫ Finsupp.total (Fin 1 → G) (↑(Rep.trivial k G k).V) k fun x => 1) (Finsupp.lsingle x✝)) 1 = ↑(LinearMap.comp ((Finsupp.total (Fin 1 → G) (↑(Rep.trivial k G k).V) k fun x => 1) ≫ ↑(Rep.trivial k G k).ρ g) (Finsupp.lsingle x✝)) 1 [PROOFSTEP] show Finsupp.total (Fin 1 → G) k k (fun _ => (1 : k)) (Finsupp.mapDomain _ (Finsupp.single _ _)) = Finsupp.total (Fin 1 → G) k k (fun _ => (1 : k)) (Finsupp.single _ _) [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G g : ↑(MonCat.of G) x✝ : Fin 1 → G ⊢ ↑(Finsupp.total (Fin 1 → G) k k fun x => 1) (Finsupp.mapDomain (fun a => (fun x x_1 => x • x_1) g a) (Finsupp.single x✝ 1)) = ↑(Finsupp.total (Fin 1 → G) k k fun x => 1) (Finsupp.single x✝ 1) [PROOFSTEP] simp only [Finsupp.mapDomain_single, Finsupp.total_single] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ HomologicalComplex.Hom.f (forget₂ToModuleCatHomotopyEquiv k G).hom 0 = (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) [PROOFSTEP] show (HomotopyEquiv.hom _ ≫ HomotopyEquiv.hom _ ≫ HomotopyEquiv.hom _).f 0 = _ [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ HomologicalComplex.Hom.f ((HomotopyEquiv.ofIso (compForgetAugmentedIso k G).symm).hom ≫ (SimplicialObject.Augmented.ExtraDegeneracy.homotopyEquiv (extraDegeneracyCompForgetAugmentedToModule k G)).hom ≫ (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (LinearEquiv.toModuleIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u))))).hom) 0 = (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) [PROOFSTEP] simp only [HomologicalComplex.comp_f] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ HomologicalComplex.Hom.f (HomotopyEquiv.ofIso (compForgetAugmentedIso k G).symm).hom 0 ≫ HomologicalComplex.Hom.f (SimplicialObject.Augmented.ExtraDegeneracy.homotopyEquiv (extraDegeneracyCompForgetAugmentedToModule k G)).hom 0 ≫ HomologicalComplex.Hom.f (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (LinearEquiv.toModuleIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u))))).hom 0 = (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) [PROOFSTEP] dsimp [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ HomologicalComplex.Hom.f (HomotopyEquiv.ofIso (compForgetAugmentedIso k G).symm).hom 0 ≫ HomologicalComplex.Hom.f (SimplicialObject.Augmented.ExtraDegeneracy.homotopyEquiv (extraDegeneracyCompForgetAugmentedToModule k G)).hom 0 ≫ HomologicalComplex.Hom.f (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (LinearEquiv.toModuleIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u))))).hom 0 = (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) [PROOFSTEP] convert Category.id_comp (X := (forget₂ToModuleCat k G).X 0) _ [GOAL] case h.e'_2.h.e'_6.h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G e_4✝ : (compForgetAugmented.toModule k G).left.obj (Opposite.op (SimplexCategory.mk 0)) = HomologicalComplex.X (forget₂ToModuleCat k G) 0 ⊢ HomologicalComplex.Hom.f (HomotopyEquiv.ofIso (compForgetAugmentedIso k G).symm).hom 0 = 𝟙 (HomologicalComplex.X (forget₂ToModuleCat k G) 0) [PROOFSTEP] dsimp only [HomotopyEquiv.ofIso, compForgetAugmentedIso, map_alternatingFaceMapComplex] [GOAL] case h.e'_2.h.e'_6.h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G e_4✝ : (compForgetAugmented.toModule k G).left.obj (Opposite.op (SimplexCategory.mk 0)) = HomologicalComplex.X (forget₂ToModuleCat k G) 0 ⊢ HomologicalComplex.Hom.f (eqToIso (_ : ((SimplicialObject.whiskering (Rep k G) (ModuleCat k)).obj (forget₂ (Rep k G) (ModuleCat k)) ⋙ alternatingFaceMapComplex (ModuleCat k)).obj (classifyingSpaceUniversalCover G ⋙ (Rep.linearization k G).toLaxMonoidalFunctor.toFunctor) = (alternatingFaceMapComplex (Rep k G) ⋙ Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).obj (classifyingSpaceUniversalCover G ⋙ (Rep.linearization k G).toLaxMonoidalFunctor.toFunctor))).symm.hom 0 = 𝟙 (HomologicalComplex.X (forget₂ToModuleCat k G) 0) [PROOFSTEP] simp only [Iso.symm_hom, eqToIso.inv, HomologicalComplex.eqToHom_f, eqToHom_refl] [GOAL] case h.e'_3 k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) = HomologicalComplex.Hom.f (SimplicialObject.Augmented.ExtraDegeneracy.homotopyEquiv (extraDegeneracyCompForgetAugmentedToModule k G)).hom 0 ≫ HomologicalComplex.Hom.f (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (LinearEquiv.toModuleIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u))))).hom 0 [PROOFSTEP] trans (Finsupp.total _ _ _ fun _ => (1 : k)).comp ((ModuleCat.free k).map (terminal.from _)) [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) = LinearMap.comp (Finsupp.total (⊤_ Type u) k k fun x => 1) ((ModuleCat.free k).map (terminal.from (Fin 1 → G))) [PROOFSTEP] dsimp [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) = LinearMap.comp (Finsupp.total (⊤_ Type u) k k fun x => 1) (Finsupp.lmapDomain k k (terminal.from (Fin 1 → G))) [PROOFSTEP] erw [Finsupp.lmapDomain_total (α := Fin 1 → G) (R := k) (α' := ⊤_ Type u) (v := fun _ => (1 : k)) (v' := fun _ => (1 : k)) (terminal.from ((classifyingSpaceUniversalCover G).obj (Opposite.op (SimplexCategory.mk 0))).V) LinearMap.id fun i => rfl, LinearMap.id_comp] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) = Finsupp.total (Fin 1 → G) k k fun x => 1 [PROOFSTEP] rfl [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ LinearMap.comp (Finsupp.total (⊤_ Type u) k k fun x => 1) ((ModuleCat.free k).map (terminal.from (Fin 1 → G))) = HomologicalComplex.Hom.f (SimplicialObject.Augmented.ExtraDegeneracy.homotopyEquiv (extraDegeneracyCompForgetAugmentedToModule k G)).hom 0 ≫ HomologicalComplex.Hom.f (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (LinearEquiv.toModuleIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u))))).hom 0 [PROOFSTEP] congr [GOAL] case e_f k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (Finsupp.total (⊤_ Type u) k k fun x => 1) = HomologicalComplex.Hom.f (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (LinearEquiv.toModuleIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u))))).hom 0 [PROOFSTEP] ext x [GOAL] case e_f.h.h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G x : ⊤_ Type u ⊢ ↑(LinearMap.comp (Finsupp.total (⊤_ Type u) k k fun x => 1) (Finsupp.lsingle x)) 1 = ↑(LinearMap.comp (HomologicalComplex.Hom.f (HomotopyEquiv.ofIso ((ChainComplex.single₀ (ModuleCat k)).mapIso (LinearEquiv.toModuleIso (Finsupp.LinearEquiv.finsuppUnique k k (⊤_ Type u))))).hom 0) (Finsupp.lsingle x)) 1 [PROOFSTEP] dsimp [HomotopyEquiv.ofIso, Finsupp.LinearEquiv.finsuppUnique] [GOAL] case e_f.h.h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G x : ⊤_ Type u ⊢ ↑(Finsupp.total (⊤_ Type u) k k fun x => 1) (Finsupp.single x 1) = ↑(Finsupp.single x 1) default [PROOFSTEP] rw [Finsupp.total_single, one_smul, @Unique.eq_default _ Types.terminalIso.toEquiv.unique x, Finsupp.single_eq_same] [GOAL] case e_g.e_a k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ terminal.from (Fin 1 → G) = fun a => NatTrans.app (compForgetAugmented G).hom (Opposite.op (SimplexCategory.mk 0)) a [PROOFSTEP] exact @Subsingleton.elim _ (@Unique.instSubsingleton _ (Limits.uniqueToTerminal _)) _ _ [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ HomologicalComplex.d (resolution k G) 1 0 ≫ ε k G = 0 [PROOFSTEP] ext : 1 [GOAL] case h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (HomologicalComplex.d (resolution k G) 1 0 ≫ ε k G).hom = 0.hom [PROOFSTEP] refine' LinearMap.ext fun x => _ [GOAL] case h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G x : ↑(HomologicalComplex.X (resolution k G) 1).V ⊢ ↑(HomologicalComplex.d (resolution k G) 1 0 ≫ ε k G).hom x = ↑0.hom x [PROOFSTEP] have : (forget₂ToModuleCat k G).d 1 0 ≫ (forget₂ (Rep k G) (ModuleCat.{u} k)).map (ε k G) = 0 := by rw [← forget₂ToModuleCatHomotopyEquiv_f_0_eq, ← (forget₂ToModuleCatHomotopyEquiv k G).1.2 1 0 rfl] exact comp_zero [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G x : ↑(HomologicalComplex.X (resolution k G) 1).V ⊢ HomologicalComplex.d (forget₂ToModuleCat k G) 1 0 ≫ (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) = 0 [PROOFSTEP] rw [← forget₂ToModuleCatHomotopyEquiv_f_0_eq, ← (forget₂ToModuleCatHomotopyEquiv k G).1.2 1 0 rfl] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G x : ↑(HomologicalComplex.X (resolution k G) 1).V ⊢ HomologicalComplex.Hom.f (forget₂ToModuleCatHomotopyEquiv k G).hom 1 ≫ HomologicalComplex.d ((ChainComplex.single₀ (ModuleCat k)).obj ((forget₂ (Rep k G) (ModuleCat k)).obj (Rep.trivial k G k))) 1 0 = 0 [PROOFSTEP] exact comp_zero [GOAL] case h k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G x : ↑(HomologicalComplex.X (resolution k G) 1).V this : HomologicalComplex.d (forget₂ToModuleCat k G) 1 0 ≫ (forget₂ (Rep k G) (ModuleCat k)).map (ε k G) = 0 ⊢ ↑(HomologicalComplex.d (resolution k G) 1 0 ≫ ε k G).hom x = ↑0.hom x [PROOFSTEP] exact LinearMap.ext_iff.1 this _ [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).map (εToSingle₀ k G) ≫ NatTrans.app (ChainComplex.single₀MapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k))).hom (Rep.trivial k G k) = (forget₂ToModuleCatHomotopyEquiv k G).hom [PROOFSTEP] refine' ChainComplex.to_single₀_ext _ _ _ [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ HomologicalComplex.Hom.f ((Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).map (εToSingle₀ k G) ≫ NatTrans.app (ChainComplex.single₀MapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k))).hom (Rep.trivial k G k)) 0 = HomologicalComplex.Hom.f (forget₂ToModuleCatHomotopyEquiv k G).hom 0 [PROOFSTEP] dsimp [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (forget₂ (Rep k G) (ModuleCat k)).map (HomologicalComplex.Hom.f (εToSingle₀ k G) 0) ≫ 𝟙 ((forget₂ (Rep k G) (ModuleCat k)).obj (Rep.trivial k G k)) = HomologicalComplex.Hom.f (forget₂ToModuleCatHomotopyEquiv k G).hom 0 [PROOFSTEP] rw [Category.comp_id] [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ (forget₂ (Rep k G) (ModuleCat k)).map (HomologicalComplex.Hom.f (εToSingle₀ k G) 0) = HomologicalComplex.Hom.f (forget₂ToModuleCatHomotopyEquiv k G).hom 0 [PROOFSTEP] exact (forget₂ToModuleCatHomotopyEquiv_f_0_eq k G).symm [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G ⊢ QuasiIso ((Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).map (εToSingle₀ k G)) [PROOFSTEP] have h : QuasiIso (forget₂ToModuleCatHomotopyEquiv k G).hom := HomotopyEquiv.toQuasiIso _ [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G h : QuasiIso (forget₂ToModuleCatHomotopyEquiv k G).hom ⊢ QuasiIso ((Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).map (εToSingle₀ k G)) [PROOFSTEP] rw [← εToSingle₀_comp_eq k G] at h [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G h : QuasiIso ((Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).map (εToSingle₀ k G) ≫ NatTrans.app (ChainComplex.single₀MapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k))).hom (Rep.trivial k G k)) ⊢ QuasiIso ((Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).map (εToSingle₀ k G)) [PROOFSTEP] haveI := h [GOAL] k G : Type u inst✝¹ : CommRing k n : ℕ inst✝ : Monoid G h this : QuasiIso ((Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).map (εToSingle₀ k G) ≫ NatTrans.app (ChainComplex.single₀MapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k))).hom (Rep.trivial k G k)) ⊢ QuasiIso ((Functor.mapHomologicalComplex (forget₂ (Rep k G) (ModuleCat k)) (ComplexShape.down ℕ)).map (εToSingle₀ k G)) [PROOFSTEP] exact quasiIso_of_comp_right _ ((ChainComplex.single₀MapHomologicalComplex _).hom.app _)
{"mathlib_filename": "Mathlib.RepresentationTheory.GroupCohomology.Resolution", "llama_tokens": 31968}
[GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax ⊢ ∀ (s : Cone (Discrete.functor α)) (m : s.pt ⟶ (piFan α).pt), (∀ (j : Discrete ι), m ≫ NatTrans.app (piFan α).π j = NatTrans.app s.π j) → m = (fun S => ContinuousMap.mk fun s i => ↑(NatTrans.app S.π { as := i }) s) s [PROOFSTEP] intro S m h [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax S : Cone (Discrete.functor α) m : S.pt ⟶ (piFan α).pt h : ∀ (j : Discrete ι), m ≫ NatTrans.app (piFan α).π j = NatTrans.app S.π j ⊢ m = (fun S => ContinuousMap.mk fun s i => ↑(NatTrans.app S.π { as := i }) s) S [PROOFSTEP] apply ContinuousMap.ext [GOAL] case h J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax S : Cone (Discrete.functor α) m : S.pt ⟶ (piFan α).pt h : ∀ (j : Discrete ι), m ≫ NatTrans.app (piFan α).π j = NatTrans.app S.π j ⊢ ∀ (a : ↑S.pt), ↑m a = ↑((fun S => ContinuousMap.mk fun s i => ↑(NatTrans.app S.π { as := i }) s) S) a [PROOFSTEP] intro x [GOAL] case h J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax S : Cone (Discrete.functor α) m : S.pt ⟶ (piFan α).pt h : ∀ (j : Discrete ι), m ≫ NatTrans.app (piFan α).π j = NatTrans.app S.π j x : ↑S.pt ⊢ ↑m x = ↑((fun S => ContinuousMap.mk fun s i => ↑(NatTrans.app S.π { as := i }) s) S) x [PROOFSTEP] funext i [GOAL] case h.h J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax S : Cone (Discrete.functor α) m : S.pt ⟶ (piFan α).pt h : ∀ (j : Discrete ι), m ≫ NatTrans.app (piFan α).π j = NatTrans.app S.π j x : ↑S.pt i : ι ⊢ ↑m x i = ↑((fun S => ContinuousMap.mk fun s i => ↑(NatTrans.app S.π { as := i }) s) S) x i [PROOFSTEP] dsimp [GOAL] case h.h J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax S : Cone (Discrete.functor α) m : S.pt ⟶ (piFan α).pt h : ∀ (j : Discrete ι), m ≫ NatTrans.app (piFan α).π j = NatTrans.app S.π j x : ↑S.pt i : ι ⊢ ↑m x i = ↑(ContinuousMap.mk fun s i => ↑(NatTrans.app S.π { as := i }) s) x i [PROOFSTEP] rw [ContinuousMap.coe_mk, ← h ⟨i⟩] [GOAL] case h.h J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax S : Cone (Discrete.functor α) m : S.pt ⟶ (piFan α).pt h : ∀ (j : Discrete ι), m ≫ NatTrans.app (piFan α).π j = NatTrans.app S.π j x : ↑S.pt i : ι ⊢ ↑m x i = ↑(m ≫ NatTrans.app (piFan α).π { as := i }) x [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι ⊢ (piIsoPi α).inv ≫ Pi.π α i = piπ α i [PROOFSTEP] simp [piIsoPi] [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι x : ↑(∏ α) ⊢ ↑(piIsoPi α).hom x i = ↑(Pi.π α i) x [PROOFSTEP] have := piIsoPi_inv_π α i [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι x : ↑(∏ α) this : (piIsoPi α).inv ≫ Pi.π α i = piπ α i ⊢ ↑(piIsoPi α).hom x i = ↑(Pi.π α i) x [PROOFSTEP] rw [Iso.inv_comp_eq] at this [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι x : ↑(∏ α) this : Pi.π α i = (piIsoPi α).hom ≫ piπ α i ⊢ ↑(piIsoPi α).hom x i = ↑(Pi.π α i) x [PROOFSTEP] exact ConcreteCategory.congr_hom this x [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι ⊢ α i ⟶ of ((i : ι) × ↑(α i)) [PROOFSTEP] refine ContinuousMap.mk ?_ ?_ [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι ⊢ ↑(α i) → ↑(of ((i : ι) × ↑(α i))) [PROOFSTEP] dsimp [GOAL] case refine_1 J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι ⊢ ↑(α i) → (i : ι) × ↑(α i) [PROOFSTEP] apply Sigma.mk i [GOAL] case refine_2 J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι ⊢ Continuous (id (Sigma.mk i)) [PROOFSTEP] dsimp [GOAL] case refine_2 J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι ⊢ Continuous (Sigma.mk i) [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v β : ι → TopCatMax s : Cocone (Discrete.functor β) j : Discrete ι ⊢ NatTrans.app (sigmaCofan β).ι j ≫ (fun S => ContinuousMap.mk fun s => ↑(NatTrans.app S.ι { as := s.fst }) s.snd) s = NatTrans.app s.ι j [PROOFSTEP] cases j [GOAL] case mk J : Type v inst✝ : SmallCategory J ι : Type v β : ι → TopCatMax s : Cocone (Discrete.functor β) as✝ : ι ⊢ NatTrans.app (sigmaCofan β).ι { as := as✝ } ≫ (fun S => ContinuousMap.mk fun s => ↑(NatTrans.app S.ι { as := s.fst }) s.snd) s = NatTrans.app s.ι { as := as✝ } [PROOFSTEP] aesop_cat [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v β : ι → TopCatMax ⊢ ∀ (s : Cocone (Discrete.functor β)) (m : (sigmaCofan β).pt ⟶ s.pt), (∀ (j : Discrete ι), NatTrans.app (sigmaCofan β).ι j ≫ m = NatTrans.app s.ι j) → m = (fun S => ContinuousMap.mk fun s => ↑(NatTrans.app S.ι { as := s.fst }) s.snd) s [PROOFSTEP] intro S m h [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v β : ι → TopCatMax S : Cocone (Discrete.functor β) m : (sigmaCofan β).pt ⟶ S.pt h : ∀ (j : Discrete ι), NatTrans.app (sigmaCofan β).ι j ≫ m = NatTrans.app S.ι j ⊢ m = (fun S => ContinuousMap.mk fun s => ↑(NatTrans.app S.ι { as := s.fst }) s.snd) S [PROOFSTEP] ext ⟨i, x⟩ [GOAL] case w.mk J : Type v inst✝ : SmallCategory J ι : Type v β : ι → TopCatMax S : Cocone (Discrete.functor β) m : (sigmaCofan β).pt ⟶ S.pt h : ∀ (j : Discrete ι), NatTrans.app (sigmaCofan β).ι j ≫ m = NatTrans.app S.ι j i : ι x : ↑(β i) ⊢ ↑m { fst := i, snd := x } = ↑((fun S => ContinuousMap.mk fun s => ↑(NatTrans.app S.ι { as := s.fst }) s.snd) S) { fst := i, snd := x } [PROOFSTEP] simp only [comp_app, hom_apply, ← h ⟨i⟩] [GOAL] case w.mk J : Type v inst✝ : SmallCategory J ι : Type v β : ι → TopCatMax S : Cocone (Discrete.functor β) m : (sigmaCofan β).pt ⟶ S.pt h : ∀ (j : Discrete ι), NatTrans.app (sigmaCofan β).ι j ≫ m = NatTrans.app S.ι j i : ι x : ↑(β i) ⊢ ContinuousMap.toFun m { fst := i, snd := x } = ContinuousMap.toFun (NatTrans.app (sigmaCofan β).ι { as := i } ≫ m) x [PROOFSTEP] congr [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι ⊢ Sigma.ι α i ≫ (sigmaIsoSigma α).hom = sigmaι α i [PROOFSTEP] simp [sigmaIsoSigma] [GOAL] J : Type v inst✝ : SmallCategory J ι : Type v α : ι → TopCatMax i : ι x : ↑(α i) ⊢ ↑(sigmaIsoSigma α).inv { fst := i, snd := x } = ↑(Sigma.ι α i) x [PROOFSTEP] rw [← sigmaIsoSigma_hom_ι_apply, ← comp_app, ← comp_app, Category.assoc, Iso.hom_inv_id, Category.comp_id] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C ⊢ C.pt.str = ⨅ (j : J), induced (↑(NatTrans.app C.π j)) (F.obj j).str [PROOFSTEP] let homeo := homeoOfIso (hC.conePointUniqueUpToIso (limitConeInfiIsLimit F)) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C homeo : ↑C.pt ≃ₜ ↑(limitConeInfi F).pt := homeoOfIso (IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F)) ⊢ C.pt.str = ⨅ (j : J), induced (↑(NatTrans.app C.π j)) (F.obj j).str [PROOFSTEP] refine' homeo.inducing.induced.trans _ [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C homeo : ↑C.pt ≃ₜ ↑(limitConeInfi F).pt := homeoOfIso (IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F)) ⊢ induced (↑homeo) (topologicalSpace_coe (limitConeInfi F).pt) = ⨅ (j : J), induced (↑(NatTrans.app C.π j)) (F.obj j).str [PROOFSTEP] change induced homeo (⨅ j : J, _) = _ [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C homeo : ↑C.pt ≃ₜ ↑(limitConeInfi F).pt := homeoOfIso (IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F)) ⊢ induced (↑homeo) (⨅ (j : J), induced (NatTrans.app (Types.limitCone (F ⋙ forget TopCat)).π j) (F.obj j).str) = ⨅ (j : J), induced (↑(NatTrans.app C.π j)) (F.obj j).str [PROOFSTEP] simp [induced_iInf, induced_compose] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax C : Cone F hC : IsLimit C homeo : ↑C.pt ≃ₜ ↑(limitConeInfi F).pt := homeoOfIso (IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F)) ⊢ ⨅ (i : J), induced (NatTrans.app (Types.limitCone (F ⋙ forget TopCat)).π i ∘ ↑(homeoOfIso (IsLimit.conePointUniqueUpToIso hC (limitConeInfiIsLimit F)))) (F.obj i).str = ⨅ (j : J), induced (↑(NatTrans.app C.π j)) (F.obj j).str [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ Continuous Prod.fst [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ Continuous Prod.snd [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ ∀ (s : Cone (pair X Y)) (j : Discrete WalkingPair), (fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) s ≫ NatTrans.app (prodBinaryFan X Y).π j = NatTrans.app s.π j [PROOFSTEP] rintro S (_ | _) [GOAL] case mk.left J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) ⊢ (fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S ≫ NatTrans.app (prodBinaryFan X Y).π { as := WalkingPair.left } = NatTrans.app S.π { as := WalkingPair.left } [PROOFSTEP] {dsimp; ext; rfl } [GOAL] case mk.left J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) ⊢ (fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S ≫ NatTrans.app (prodBinaryFan X Y).π { as := WalkingPair.left } = NatTrans.app S.π { as := WalkingPair.left } [PROOFSTEP] dsimp [GOAL] case mk.left J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) ⊢ (ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) ≫ BinaryFan.fst (prodBinaryFan X Y) = BinaryFan.fst S [PROOFSTEP] ext [GOAL] case mk.left.w J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) x✝ : (forget TopCat).obj S.pt ⊢ ↑((ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) ≫ BinaryFan.fst (prodBinaryFan X Y)) x✝ = ↑(BinaryFan.fst S) x✝ [PROOFSTEP] rfl [GOAL] case mk.right J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) ⊢ (fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S ≫ NatTrans.app (prodBinaryFan X Y).π { as := WalkingPair.right } = NatTrans.app S.π { as := WalkingPair.right } [PROOFSTEP] {dsimp; ext; rfl } [GOAL] case mk.right J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) ⊢ (fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S ≫ NatTrans.app (prodBinaryFan X Y).π { as := WalkingPair.right } = NatTrans.app S.π { as := WalkingPair.right } [PROOFSTEP] dsimp [GOAL] case mk.right J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) ⊢ (ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) ≫ BinaryFan.snd (prodBinaryFan X Y) = BinaryFan.snd S [PROOFSTEP] ext [GOAL] case mk.right.w J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) x✝ : (forget TopCat).obj S.pt ⊢ ↑((ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) ≫ BinaryFan.snd (prodBinaryFan X Y)) x✝ = ↑(BinaryFan.snd S) x✝ [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ ∀ (s : Cone (pair X Y)) (m : s.pt ⟶ (prodBinaryFan X Y).pt), (∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodBinaryFan X Y).π j = NatTrans.app s.π j) → m = (fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) s [PROOFSTEP] intro S m h [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) m : S.pt ⟶ (prodBinaryFan X Y).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodBinaryFan X Y).π j = NatTrans.app S.π j ⊢ m = (fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S [PROOFSTEP] refine' ContinuousMap.ext (fun (x : ↥(S.pt)) => Prod.ext _ _) [GOAL] case refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) m : S.pt ⟶ (prodBinaryFan X Y).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodBinaryFan X Y).π j = NatTrans.app S.π j x : ↑S.pt ⊢ (↑m x).fst = (↑((fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S) x).fst [PROOFSTEP] specialize h ⟨WalkingPair.left⟩ [GOAL] case refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) m : S.pt ⟶ (prodBinaryFan X Y).pt x : ↑S.pt h : m ≫ NatTrans.app (prodBinaryFan X Y).π { as := WalkingPair.left } = NatTrans.app S.π { as := WalkingPair.left } ⊢ (↑m x).fst = (↑((fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S) x).fst [PROOFSTEP] apply_fun fun e => e x at h [GOAL] case refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) m : S.pt ⟶ (prodBinaryFan X Y).pt x : ↑S.pt h : ↑(m ≫ NatTrans.app (prodBinaryFan X Y).π { as := WalkingPair.left }) x = ↑(NatTrans.app S.π { as := WalkingPair.left }) x ⊢ (↑m x).fst = (↑((fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S) x).fst [PROOFSTEP] exact h [GOAL] case refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) m : S.pt ⟶ (prodBinaryFan X Y).pt h : ∀ (j : Discrete WalkingPair), m ≫ NatTrans.app (prodBinaryFan X Y).π j = NatTrans.app S.π j x : ↑S.pt ⊢ (↑m x).snd = (↑((fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S) x).snd [PROOFSTEP] specialize h ⟨WalkingPair.right⟩ [GOAL] case refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) m : S.pt ⟶ (prodBinaryFan X Y).pt x : ↑S.pt h : m ≫ NatTrans.app (prodBinaryFan X Y).π { as := WalkingPair.right } = NatTrans.app S.π { as := WalkingPair.right } ⊢ (↑m x).snd = (↑((fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S) x).snd [PROOFSTEP] apply_fun fun e => e x at h [GOAL] case refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat S : Cone (pair X Y) m : S.pt ⟶ (prodBinaryFan X Y).pt x : ↑S.pt h : ↑(m ≫ NatTrans.app (prodBinaryFan X Y).π { as := WalkingPair.right }) x = ↑(NatTrans.app S.π { as := WalkingPair.right }) x ⊢ (↑m x).snd = (↑((fun S => ContinuousMap.mk fun s => (↑(BinaryFan.fst S) s, ↑(BinaryFan.snd S) s)) S) x).snd [PROOFSTEP] exact h [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ (prodIsoProd X Y).hom ≫ prodFst = prod.fst [PROOFSTEP] simp [← Iso.eq_inv_comp, prodIsoProd] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ prodFst = BinaryFan.fst (prodBinaryFan X Y) [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ (prodIsoProd X Y).hom ≫ prodSnd = prod.snd [PROOFSTEP] simp [← Iso.eq_inv_comp, prodIsoProd] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ prodSnd = BinaryFan.snd (prodBinaryFan X Y) [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat x : ↑(X ⨯ Y) ⊢ ↑(prodIsoProd X Y).hom x = (↑prod.fst x, ↑prod.snd x) [PROOFSTEP] apply Prod.ext [GOAL] case h₁ J : Type v inst✝ : SmallCategory J X Y : TopCat x : ↑(X ⨯ Y) ⊢ (↑(prodIsoProd X Y).hom x).fst = (↑prod.fst x, ↑prod.snd x).fst [PROOFSTEP] exact ConcreteCategory.congr_hom (prodIsoProd_hom_fst X Y) x [GOAL] case h₂ J : Type v inst✝ : SmallCategory J X Y : TopCat x : ↑(X ⨯ Y) ⊢ (↑(prodIsoProd X Y).hom x).snd = (↑prod.fst x, ↑prod.snd x).snd [PROOFSTEP] exact ConcreteCategory.congr_hom (prodIsoProd_hom_snd X Y) x [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ (prodIsoProd X Y).inv ≫ prod.fst = prodFst [PROOFSTEP] simp [Iso.inv_comp_eq] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ (prodIsoProd X Y).inv ≫ prod.snd = prodSnd [PROOFSTEP] simp [Iso.inv_comp_eq] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ (X ⨯ Y).str = induced (↑prod.fst) X.str ⊓ induced (↑prod.snd) Y.str [PROOFSTEP] let homeo := homeoOfIso (prodIsoProd X Y) [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat homeo : ↑(X ⨯ Y) ≃ₜ ↑(of (↑X × ↑Y)) := homeoOfIso (prodIsoProd X Y) ⊢ (X ⨯ Y).str = induced (↑prod.fst) X.str ⊓ induced (↑prod.snd) Y.str [PROOFSTEP] refine' homeo.inducing.induced.trans _ [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat homeo : ↑(X ⨯ Y) ≃ₜ ↑(of (↑X × ↑Y)) := homeoOfIso (prodIsoProd X Y) ⊢ induced (↑homeo) (topologicalSpace_coe (of (↑X × ↑Y))) = induced (↑prod.fst) X.str ⊓ induced (↑prod.snd) Y.str [PROOFSTEP] change induced homeo (_ ⊓ _) = _ [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat homeo : ↑(X ⨯ Y) ≃ₜ ↑(of (↑X × ↑Y)) := homeoOfIso (prodIsoProd X Y) ⊢ induced (↑homeo) (induced Prod.fst (topologicalSpace_coe X) ⊓ induced Prod.snd (topologicalSpace_coe Y)) = induced (↑prod.fst) X.str ⊓ induced (↑prod.snd) Y.str [PROOFSTEP] simp [induced_compose] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat homeo : ↑(X ⨯ Y) ≃ₜ ↑(of (↑X × ↑Y)) := homeoOfIso (prodIsoProd X Y) ⊢ induced (Prod.fst ∘ ↑(homeoOfIso (prodIsoProd X Y))) (topologicalSpace_coe X) ⊓ induced (Prod.snd ∘ ↑(homeoOfIso (prodIsoProd X Y))) (topologicalSpace_coe Y) = induced (↑prod.fst) X.str ⊓ induced (↑prod.snd) Y.str [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z ⊢ Set.range ↑(prod.map f g) = ↑prod.fst ⁻¹' Set.range ↑f ∩ ↑prod.snd ⁻¹' Set.range ↑g [PROOFSTEP] ext x [GOAL] case h J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) ⊢ x ∈ Set.range ↑(prod.map f g) ↔ x ∈ ↑prod.fst ⁻¹' Set.range ↑f ∩ ↑prod.snd ⁻¹' Set.range ↑g [PROOFSTEP] constructor [GOAL] case h.mp J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) ⊢ x ∈ Set.range ↑(prod.map f g) → x ∈ ↑prod.fst ⁻¹' Set.range ↑f ∩ ↑prod.snd ⁻¹' Set.range ↑g [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case h.mp.intro J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z y : (forget TopCat).obj (W ⨯ X) ⊢ ↑(prod.map f g) y ∈ ↑prod.fst ⁻¹' Set.range ↑f ∩ ↑prod.snd ⁻¹' Set.range ↑g [PROOFSTEP] simp only [Set.mem_preimage, Set.mem_range, Set.mem_inter_iff, ← comp_apply] [GOAL] case h.mp.intro J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z y : (forget TopCat).obj (W ⨯ X) ⊢ (∃ y_1, ↑f y_1 = ↑(prod.map f g ≫ prod.fst) y) ∧ ∃ y_1, ↑g y_1 = ↑(prod.map f g ≫ prod.snd) y [PROOFSTEP] simp only [Limits.prod.map_fst, Limits.prod.map_snd, exists_apply_eq_apply, comp_apply, and_self_iff] [GOAL] case h.mpr J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) ⊢ x ∈ ↑prod.fst ⁻¹' Set.range ↑f ∩ ↑prod.snd ⁻¹' Set.range ↑g → x ∈ Set.range ↑(prod.map f g) [PROOFSTEP] rintro ⟨⟨x₁, hx₁⟩, ⟨x₂, hx₂⟩⟩ [GOAL] case h.mpr.intro.intro.intro J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ x ∈ Set.range ↑(prod.map f g) [PROOFSTEP] use(prodIsoProd W X).inv (x₁, x₂) [GOAL] case h J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑(prod.map f g) (↑(prodIsoProd W X).inv (x₁, x₂)) = x [PROOFSTEP] apply Concrete.limit_ext [GOAL] case h.a J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ∀ (j : Discrete WalkingPair), ↑(limit.π (pair Y Z) j) (↑(prod.map f g) (↑(prodIsoProd W X).inv (x₁, x₂))) = ↑(limit.π (pair Y Z) j) x [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case h.a.mk.left J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑(limit.π (pair Y Z) { as := WalkingPair.left }) (↑(prod.map f g) (↑(prodIsoProd W X).inv (x₁, x₂))) = ↑(limit.π (pair Y Z) { as := WalkingPair.left }) x [PROOFSTEP] simp only [← comp_apply, Category.assoc] [GOAL] case h.a.mk.left J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑((prodIsoProd W X).inv ≫ prod.map f g ≫ limit.π (pair Y Z) { as := WalkingPair.left }) (x₁, x₂) = ↑(limit.π (pair Y Z) { as := WalkingPair.left }) x [PROOFSTEP] erw [Limits.prod.map_fst] [GOAL] case h.a.mk.left J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑((prodIsoProd W X).inv ≫ prod.fst ≫ f) (x₁, x₂) = ↑(limit.π (pair Y Z) { as := WalkingPair.left }) x [PROOFSTEP] rw [TopCat.prodIsoProd_inv_fst_assoc, TopCat.comp_app] [GOAL] case h.a.mk.left J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑f (↑prodFst (x₁, x₂)) = ↑(limit.π (pair Y Z) { as := WalkingPair.left }) x [PROOFSTEP] exact hx₁ [GOAL] case h.a.mk.right J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑(limit.π (pair Y Z) { as := WalkingPair.right }) (↑(prod.map f g) (↑(prodIsoProd W X).inv (x₁, x₂))) = ↑(limit.π (pair Y Z) { as := WalkingPair.right }) x [PROOFSTEP] simp only [← comp_apply, Category.assoc] [GOAL] case h.a.mk.right J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑((prodIsoProd W X).inv ≫ prod.map f g ≫ limit.π (pair Y Z) { as := WalkingPair.right }) (x₁, x₂) = ↑(limit.π (pair Y Z) { as := WalkingPair.right }) x [PROOFSTEP] erw [Limits.prod.map_snd] [GOAL] case h.a.mk.right J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑((prodIsoProd W X).inv ≫ prod.snd ≫ g) (x₁, x₂) = ↑(limit.π (pair Y Z) { as := WalkingPair.right }) x [PROOFSTEP] rw [TopCat.prodIsoProd_inv_snd_assoc, TopCat.comp_app] [GOAL] case h.a.mk.right J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ Y g : X ⟶ Z x : (forget TopCat).obj (Y ⨯ Z) x₁ : (forget TopCat).obj W hx₁ : ↑f x₁ = ↑prod.fst x x₂ : (forget TopCat).obj X hx₂ : ↑g x₂ = ↑prod.snd x ⊢ ↑g (↑prodSnd (x₁, x₂)) = ↑(limit.π (pair Y Z) { as := WalkingPair.right }) x [PROOFSTEP] exact hx₂ [GOAL] J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ X g : Y ⟶ Z hf : Inducing ↑f hg : Inducing ↑g ⊢ Inducing ↑(prod.map f g) [PROOFSTEP] constructor [GOAL] case induced J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ X g : Y ⟶ Z hf : Inducing ↑f hg : Inducing ↑g ⊢ topologicalSpace_forget (W ⨯ Y) = induced (↑(prod.map f g)) (topologicalSpace_forget (X ⨯ Z)) [PROOFSTEP] simp only [prod_topology, induced_compose, ← coe_comp, Limits.prod.map_fst, Limits.prod.map_snd, induced_inf] [GOAL] case induced J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ X g : Y ⟶ Z hf : Inducing ↑f hg : Inducing ↑g ⊢ induced (↑prod.fst) W.str ⊓ induced (↑prod.snd) Y.str = induced (↑(prod.fst ≫ f)) X.str ⊓ induced (↑(prod.snd ≫ g)) Z.str [PROOFSTEP] simp only [coe_comp] [GOAL] case induced J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ X g : Y ⟶ Z hf : Inducing ↑f hg : Inducing ↑g ⊢ induced (↑prod.fst) W.str ⊓ induced (↑prod.snd) Y.str = induced (↑f ∘ ↑prod.fst) X.str ⊓ induced (↑g ∘ ↑prod.snd) Z.str [PROOFSTEP] rw [← @induced_compose _ _ _ _ _ f, ← @induced_compose _ _ _ _ _ g, ← hf.induced, ← hg.induced] [GOAL] J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ X g : Y ⟶ Z hf : Embedding ↑f hg : Embedding ↑g ⊢ Function.Injective ↑(prod.map f g) [PROOFSTEP] haveI := (TopCat.mono_iff_injective _).mpr hf.inj [GOAL] J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ X g : Y ⟶ Z hf : Embedding ↑f hg : Embedding ↑g this : Mono f ⊢ Function.Injective ↑(prod.map f g) [PROOFSTEP] haveI := (TopCat.mono_iff_injective _).mpr hg.inj [GOAL] J : Type v inst✝ : SmallCategory J W X Y Z : TopCat f : W ⟶ X g : Y ⟶ Z hf : Embedding ↑f hg : Embedding ↑g this✝ : Mono f this : Mono g ⊢ Function.Injective ↑(prod.map f g) [PROOFSTEP] exact (TopCat.mono_iff_injective _).mp inferInstance [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ Continuous Sum.inl [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ Continuous Sum.inr [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ IsColimit (TopCat.binaryCofan X Y) [PROOFSTEP] refine' Limits.BinaryCofan.isColimitMk (fun s => { toFun := Sum.elim s.inl s.inr, continuous_toFun := _ }) _ _ _ [GOAL] case refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat s : BinaryCofan X Y ⊢ Continuous (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s)) [PROOFSTEP] apply Continuous.sum_elim (BinaryCofan.inl s).continuous_toFun (BinaryCofan.inr s).continuous_toFun [GOAL] case refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ ∀ (s : BinaryCofan X Y), ContinuousMap.mk Sum.inl ≫ (fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s = BinaryCofan.inl s [PROOFSTEP] intro s [GOAL] case refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat s : BinaryCofan X Y ⊢ ContinuousMap.mk Sum.inl ≫ (fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s = BinaryCofan.inl s [PROOFSTEP] ext [GOAL] case refine'_2.w J : Type v inst✝ : SmallCategory J X Y : TopCat s : BinaryCofan X Y x✝ : (forget TopCat).obj X ⊢ ↑(ContinuousMap.mk Sum.inl ≫ (fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s) x✝ = ↑(BinaryCofan.inl s) x✝ [PROOFSTEP] rfl [GOAL] case refine'_3 J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ ∀ (s : BinaryCofan X Y), ContinuousMap.mk Sum.inr ≫ (fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s = BinaryCofan.inr s [PROOFSTEP] intro s [GOAL] case refine'_3 J : Type v inst✝ : SmallCategory J X Y : TopCat s : BinaryCofan X Y ⊢ ContinuousMap.mk Sum.inr ≫ (fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s = BinaryCofan.inr s [PROOFSTEP] ext [GOAL] case refine'_3.w J : Type v inst✝ : SmallCategory J X Y : TopCat s : BinaryCofan X Y x✝ : (forget TopCat).obj Y ⊢ ↑(ContinuousMap.mk Sum.inr ≫ (fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s) x✝ = ↑(BinaryCofan.inr s) x✝ [PROOFSTEP] rfl [GOAL] case refine'_4 J : Type v inst✝ : SmallCategory J X Y : TopCat ⊢ ∀ (s : BinaryCofan X Y) (m : of (↑X ⊕ ↑Y) ⟶ s.pt), ContinuousMap.mk Sum.inl ≫ m = BinaryCofan.inl s → ContinuousMap.mk Sum.inr ≫ m = BinaryCofan.inr s → m = (fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s [PROOFSTEP] intro s m h₁ h₂ [GOAL] case refine'_4 J : Type v inst✝ : SmallCategory J X Y : TopCat s : BinaryCofan X Y m : of (↑X ⊕ ↑Y) ⟶ s.pt h₁ : ContinuousMap.mk Sum.inl ≫ m = BinaryCofan.inl s h₂ : ContinuousMap.mk Sum.inr ≫ m = BinaryCofan.inr s ⊢ m = (fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s [PROOFSTEP] ext (x | x) [GOAL] case refine'_4.w.inl J : Type v inst✝ : SmallCategory J X Y : TopCat s : BinaryCofan X Y m : of (↑X ⊕ ↑Y) ⟶ s.pt h₁ : ContinuousMap.mk Sum.inl ≫ m = BinaryCofan.inl s h₂ : ContinuousMap.mk Sum.inr ≫ m = BinaryCofan.inr s x : ↑X ⊢ ↑m (Sum.inl x) = ↑((fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s) (Sum.inl x) case refine'_4.w.inr J : Type v inst✝ : SmallCategory J X Y : TopCat s : BinaryCofan X Y m : of (↑X ⊕ ↑Y) ⟶ s.pt h₁ : ContinuousMap.mk Sum.inl ≫ m = BinaryCofan.inl s h₂ : ContinuousMap.mk Sum.inr ≫ m = BinaryCofan.inr s x : ↑Y ⊢ ↑m (Sum.inr x) = ↑((fun s => ContinuousMap.mk (Sum.elim ↑(BinaryCofan.inl s) ↑(BinaryCofan.inr s))) s) (Sum.inr x) [PROOFSTEP] exacts [(ConcreteCategory.congr_hom h₁ x : _), (ConcreteCategory.congr_hom h₂ x : _)] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y ⊢ Nonempty (IsColimit c) ↔ OpenEmbedding ↑(BinaryCofan.inl c) ∧ OpenEmbedding ↑(BinaryCofan.inr c) ∧ IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) [PROOFSTEP] classical constructor · rintro ⟨h⟩ rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCofanIsColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCofanIsColimit X Y) ⟨WalkingPair.right⟩] dsimp refine' ⟨(homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.openEmbedding.comp openEmbedding_inl, (homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.openEmbedding.comp openEmbedding_inr, _⟩ erw [Set.range_comp, ← eq_compl_iff_isCompl, coe_comp, coe_comp, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.bijective, Set.compl_range_inr, Set.image_comp] aesop · rintro ⟨h₁, h₂, h₃⟩ have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ · intro T f g refine' ContinuousMap.mk _ _ · exact fun x => if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁.inj).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂.inj).symm ⟨x, (this x).resolve_left h⟩) rw [continuous_iff_continuousAt] intro x by_cases x ∈ Set.range c.inl · revert h x apply (IsOpen.continuousOn_iff _).mp · rw [continuousOn_iff_continuous_restrict] convert_to Continuous (f ∘ (Homeomorph.ofEmbedding _ h₁.toEmbedding).symm) · ext ⟨x, hx⟩ exact dif_pos hx apply Continuous.comp · exact f.continuous_toFun · continuity · exact h₁.open_range · revert h x apply (IsOpen.continuousOn_iff _).mp · rw [continuousOn_iff_continuous_restrict] have : ∀ a, a ∉ Set.range c.inl → a ∈ Set.range c.inr := by rintro a (h : a ∈ (Set.range c.inl)ᶜ) rwa [eq_compl_iff_isCompl.mpr h₃.symm] convert_to Continuous (g ∘ (Homeomorph.ofEmbedding _ h₂.toEmbedding).symm ∘ Subtype.map _ this) · ext ⟨x, hx⟩ exact dif_neg hx apply Continuous.comp · exact g.continuous_toFun · apply Continuous.comp · continuity · rw [embedding_subtype_val.toInducing.continuous_iff] exact continuous_subtype_val · change IsOpen (Set.range c.inl)ᶜ rw [← eq_compl_iff_isCompl.mpr h₃.symm] exact h₂.open_range · intro T f g ext x refine' (dif_pos _).trans _ · exact ⟨x, rfl⟩ · dsimp; conv_lhs => erw [Equiv.ofInjective_symm_apply] · intro T f g ext x refine' (dif_neg _).trans _ · rintro ⟨y, e⟩ have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ rwa [disjoint_iff.mp h₃.1] at this · exact congr_arg g (Equiv.ofInjective_symm_apply _ _) · rintro T _ _ m rfl rfl ext x change m x = dite _ _ _ split_ifs <;> exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y ⊢ Nonempty (IsColimit c) ↔ OpenEmbedding ↑(BinaryCofan.inl c) ∧ OpenEmbedding ↑(BinaryCofan.inr c) ∧ IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) [PROOFSTEP] constructor [GOAL] case mp J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y ⊢ Nonempty (IsColimit c) → OpenEmbedding ↑(BinaryCofan.inl c) ∧ OpenEmbedding ↑(BinaryCofan.inr c) ∧ IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) [PROOFSTEP] rintro ⟨h⟩ [GOAL] case mp.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h : IsColimit c ⊢ OpenEmbedding ↑(BinaryCofan.inl c) ∧ OpenEmbedding ↑(BinaryCofan.inr c) ∧ IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) [PROOFSTEP] rw [← show _ = c.inl from h.comp_coconePointUniqueUpToIso_inv (binaryCofanIsColimit X Y) ⟨WalkingPair.left⟩, ← show _ = c.inr from h.comp_coconePointUniqueUpToIso_inv (binaryCofanIsColimit X Y) ⟨WalkingPair.right⟩] [GOAL] case mp.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h : IsColimit c ⊢ OpenEmbedding ↑(NatTrans.app (TopCat.binaryCofan X Y).ι { as := WalkingPair.left } ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv) ∧ OpenEmbedding ↑(NatTrans.app (TopCat.binaryCofan X Y).ι { as := WalkingPair.right } ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv) ∧ IsCompl (Set.range ↑(NatTrans.app (TopCat.binaryCofan X Y).ι { as := WalkingPair.left } ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv)) (Set.range ↑(NatTrans.app (TopCat.binaryCofan X Y).ι { as := WalkingPair.right } ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv)) [PROOFSTEP] dsimp [GOAL] case mp.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h : IsColimit c ⊢ OpenEmbedding ↑(BinaryCofan.inl (TopCat.binaryCofan X Y) ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv) ∧ OpenEmbedding ↑(BinaryCofan.inr (TopCat.binaryCofan X Y) ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv) ∧ IsCompl (Set.range ↑(BinaryCofan.inl (TopCat.binaryCofan X Y) ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv)) (Set.range ↑(BinaryCofan.inr (TopCat.binaryCofan X Y) ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv)) [PROOFSTEP] refine' ⟨(homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.openEmbedding.comp openEmbedding_inl, (homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.openEmbedding.comp openEmbedding_inr, _⟩ [GOAL] case mp.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h : IsColimit c ⊢ IsCompl (Set.range ↑(BinaryCofan.inl (TopCat.binaryCofan X Y) ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv)) (Set.range ↑(BinaryCofan.inr (TopCat.binaryCofan X Y) ≫ (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv)) [PROOFSTEP] erw [Set.range_comp, ← eq_compl_iff_isCompl, coe_comp, coe_comp, Set.range_comp _ Sum.inr, ← Set.image_compl_eq (homeoOfIso <| h.coconePointUniqueUpToIso (binaryCofanIsColimit X Y)).symm.bijective, Set.compl_range_inr, Set.image_comp] [GOAL] case mp.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h : IsColimit c ⊢ ↑(IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)).inv '' (↑(BinaryCofan.inl (TopCat.binaryCofan X Y)) '' Set.range fun x => x) = ↑(Homeomorph.symm (homeoOfIso (IsColimit.coconePointUniqueUpToIso h (binaryCofanIsColimit X Y)))) '' Set.range Sum.inl [PROOFSTEP] aesop [GOAL] case mpr J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y ⊢ OpenEmbedding ↑(BinaryCofan.inl c) ∧ OpenEmbedding ↑(BinaryCofan.inr c) ∧ IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) → Nonempty (IsColimit c) [PROOFSTEP] rintro ⟨h₁, h₂, h₃⟩ [GOAL] case mpr.intro.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) ⊢ Nonempty (IsColimit c) [PROOFSTEP] have : ∀ x, x ∈ Set.range c.inl ∨ x ∈ Set.range c.inr := by rw [eq_compl_iff_isCompl.mpr h₃.symm] exact fun _ => or_not [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) ⊢ ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) [PROOFSTEP] rw [eq_compl_iff_isCompl.mpr h₃.symm] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) ⊢ ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ (Set.range ↑(BinaryCofan.inl c))ᶜ [PROOFSTEP] exact fun _ => or_not [GOAL] case mpr.intro.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) ⊢ Nonempty (IsColimit c) [PROOFSTEP] refine' ⟨BinaryCofan.IsColimit.mk _ _ _ _ _⟩ [GOAL] case mpr.intro.intro.refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) ⊢ {T : TopCat} → (X ⟶ T) → (Y ⟶ T) → (c.pt ⟶ T) [PROOFSTEP] intro T f g [GOAL] case mpr.intro.intro.refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ c.pt ⟶ T [PROOFSTEP] refine' ContinuousMap.mk _ _ [GOAL] case mpr.intro.intro.refine'_1.refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ ↑c.pt → ↑T [PROOFSTEP] exact fun x => if h : x ∈ Set.range c.inl then f ((Equiv.ofInjective _ h₁.inj).symm ⟨x, h⟩) else g ((Equiv.ofInjective _ h₂.inj).symm ⟨x, (this x).resolve_left h⟩) [GOAL] case mpr.intro.intro.refine'_1.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ Continuous fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) }) [PROOFSTEP] rw [continuous_iff_continuousAt] [GOAL] case mpr.intro.intro.refine'_1.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ ∀ (x : ↑c.pt), ContinuousAt (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x [PROOFSTEP] intro x [GOAL] case mpr.intro.intro.refine'_1.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : ↑c.pt ⊢ ContinuousAt (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x [PROOFSTEP] by_cases x ∈ Set.range c.inl [GOAL] case mpr.intro.intro.refine'_1.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : ↑c.pt ⊢ ContinuousAt (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x [PROOFSTEP] by_cases x ∈ Set.range c.inl [GOAL] case pos J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : ↑c.pt h : x ∈ Set.range ↑(BinaryCofan.inl c) ⊢ ContinuousAt (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x [PROOFSTEP] revert h x [GOAL] case pos J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ ∀ (x : ↑c.pt), x ∈ Set.range ↑(BinaryCofan.inl c) → ContinuousAt (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x [PROOFSTEP] apply (IsOpen.continuousOn_iff _).mp [GOAL] case pos J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ ContinuousOn (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) (Set.range ↑(BinaryCofan.inl c)) [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] [GOAL] case pos J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ Continuous (Set.restrict (Set.range ↑(BinaryCofan.inl c)) fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) [PROOFSTEP] convert_to Continuous (f ∘ (Homeomorph.ofEmbedding _ h₁.toEmbedding).symm) [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T e_2✝ : ↑T = (forget TopCat).obj T ⊢ (Set.restrict (Set.range ↑(BinaryCofan.inl c)) fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) = ↑f ∘ ↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inl c) (_ : Embedding ↑(BinaryCofan.inl c)))) [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case h.e'_5.h.h.mk J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T e_2✝ : ↑T = (forget TopCat).obj T x : ↑c.pt hx : x ∈ Set.range ↑(BinaryCofan.inl c) ⊢ Set.restrict (Set.range ↑(BinaryCofan.inl c)) (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) { val := x, property := hx } = (↑f ∘ ↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inl c) (_ : Embedding ↑(BinaryCofan.inl c))))) { val := x, property := hx } [PROOFSTEP] exact dif_pos hx [GOAL] case pos J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ Continuous (↑f ∘ ↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inl c) (_ : Embedding ↑(BinaryCofan.inl c))))) [PROOFSTEP] apply Continuous.comp [GOAL] case pos.hg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ Continuous ↑f [PROOFSTEP] exact f.continuous_toFun [GOAL] case pos.hf J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ Continuous ↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inl c) (_ : Embedding ↑(BinaryCofan.inl c)))) [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ IsOpen (Set.range ↑(BinaryCofan.inl c)) [PROOFSTEP] exact h₁.open_range [GOAL] case neg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : ↑c.pt h : ¬x ∈ Set.range ↑(BinaryCofan.inl c) ⊢ ContinuousAt (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x [PROOFSTEP] revert h x [GOAL] case neg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ ∀ (x : ↑c.pt), ¬x ∈ Set.range ↑(BinaryCofan.inl c) → ContinuousAt (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x [PROOFSTEP] apply (IsOpen.continuousOn_iff _).mp [GOAL] case neg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ ContinuousOn (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False [PROOFSTEP] rw [continuousOn_iff_continuous_restrict] [GOAL] case neg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ Continuous (Set.restrict (fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False) fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) [PROOFSTEP] have : ∀ a, a ∉ Set.range c.inl → a ∈ Set.range c.inr := by rintro a (h : a ∈ (Set.range c.inl)ᶜ) rwa [eq_compl_iff_isCompl.mpr h₃.symm] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) [PROOFSTEP] rintro a (h : a ∈ (Set.range c.inl)ᶜ) [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left }) h : a ∈ (Set.range ↑(BinaryCofan.inl c))ᶜ ⊢ a ∈ Set.range ↑(BinaryCofan.inr c) [PROOFSTEP] rwa [eq_compl_iff_isCompl.mpr h₃.symm] [GOAL] case neg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) ⊢ Continuous (Set.restrict (fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False) fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) [PROOFSTEP] convert_to Continuous (g ∘ (Homeomorph.ofEmbedding _ h₂.toEmbedding).symm ∘ Subtype.map _ this) [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) e_1✝ : (↑fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False) = { a // ¬a ∈ Set.range ↑(BinaryCofan.inl c) } e_2✝ : ↑T = (forget TopCat).obj T ⊢ (Set.restrict (fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False) fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) = ↑g ∘ ↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inr c) (_ : Embedding ↑(BinaryCofan.inr c)))) ∘ Subtype.map (fun a => a) this [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case h.e'_5.h.h.mk J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) e_1✝ : (↑fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False) = { a // ¬a ∈ Set.range ↑(BinaryCofan.inl c) } e_2✝ : ↑T = (forget TopCat).obj T x : ↑c.pt hx : x ∈ fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False ⊢ Set.restrict (fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False) (fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) { val := x, property := hx } = (↑g ∘ ↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inr c) (_ : Embedding ↑(BinaryCofan.inr c)))) ∘ Subtype.map (fun a => a) this) { val := x, property := hx } [PROOFSTEP] exact dif_neg hx [GOAL] case neg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) ⊢ Continuous (↑g ∘ ↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inr c) (_ : Embedding ↑(BinaryCofan.inr c)))) ∘ Subtype.map (fun a => a) this) [PROOFSTEP] apply Continuous.comp [GOAL] case neg.hg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) ⊢ Continuous ↑g [PROOFSTEP] exact g.continuous_toFun [GOAL] case neg.hf J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) ⊢ Continuous (↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inr c) (_ : Embedding ↑(BinaryCofan.inr c)))) ∘ Subtype.map (fun a => a) this) [PROOFSTEP] apply Continuous.comp [GOAL] case neg.hf.hg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) ⊢ Continuous ↑(Homeomorph.symm (Homeomorph.ofEmbedding ↑(BinaryCofan.inr c) (_ : Embedding ↑(BinaryCofan.inr c)))) [PROOFSTEP] continuity [GOAL] case neg.hf.hf J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) ⊢ Continuous (Subtype.map (fun a => a) this) [PROOFSTEP] rw [embedding_subtype_val.toInducing.continuous_iff] [GOAL] case neg.hf.hf J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T this : ∀ (a : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), ¬a ∈ Set.range ↑(BinaryCofan.inl c) → a ∈ Set.range ↑(BinaryCofan.inr c) ⊢ Continuous (Subtype.val ∘ Subtype.map (fun a => a) this) [PROOFSTEP] exact continuous_subtype_val [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ IsOpen fun a => a ∈ Set.range ↑(BinaryCofan.inl c) → False [PROOFSTEP] change IsOpen (Set.range c.inl)ᶜ [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ IsOpen (Set.range ↑(BinaryCofan.inl c))ᶜ [PROOFSTEP] rw [← eq_compl_iff_isCompl.mpr h₃.symm] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ IsOpen (Set.range ↑(BinaryCofan.inr c)) [PROOFSTEP] exact h₂.open_range [GOAL] case mpr.intro.intro.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) ⊢ ∀ {T : TopCat} (f : X ⟶ T) (g : Y ⟶ T), (BinaryCofan.inl c ≫ ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) = f [PROOFSTEP] intro T f g [GOAL] case mpr.intro.intro.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ (BinaryCofan.inl c ≫ ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) = f [PROOFSTEP] ext x [GOAL] case mpr.intro.intro.refine'_2.w J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) ⊢ ↑(BinaryCofan.inl c ≫ ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x = ↑f x [PROOFSTEP] refine' (dif_pos _).trans _ [GOAL] case mpr.intro.intro.refine'_2.w.refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) ⊢ ↑(BinaryCofan.inl c) x ∈ Set.range ↑(BinaryCofan.inl c) [PROOFSTEP] exact ⟨x, rfl⟩ [GOAL] case mpr.intro.intro.refine'_2.w.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) ⊢ (fun h => ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := ↑(BinaryCofan.inl c) x, property := h })) (_ : ∃ y, ↑(BinaryCofan.inl c) y = ↑(BinaryCofan.inl c) x) = ↑f x [PROOFSTEP] dsimp [GOAL] case mpr.intro.intro.refine'_2.w.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) ⊢ ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := ↑(BinaryCofan.inl c) x, property := (_ : ∃ y, ↑(BinaryCofan.inl c) y = ↑(BinaryCofan.inl c) x) }) = ↑f x [PROOFSTEP] conv_lhs => erw [Equiv.ofInjective_symm_apply] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) | ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := ↑(BinaryCofan.inl c) x, property := (_ : ∃ y, ↑(BinaryCofan.inl c) y = ↑(BinaryCofan.inl c) x) }) [PROOFSTEP] erw [Equiv.ofInjective_symm_apply] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) | ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := ↑(BinaryCofan.inl c) x, property := (_ : ∃ y, ↑(BinaryCofan.inl c) y = ↑(BinaryCofan.inl c) x) }) [PROOFSTEP] erw [Equiv.ofInjective_symm_apply] [GOAL] J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) | ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := ↑(BinaryCofan.inl c) x, property := (_ : ∃ y, ↑(BinaryCofan.inl c) y = ↑(BinaryCofan.inl c) x) }) [PROOFSTEP] erw [Equiv.ofInjective_symm_apply] [GOAL] case mpr.intro.intro.refine'_3 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) ⊢ ∀ {T : TopCat} (f : X ⟶ T) (g : Y ⟶ T), (BinaryCofan.inr c ≫ ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) = g [PROOFSTEP] intro T f g [GOAL] case mpr.intro.intro.refine'_3 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T ⊢ (BinaryCofan.inr c ≫ ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) = g [PROOFSTEP] ext x [GOAL] case mpr.intro.intro.refine'_3.w J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.right }) ⊢ ↑(BinaryCofan.inr c ≫ ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x = ↑g x [PROOFSTEP] refine' (dif_neg _).trans _ [GOAL] case mpr.intro.intro.refine'_3.w.refine'_1 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.right }) ⊢ ¬↑(BinaryCofan.inr c) x ∈ Set.range ↑(BinaryCofan.inl c) [PROOFSTEP] rintro ⟨y, e⟩ [GOAL] case mpr.intro.intro.refine'_3.w.refine'_1.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.right }) y : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) e : ↑(BinaryCofan.inl c) y = ↑(BinaryCofan.inr c) x ⊢ False [PROOFSTEP] have : c.inr x ∈ Set.range c.inl ⊓ Set.range c.inr := ⟨⟨_, e⟩, ⟨_, rfl⟩⟩ [GOAL] case mpr.intro.intro.refine'_3.w.refine'_1.intro J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this✝ : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.right }) y : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.left }) e : ↑(BinaryCofan.inl c) y = ↑(BinaryCofan.inr c) x this : ↑(BinaryCofan.inr c) x ∈ Set.range ↑(BinaryCofan.inl c) ⊓ Set.range ↑(BinaryCofan.inr c) ⊢ False [PROOFSTEP] rwa [disjoint_iff.mp h₃.1] at this [GOAL] case mpr.intro.intro.refine'_3.w.refine'_2 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat f : X ⟶ T g : Y ⟶ T x : (forget TopCat).obj ((pair X Y).obj { as := WalkingPair.right }) ⊢ (fun h => ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := ↑(BinaryCofan.inr c) x, property := (_ : ↑(BinaryCofan.inr c) x ∈ Set.range ↑(BinaryCofan.inr c)) })) (_ : ↑(BinaryCofan.inr c) x ∈ Set.range ↑(BinaryCofan.inl c) → False) = ↑g x [PROOFSTEP] exact congr_arg g (Equiv.ofInjective_symm_apply _ _) [GOAL] case mpr.intro.intro.refine'_4 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) ⊢ ∀ {T : TopCat} (f : X ⟶ T) (g : Y ⟶ T) (m : c.pt ⟶ T), BinaryCofan.inl c ≫ m = f → BinaryCofan.inr c ≫ m = g → m = ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑f (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑g (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) }) [PROOFSTEP] rintro T _ _ m rfl rfl [GOAL] case mpr.intro.intro.refine'_4 J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat m : c.pt ⟶ T ⊢ m = ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑(BinaryCofan.inl c ≫ m) (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑(BinaryCofan.inr c ≫ m) (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) }) [PROOFSTEP] ext x [GOAL] case mpr.intro.intro.refine'_4.w J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat m : c.pt ⟶ T x : (forget TopCat).obj c.pt ⊢ ↑m x = ↑(ContinuousMap.mk fun x => if h : x ∈ Set.range ↑(BinaryCofan.inl c) then ↑(BinaryCofan.inl c ≫ m) (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h }) else ↑(BinaryCofan.inr c ≫ m) (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) x [PROOFSTEP] change m x = dite _ _ _ [GOAL] case mpr.intro.intro.refine'_4.w J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat m : c.pt ⟶ T x : (forget TopCat).obj c.pt ⊢ ↑m x = if h : x ∈ Set.range ↑(BinaryCofan.inl c) then (fun h => ↑(BinaryCofan.inl c ≫ m) (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h })) h else (fun h => ↑(BinaryCofan.inr c ≫ m) (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) h [PROOFSTEP] split_ifs [GOAL] case pos J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat m : c.pt ⟶ T x : (forget TopCat).obj c.pt h✝ : x ∈ Set.range ↑(BinaryCofan.inl c) ⊢ ↑m x = (fun h => ↑(BinaryCofan.inl c ≫ m) (↑(Equiv.ofInjective ↑(BinaryCofan.inl c) (_ : Function.Injective ↑(BinaryCofan.inl c))).symm { val := x, property := h })) h✝ [PROOFSTEP] exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm [GOAL] case neg J : Type v inst✝ : SmallCategory J X Y : TopCat c : BinaryCofan X Y h₁ : OpenEmbedding ↑(BinaryCofan.inl c) h₂ : OpenEmbedding ↑(BinaryCofan.inr c) h₃ : IsCompl (Set.range ↑(BinaryCofan.inl c)) (Set.range ↑(BinaryCofan.inr c)) this : ∀ (x : (forget TopCat).obj (((Functor.const (Discrete WalkingPair)).obj c.pt).obj { as := WalkingPair.left })), x ∈ Set.range ↑(BinaryCofan.inl c) ∨ x ∈ Set.range ↑(BinaryCofan.inr c) T : TopCat m : c.pt ⟶ T x : (forget TopCat).obj c.pt h✝ : ¬x ∈ Set.range ↑(BinaryCofan.inl c) ⊢ ↑m x = (fun h => ↑(BinaryCofan.inr c ≫ m) (↑(Equiv.ofInjective ↑(BinaryCofan.inr c) (_ : Function.Injective ↑(BinaryCofan.inr c))).symm { val := x, property := (_ : x ∈ Set.range ↑(BinaryCofan.inr c)) })) h✝ [PROOFSTEP] exact congr_arg _ (Equiv.apply_ofInjective_symm _ ⟨_, _⟩).symm
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.Limits.Products", "llama_tokens": 41207}
[GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ Continuous (Prod.fst ∘ Subtype.val) [PROOFSTEP] apply Continuous.comp [GOAL] case hg J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ Continuous Prod.fst [PROOFSTEP] continuity [GOAL] case hf J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ Continuous Subtype.val [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ Continuous (Prod.snd ∘ Subtype.val) [PROOFSTEP] apply Continuous.comp [GOAL] case hg J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ Continuous Prod.snd [PROOFSTEP] continuity [GOAL] case hf J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ Continuous Subtype.val [PROOFSTEP] continuity [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ pullbackFst f g ≫ f = pullbackSnd f g ≫ g [PROOFSTEP] dsimp [pullbackFst, pullbackSnd, Function.comp] [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ (ContinuousMap.mk fun x => (↑x).fst) ≫ f = (ContinuousMap.mk fun x => (↑x).snd) ≫ g [PROOFSTEP] ext ⟨x, h⟩ [GOAL] case w.mk J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : ↑X × ↑Y h : ↑f x.fst = ↑g x.snd ⊢ ↑((ContinuousMap.mk fun x => (↑x).fst) ≫ f) { val := x, property := h } = ↑((ContinuousMap.mk fun x => (↑x).snd) ≫ g) { val := x, property := h } [PROOFSTEP] rw [comp_apply, ContinuousMap.coe_mk, comp_apply, ContinuousMap.coe_mk] [GOAL] case w.mk J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : ↑X × ↑Y h : ↑f x.fst = ↑g x.snd ⊢ ↑f (↑{ val := x, property := h }).fst = ↑g (↑{ val := x, property := h }).snd [PROOFSTEP] exact h [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ (s : PullbackCone f g) → { l // l ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (pullbackCone f g).pt}, m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst s → m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd s → m = l } [PROOFSTEP] intro S [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ { l // l ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S ∧ l ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S ∧ ∀ {m : S.pt ⟶ (pullbackCone f g).pt}, m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S → m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S → m = l } [PROOFSTEP] constructor [GOAL] case property J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ ?val ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S ∧ ?val ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S ∧ ∀ {m : S.pt ⟶ (pullbackCone f g).pt}, m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S → m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S → m = ?val case val J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ S.pt ⟶ (pullbackCone f g).pt [PROOFSTEP] swap [GOAL] case val J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ S.pt ⟶ (pullbackCone f g).pt case property J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ ?val ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S ∧ ?val ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S ∧ ∀ {m : S.pt ⟶ (pullbackCone f g).pt}, m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S → m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S → m = ?val [PROOFSTEP] exact { toFun := fun x => ⟨⟨S.fst x, S.snd x⟩, by simpa using ConcreteCategory.congr_hom S.condition x⟩ continuous_toFun := by apply Continuous.subtype_mk <| Continuous.prod_mk ?_ ?_ · exact (PullbackCone.fst S) |>.continuous_toFun · exact (PullbackCone.snd S) |>.continuous_toFun } [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g x : ↑S.pt ⊢ ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd [PROOFSTEP] simpa using ConcreteCategory.congr_hom S.condition x [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ Continuous fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) } [PROOFSTEP] apply Continuous.subtype_mk <| Continuous.prod_mk ?_ ?_ [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ Continuous fun x => ↑(PullbackCone.fst S) x [PROOFSTEP] exact (PullbackCone.fst S) |>.continuous_toFun [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ Continuous fun x => ↑(PullbackCone.snd S) x [PROOFSTEP] exact (PullbackCone.snd S) |>.continuous_toFun [GOAL] case property J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ (ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S ∧ (ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S ∧ ∀ {m : S.pt ⟶ (pullbackCone f g).pt}, m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S → m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S → m = ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) } [PROOFSTEP] refine' ⟨_, _, _⟩ [GOAL] case property.refine'_1 J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ (ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S [PROOFSTEP] delta pullbackCone [GOAL] case property.refine'_1 J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ (ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) ≫ PullbackCone.fst (PullbackCone.mk (pullbackFst f g) (pullbackSnd f g) (_ : pullbackFst f g ≫ f = pullbackSnd f g ≫ g)) = PullbackCone.fst S [PROOFSTEP] ext a [GOAL] case property.refine'_1.w J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g a : (forget TopCat).obj S.pt ⊢ ↑((ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) ≫ PullbackCone.fst (PullbackCone.mk (pullbackFst f g) (pullbackSnd f g) (_ : pullbackFst f g ≫ f = pullbackSnd f g ≫ g))) a = ↑(PullbackCone.fst S) a [PROOFSTEP] rw [comp_apply, ContinuousMap.coe_mk] [GOAL] case property.refine'_1.w J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g a : (forget TopCat).obj S.pt ⊢ ↑(PullbackCone.fst (PullbackCone.mk (pullbackFst f g) (pullbackSnd f g) (_ : pullbackFst f g ≫ f = pullbackSnd f g ≫ g))) { val := (↑(PullbackCone.fst S) a, ↑(PullbackCone.snd S) a), property := (_ : ↑f (↑(PullbackCone.fst S) a, ↑(PullbackCone.snd S) a).fst = ↑g (↑(PullbackCone.fst S) a, ↑(PullbackCone.snd S) a).snd) } = ↑(PullbackCone.fst S) a [PROOFSTEP] rfl [GOAL] case property.refine'_2 J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ (ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S [PROOFSTEP] delta pullbackCone [GOAL] case property.refine'_2 J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ (ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) ≫ PullbackCone.snd (PullbackCone.mk (pullbackFst f g) (pullbackSnd f g) (_ : pullbackFst f g ≫ f = pullbackSnd f g ≫ g)) = PullbackCone.snd S [PROOFSTEP] ext a [GOAL] case property.refine'_2.w J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g a : (forget TopCat).obj S.pt ⊢ ↑((ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) ≫ PullbackCone.snd (PullbackCone.mk (pullbackFst f g) (pullbackSnd f g) (_ : pullbackFst f g ≫ f = pullbackSnd f g ≫ g))) a = ↑(PullbackCone.snd S) a [PROOFSTEP] rw [comp_apply, ContinuousMap.coe_mk] [GOAL] case property.refine'_2.w J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g a : (forget TopCat).obj S.pt ⊢ ↑(PullbackCone.snd (PullbackCone.mk (pullbackFst f g) (pullbackSnd f g) (_ : pullbackFst f g ≫ f = pullbackSnd f g ≫ g))) { val := (↑(PullbackCone.fst S) a, ↑(PullbackCone.snd S) a), property := (_ : ↑f (↑(PullbackCone.fst S) a, ↑(PullbackCone.snd S) a).fst = ↑g (↑(PullbackCone.fst S) a, ↑(PullbackCone.snd S) a).snd) } = ↑(PullbackCone.snd S) a [PROOFSTEP] rfl [GOAL] case property.refine'_3 J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g ⊢ ∀ {m : S.pt ⟶ (pullbackCone f g).pt}, m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S → m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S → m = ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) } [PROOFSTEP] intro m h₁ h₂ [GOAL] case property.refine'_3 J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g m : S.pt ⟶ (pullbackCone f g).pt h₁ : m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S h₂ : m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S ⊢ m = ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) } [PROOFSTEP] apply ContinuousMap.ext [GOAL] case property.refine'_3.h J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g m : S.pt ⟶ (pullbackCone f g).pt h₁ : m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S h₂ : m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S ⊢ ∀ (a : ↑S.pt), ↑m a = ↑(ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) a [PROOFSTEP] intro x [GOAL] case property.refine'_3.h J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g m : S.pt ⟶ (pullbackCone f g).pt h₁ : m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S h₂ : m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S x : ↑S.pt ⊢ ↑m x = ↑(ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) x [PROOFSTEP] apply Subtype.ext [GOAL] case property.refine'_3.h.a J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g m : S.pt ⟶ (pullbackCone f g).pt h₁ : m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S h₂ : m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S x : ↑S.pt ⊢ ↑(↑m x) = ↑(↑(ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) x) [PROOFSTEP] apply Prod.ext [GOAL] case property.refine'_3.h.a.h₁ J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g m : S.pt ⟶ (pullbackCone f g).pt h₁ : m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S h₂ : m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S x : ↑S.pt ⊢ (↑(↑m x)).fst = (↑(↑(ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) x)).fst [PROOFSTEP] simpa using ConcreteCategory.congr_hom h₁ x [GOAL] case property.refine'_3.h.a.h₂ J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z S : PullbackCone f g m : S.pt ⟶ (pullbackCone f g).pt h₁ : m ≫ PullbackCone.fst (pullbackCone f g) = PullbackCone.fst S h₂ : m ≫ PullbackCone.snd (pullbackCone f g) = PullbackCone.snd S x : ↑S.pt ⊢ (↑(↑m x)).snd = (↑(↑(ContinuousMap.mk fun x => { val := (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x), property := (_ : ↑f (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).fst = ↑g (↑(PullbackCone.fst S) x, ↑(PullbackCone.snd S) x).snd) }) x)).snd [PROOFSTEP] simpa using ConcreteCategory.congr_hom h₂ x [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ (pullbackIsoProdSubtype f g).inv ≫ pullback.fst = pullbackFst f g [PROOFSTEP] simp [pullbackCone, pullbackIsoProdSubtype] [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ (pullbackIsoProdSubtype f g).inv ≫ pullback.snd = pullbackSnd f g [PROOFSTEP] simp [pullbackCone, pullbackIsoProdSubtype] [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ (pullbackIsoProdSubtype f g).hom ≫ pullbackFst f g = pullback.fst [PROOFSTEP] rw [← Iso.eq_inv_comp, pullbackIsoProdSubtype_inv_fst] [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ (pullbackIsoProdSubtype f g).hom ≫ pullbackSnd f g = pullback.snd [PROOFSTEP] rw [← Iso.eq_inv_comp, pullbackIsoProdSubtype_inv_snd] [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : ConcreteCategory.forget.obj (pullback f g) ⊢ ↑f (↑pullback.fst x, ↑pullback.snd x).fst = ↑g (↑pullback.fst x, ↑pullback.snd x).snd [PROOFSTEP] simpa using ConcreteCategory.congr_hom pullback.condition x [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : ConcreteCategory.forget.obj (pullback f g) ⊢ ↑(pullbackIsoProdSubtype f g).hom x = { val := (↑pullback.fst x, ↑pullback.snd x), property := (_ : ↑f (↑pullback.fst x, ↑pullback.snd x).fst = ↑g (↑pullback.fst x, ↑pullback.snd x).snd) } [PROOFSTEP] apply Subtype.ext [GOAL] case a J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : ConcreteCategory.forget.obj (pullback f g) ⊢ ↑(↑(pullbackIsoProdSubtype f g).hom x) = ↑{ val := (↑pullback.fst x, ↑pullback.snd x), property := (_ : ↑f (↑pullback.fst x, ↑pullback.snd x).fst = ↑g (↑pullback.fst x, ↑pullback.snd x).snd) } [PROOFSTEP] apply Prod.ext [GOAL] case a.h₁ J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : ConcreteCategory.forget.obj (pullback f g) ⊢ (↑(↑(pullbackIsoProdSubtype f g).hom x)).fst = (↑{ val := (↑pullback.fst x, ↑pullback.snd x), property := (_ : ↑f (↑pullback.fst x, ↑pullback.snd x).fst = ↑g (↑pullback.fst x, ↑pullback.snd x).snd) }).fst case a.h₂ J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : ConcreteCategory.forget.obj (pullback f g) ⊢ (↑(↑(pullbackIsoProdSubtype f g).hom x)).snd = (↑{ val := (↑pullback.fst x, ↑pullback.snd x), property := (_ : ↑f (↑pullback.fst x, ↑pullback.snd x).fst = ↑g (↑pullback.fst x, ↑pullback.snd x).snd) }).snd [PROOFSTEP] exacts [ConcreteCategory.congr_hom (pullbackIsoProdSubtype_hom_fst f g) x, ConcreteCategory.congr_hom (pullbackIsoProdSubtype_hom_snd f g) x] [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ (pullback f g).str = induced (↑pullback.fst) X.str ⊓ induced (↑pullback.snd) Y.str [PROOFSTEP] let homeo := homeoOfIso (pullbackIsoProdSubtype f g) [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z homeo : ↑(pullback f g) ≃ₜ ↑(of { p // ↑f p.fst = ↑g p.snd }) := homeoOfIso (pullbackIsoProdSubtype f g) ⊢ (pullback f g).str = induced (↑pullback.fst) X.str ⊓ induced (↑pullback.snd) Y.str [PROOFSTEP] refine' homeo.inducing.induced.trans _ [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z homeo : ↑(pullback f g) ≃ₜ ↑(of { p // ↑f p.fst = ↑g p.snd }) := homeoOfIso (pullbackIsoProdSubtype f g) ⊢ induced (↑homeo) (topologicalSpace_coe (of { p // ↑f p.fst = ↑g p.snd })) = induced (↑pullback.fst) X.str ⊓ induced (↑pullback.snd) Y.str [PROOFSTEP] change induced homeo (induced _ ((induced Prod.fst X.str) ⊓ (induced Prod.snd Y.str))) = _ [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z homeo : ↑(pullback f g) ≃ₜ ↑(of { p // ↑f p.fst = ↑g p.snd }) := homeoOfIso (pullbackIsoProdSubtype f g) ⊢ induced (↑homeo) (induced Subtype.val (induced Prod.fst X.str ⊓ induced Prod.snd Y.str)) = induced (↑pullback.fst) X.str ⊓ induced (↑pullback.snd) Y.str [PROOFSTEP] simp only [induced_compose, induced_inf] [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z homeo : ↑(pullback f g) ≃ₜ ↑(of { p // ↑f p.fst = ↑g p.snd }) := homeoOfIso (pullbackIsoProdSubtype f g) ⊢ induced ((Prod.fst ∘ Subtype.val) ∘ ↑(homeoOfIso (pullbackIsoProdSubtype f g))) X.str ⊓ induced ((Prod.snd ∘ Subtype.val) ∘ ↑(homeoOfIso (pullbackIsoProdSubtype f g))) Y.str = induced (↑pullback.fst) X.str ⊓ induced (↑pullback.snd) Y.str [PROOFSTEP] congr [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ Set.range ↑(prod.lift pullback.fst pullback.snd) = {x | ↑(prod.fst ≫ f) x = ↑(prod.snd ≫ g) x} [PROOFSTEP] ext x [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) ⊢ x ∈ Set.range ↑(prod.lift pullback.fst pullback.snd) ↔ x ∈ {x | ↑(prod.fst ≫ f) x = ↑(prod.snd ≫ g) x} [PROOFSTEP] constructor [GOAL] case h.mp J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) ⊢ x ∈ Set.range ↑(prod.lift pullback.fst pullback.snd) → x ∈ {x | ↑(prod.fst ≫ f) x = ↑(prod.snd ≫ g) x} [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case h.mp.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z y : (forget TopCat).obj (pullback f g) ⊢ ↑(prod.lift pullback.fst pullback.snd) y ∈ {x | ↑(prod.fst ≫ f) x = ↑(prod.snd ≫ g) x} [PROOFSTEP] simp only [← comp_apply, Set.mem_setOf_eq] [GOAL] case h.mp.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z y : (forget TopCat).obj (pullback f g) ⊢ ↑(prod.lift pullback.fst pullback.snd ≫ prod.fst ≫ f) y = ↑(prod.lift pullback.fst pullback.snd ≫ prod.snd ≫ g) y [PROOFSTEP] congr 1 [GOAL] case h.mp.intro.e_a J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z y : (forget TopCat).obj (pullback f g) ⊢ prod.lift pullback.fst pullback.snd ≫ prod.fst ≫ f = prod.lift pullback.fst pullback.snd ≫ prod.snd ≫ g [PROOFSTEP] simp [pullback.condition] [GOAL] case h.mpr J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) ⊢ x ∈ {x | ↑(prod.fst ≫ f) x = ↑(prod.snd ≫ g) x} → x ∈ Set.range ↑(prod.lift pullback.fst pullback.snd) [PROOFSTEP] rintro (h : f (_, _).1 = g (_, _).2) [GOAL] case h.mpr J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) h : ↑f (↑prod.fst x, ?m.48880).fst = ↑g (?m.48915, ↑prod.snd x).snd ⊢ x ∈ Set.range ↑(prod.lift pullback.fst pullback.snd) [PROOFSTEP] use(pullbackIsoProdSubtype f g).inv ⟨⟨_, _⟩, h⟩ [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) h : ↑f (↑prod.fst x, ↑prod.snd x).fst = ↑g (↑prod.fst x, ↑prod.snd x).snd ⊢ ↑(prod.lift pullback.fst pullback.snd) (↑(pullbackIsoProdSubtype f g).inv { val := (↑prod.fst x, ↑prod.snd x), property := h }) = x [PROOFSTEP] apply Concrete.limit_ext [GOAL] case h.a J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) h : ↑f (↑prod.fst x, ↑prod.snd x).fst = ↑g (↑prod.fst x, ↑prod.snd x).snd ⊢ ∀ (j : Discrete WalkingPair), ↑(limit.π (pair X Y) j) (↑(prod.lift pullback.fst pullback.snd) (↑(pullbackIsoProdSubtype f g).inv { val := (↑prod.fst x, ↑prod.snd x), property := h })) = ↑(limit.π (pair X Y) j) x [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case h.a.mk.left J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) h : ↑f (↑prod.fst x, ↑prod.snd x).fst = ↑g (↑prod.fst x, ↑prod.snd x).snd ⊢ ↑(limit.π (pair X Y) { as := WalkingPair.left }) (↑(prod.lift pullback.fst pullback.snd) (↑(pullbackIsoProdSubtype f g).inv { val := (↑prod.fst x, ↑prod.snd x), property := h })) = ↑(limit.π (pair X Y) { as := WalkingPair.left }) x [PROOFSTEP] rw [← comp_apply, prod.comp_lift, ← comp_apply, limit.lift_π] [GOAL] case h.a.mk.right J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) h : ↑f (↑prod.fst x, ↑prod.snd x).fst = ↑g (↑prod.fst x, ↑prod.snd x).snd ⊢ ↑(limit.π (pair X Y) { as := WalkingPair.right }) (↑(prod.lift pullback.fst pullback.snd) (↑(pullbackIsoProdSubtype f g).inv { val := (↑prod.fst x, ↑prod.snd x), property := h })) = ↑(limit.π (pair X Y) { as := WalkingPair.right }) x [PROOFSTEP] rw [← comp_apply, prod.comp_lift, ← comp_apply, limit.lift_π] [GOAL] case h.a.mk.left J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) h : ↑f (↑prod.fst x, ↑prod.snd x).fst = ↑g (↑prod.fst x, ↑prod.snd x).snd ⊢ ↑(NatTrans.app (BinaryFan.mk ((pullbackIsoProdSubtype f g).inv ≫ pullback.fst) ((pullbackIsoProdSubtype f g).inv ≫ pullback.snd)).π { as := WalkingPair.left }) { val := (↑prod.fst x, ↑prod.snd x), property := h } = ↑(limit.π (pair X Y) { as := WalkingPair.left }) x [PROOFSTEP] simp [GOAL] case h.a.mk.right J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z x : (forget TopCat).obj (X ⨯ Y) h : ↑f (↑prod.fst x, ↑prod.snd x).fst = ↑g (↑prod.fst x, ↑prod.snd x).snd ⊢ ↑(NatTrans.app (BinaryFan.mk ((pullbackIsoProdSubtype f g).inv ≫ pullback.fst) ((pullbackIsoProdSubtype f g).inv ≫ pullback.snd)).π { as := WalkingPair.right }) { val := (↑prod.fst x, ↑prod.snd x), property := h } = ↑(limit.π (pair X Y) { as := WalkingPair.right }) x [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z ⊢ topologicalSpace_forget (pullback f g) = induced (↑(prod.lift pullback.fst pullback.snd)) (topologicalSpace_forget (X ⨯ Y)) [PROOFSTEP] simp [prod_topology, pullback_topology, induced_compose, ← coe_comp] [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ Set.range ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) = ↑pullback.fst ⁻¹' Set.range ↑i₁ ∩ ↑pullback.snd ⁻¹' Set.range ↑i₂ [PROOFSTEP] ext [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) ⊢ x✝ ∈ Set.range ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) ↔ x✝ ∈ ↑pullback.fst ⁻¹' Set.range ↑i₁ ∩ ↑pullback.snd ⁻¹' Set.range ↑i₂ [PROOFSTEP] constructor [GOAL] case h.mp J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) ⊢ x✝ ∈ Set.range ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) → x✝ ∈ ↑pullback.fst ⁻¹' Set.range ↑i₁ ∩ ↑pullback.snd ⁻¹' Set.range ↑i₂ [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case h.mp.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ y : (forget TopCat).obj (pullback f₁ f₂) ⊢ ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) y ∈ ↑pullback.fst ⁻¹' Set.range ↑i₁ ∩ ↑pullback.snd ⁻¹' Set.range ↑i₂ [PROOFSTEP] simp only [Set.mem_inter_iff, Set.mem_preimage, Set.mem_range, ← comp_apply, limit.lift_π, PullbackCone.mk_pt, PullbackCone.mk_π_app] [GOAL] case h.mp.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ y : (forget TopCat).obj (pullback f₁ f₂) ⊢ (∃ y_1, ↑i₁ y_1 = ↑(pullback.fst ≫ i₁) y) ∧ ∃ y_1, ↑i₂ y_1 = ↑(pullback.snd ≫ i₂) y [PROOFSTEP] simp only [comp_apply, exists_apply_eq_apply, and_self] [GOAL] case h.mpr J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) ⊢ x✝ ∈ ↑pullback.fst ⁻¹' Set.range ↑i₁ ∩ ↑pullback.snd ⁻¹' Set.range ↑i₂ → x✝ ∈ Set.range ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) [PROOFSTEP] rintro ⟨⟨x₁, hx₁⟩, ⟨x₂, hx₂⟩⟩ [GOAL] case h.mpr.intro.intro.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ ⊢ x✝ ∈ Set.range ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) [PROOFSTEP] have : f₁ x₁ = f₂ x₂ := by apply (TopCat.mono_iff_injective _).mp H₃ simp only [← comp_apply, eq₁, eq₂] simp only [comp_apply, hx₁, hx₂] simp only [← comp_apply, pullback.condition] [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ ⊢ ↑f₁ x₁ = ↑f₂ x₂ [PROOFSTEP] apply (TopCat.mono_iff_injective _).mp H₃ [GOAL] case a J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ ⊢ ↑i₃ (↑f₁ x₁) = ↑i₃ (↑f₂ x₂) [PROOFSTEP] simp only [← comp_apply, eq₁, eq₂] [GOAL] case a J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ ⊢ ↑(i₁ ≫ g₁) x₁ = ↑(i₂ ≫ g₂) x₂ [PROOFSTEP] simp only [comp_apply, hx₁, hx₂] [GOAL] case a J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ ⊢ ↑g₁ (↑pullback.fst x✝) = ↑g₂ (↑pullback.snd x✝) [PROOFSTEP] simp only [← comp_apply, pullback.condition] [GOAL] case h.mpr.intro.intro.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ x✝ ∈ Set.range ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) [PROOFSTEP] use(pullbackIsoProdSubtype f₁ f₂).inv ⟨⟨x₁, x₂⟩, this⟩ [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) (↑(pullbackIsoProdSubtype f₁ f₂).inv { val := (x₁, x₂), property := this }) = x✝ [PROOFSTEP] apply Concrete.limit_ext [GOAL] case h.a J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ∀ (j : WalkingCospan), ↑(limit.π (cospan g₁ g₂) j) (↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) (↑(pullbackIsoProdSubtype f₁ f₂).inv { val := (x₁, x₂), property := this })) = ↑(limit.π (cospan g₁ g₂) j) x✝ [PROOFSTEP] rintro (_ | _ | _) [GOAL] case h.a.none J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ↑(limit.π (cospan g₁ g₂) none) (↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) (↑(pullbackIsoProdSubtype f₁ f₂).inv { val := (x₁, x₂), property := this })) = ↑(limit.π (cospan g₁ g₂) none) x✝ [PROOFSTEP] simp only [← comp_apply, Category.assoc, limit.lift_π, PullbackCone.mk_π_app_one] [GOAL] case h.a.some.left J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ↑(limit.π (cospan g₁ g₂) (some WalkingPair.left)) (↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) (↑(pullbackIsoProdSubtype f₁ f₂).inv { val := (x₁, x₂), property := this })) = ↑(limit.π (cospan g₁ g₂) (some WalkingPair.left)) x✝ [PROOFSTEP] simp only [← comp_apply, Category.assoc, limit.lift_π, PullbackCone.mk_π_app_one] [GOAL] case h.a.some.right J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ↑(limit.π (cospan g₁ g₂) (some WalkingPair.right)) (↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) (↑(pullbackIsoProdSubtype f₁ f₂).inv { val := (x₁, x₂), property := this })) = ↑(limit.π (cospan g₁ g₂) (some WalkingPair.right)) x✝ [PROOFSTEP] simp only [← comp_apply, Category.assoc, limit.lift_π, PullbackCone.mk_π_app_one] [GOAL] case h.a.none J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ↑((pullbackIsoProdSubtype f₁ f₂).inv ≫ pullback.fst ≫ i₁ ≫ g₁) { val := (x₁, x₂), property := this } = ↑(limit.π (cospan g₁ g₂) none) x✝ [PROOFSTEP] simp only [cospan_one, pullbackIsoProdSubtype_inv_fst_assoc, comp_apply, pullbackFst_apply, hx₁] [GOAL] case h.a.none J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ↑g₁ (↑pullback.fst x✝) = ↑(limit.π (cospan g₁ g₂) none) x✝ [PROOFSTEP] rw [← limit.w _ WalkingCospan.Hom.inl, cospan_map_inl, comp_apply (g := g₁)] [GOAL] case h.a.some.left J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ↑((pullbackIsoProdSubtype f₁ f₂).inv ≫ NatTrans.app (PullbackCone.mk (pullback.fst ≫ i₁) (pullback.snd ≫ i₂) (_ : (pullback.fst ≫ i₁) ≫ g₁ = (pullback.snd ≫ i₂) ≫ g₂)).π (some WalkingPair.left)) { val := (x₁, x₂), property := this } = ↑(limit.π (cospan g₁ g₂) (some WalkingPair.left)) x✝ [PROOFSTEP] simp [hx₁] [GOAL] case h.a.some.right J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ : TopCat W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ x✝ : (forget TopCat).obj (pullback g₁ g₂) x₁ : (forget TopCat).obj W hx₁ : ↑i₁ x₁ = ↑pullback.fst x✝ x₂ : (forget TopCat).obj X hx₂ : ↑i₂ x₂ = ↑pullback.snd x✝ this : ↑f₁ x₁ = ↑f₂ x₂ ⊢ ↑((pullbackIsoProdSubtype f₁ f₂).inv ≫ NatTrans.app (PullbackCone.mk (pullback.fst ≫ i₁) (pullback.snd ≫ i₂) (_ : (pullback.fst ≫ i₁) ≫ g₁ = (pullback.snd ≫ i₂) ≫ g₂)).π (some WalkingPair.right)) { val := (x₁, x₂), property := this } = ↑(limit.π (cospan g₁ g₂) (some WalkingPair.right)) x✝ [PROOFSTEP] simp [hx₂] [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S ⊢ Set.range ↑pullback.fst = {x | ∃ y, ↑f x = ↑g y} [PROOFSTEP] ext x [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S x : (forget TopCat).obj X ⊢ x ∈ Set.range ↑pullback.fst ↔ x ∈ {x | ∃ y, ↑f x = ↑g y} [PROOFSTEP] constructor [GOAL] case h.mp J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S x : (forget TopCat).obj X ⊢ x ∈ Set.range ↑pullback.fst → x ∈ {x | ∃ y, ↑f x = ↑g y} [PROOFSTEP] rintro ⟨y, rfl⟩ [GOAL] case h.mp.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : (forget TopCat).obj (pullback f g) ⊢ ↑pullback.fst y ∈ {x | ∃ y, ↑f x = ↑g y} [PROOFSTEP] use(pullback.snd : pullback f g ⟶ _) y [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : (forget TopCat).obj (pullback f g) ⊢ ↑f (↑pullback.fst y) = ↑g (↑pullback.snd y) [PROOFSTEP] exact ConcreteCategory.congr_hom pullback.condition y [GOAL] case h.mpr J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S x : (forget TopCat).obj X ⊢ x ∈ {x | ∃ y, ↑f x = ↑g y} → x ∈ Set.range ↑pullback.fst [PROOFSTEP] rintro ⟨y, eq⟩ [GOAL] case h.mpr.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S x : (forget TopCat).obj X y : ↑Y eq : ↑f x = ↑g y ⊢ x ∈ Set.range ↑pullback.fst [PROOFSTEP] use(TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨x, y⟩, eq⟩ [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S x : (forget TopCat).obj X y : ↑Y eq : ↑f x = ↑g y ⊢ ↑pullback.fst (↑(pullbackIsoProdSubtype f g).inv { val := (x, y), property := eq }) = x [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S ⊢ Set.range ↑pullback.snd = {y | ∃ x, ↑f x = ↑g y} [PROOFSTEP] ext y [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : (forget TopCat).obj Y ⊢ y ∈ Set.range ↑pullback.snd ↔ y ∈ {y | ∃ x, ↑f x = ↑g y} [PROOFSTEP] constructor [GOAL] case h.mp J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : (forget TopCat).obj Y ⊢ y ∈ Set.range ↑pullback.snd → y ∈ {y | ∃ x, ↑f x = ↑g y} [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case h.mp.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S x : (forget TopCat).obj (pullback f g) ⊢ ↑pullback.snd x ∈ {y | ∃ x, ↑f x = ↑g y} [PROOFSTEP] use(pullback.fst : pullback f g ⟶ _) x [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S x : (forget TopCat).obj (pullback f g) ⊢ ↑f (↑pullback.fst x) = ↑g (↑pullback.snd x) [PROOFSTEP] exact ConcreteCategory.congr_hom pullback.condition x [GOAL] case h.mpr J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : (forget TopCat).obj Y ⊢ y ∈ {y | ∃ x, ↑f x = ↑g y} → y ∈ Set.range ↑pullback.snd [PROOFSTEP] rintro ⟨x, eq⟩ [GOAL] case h.mpr.intro J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : (forget TopCat).obj Y x : ↑X eq : ↑f x = ↑g y ⊢ y ∈ Set.range ↑pullback.snd [PROOFSTEP] use(TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨x, y⟩, eq⟩ [GOAL] case h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S y : (forget TopCat).obj Y x : ↑X eq : ↑f x = ↑g y ⊢ ↑pullback.snd (↑(pullbackIsoProdSubtype f g).inv { val := (x, y), property := eq }) = y [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : Embedding ↑i₁ H₂ : Embedding ↑i₂ i₃ : S ⟶ T eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ Embedding ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) [PROOFSTEP] refine' embedding_of_embedding_compose (ContinuousMap.continuous_toFun _) (show Continuous (prod.lift pullback.fst pullback.snd : pullback g₁ g₂ ⟶ Y ⨯ Z) from ContinuousMap.continuous_toFun _) _ [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : Embedding ↑i₁ H₂ : Embedding ↑i₂ i₃ : S ⟶ T eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ Embedding (↑(prod.lift pullback.fst pullback.snd) ∘ ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂)) [PROOFSTEP] suffices Embedding (prod.lift pullback.fst pullback.snd ≫ Limits.prod.map i₁ i₂ : pullback f₁ f₂ ⟶ _) by simpa [← coe_comp] using this [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : Embedding ↑i₁ H₂ : Embedding ↑i₂ i₃ : S ⟶ T eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ this : Embedding ↑(prod.lift pullback.fst pullback.snd ≫ prod.map i₁ i₂) ⊢ Embedding (↑(prod.lift pullback.fst pullback.snd) ∘ ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂)) [PROOFSTEP] simpa [← coe_comp] using this [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : Embedding ↑i₁ H₂ : Embedding ↑i₂ i₃ : S ⟶ T eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ Embedding ↑(prod.lift pullback.fst pullback.snd ≫ prod.map i₁ i₂) [PROOFSTEP] rw [coe_comp] [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : Embedding ↑i₁ H₂ : Embedding ↑i₂ i₃ : S ⟶ T eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ Embedding (↑(prod.map i₁ i₂) ∘ ↑(prod.lift pullback.fst pullback.snd)) [PROOFSTEP] refine Embedding.comp (embedding_prod_map H₁ H₂) (embedding_pullback_to_prod _ _) [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ OpenEmbedding ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) [PROOFSTEP] constructor [GOAL] case toEmbedding J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ Embedding ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂) [PROOFSTEP] apply pullback_map_embedding_of_embeddings f₁ f₂ g₁ g₂ H₁.toEmbedding H₂.toEmbedding i₃ eq₁ eq₂ [GOAL] case open_range J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ IsOpen (Set.range ↑(pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ eq₁ eq₂)) [PROOFSTEP] rw [range_pullback_map] [GOAL] case open_range J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ IsOpen (↑pullback.fst ⁻¹' Set.range ↑i₁ ∩ ↑pullback.snd ⁻¹' Set.range ↑i₂) [PROOFSTEP] apply IsOpen.inter [GOAL] case open_range.h₁ J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ IsOpen (↑pullback.fst ⁻¹' Set.range ↑i₁) [PROOFSTEP] apply Continuous.isOpen_preimage [GOAL] case open_range.h₂ J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ IsOpen (↑pullback.snd ⁻¹' Set.range ↑i₂) [PROOFSTEP] apply Continuous.isOpen_preimage [GOAL] case open_range.h₁.self J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ Continuous ↑pullback.fst [PROOFSTEP] apply ContinuousMap.continuous_toFun [GOAL] case open_range.h₁.a J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ IsOpen (Set.range ↑i₁) [PROOFSTEP] exact H₁.open_range [GOAL] case open_range.h₂.self J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ Continuous ↑pullback.snd [PROOFSTEP] apply ContinuousMap.continuous_toFun [GOAL] case open_range.h₂.a J : Type v inst✝ : SmallCategory J X✝ Y✝ Z✝ W X Y Z S T : TopCat f₁ : W ⟶ S f₂ : X ⟶ S g₁ : Y ⟶ T g₂ : Z ⟶ T i₁ : W ⟶ Y i₂ : X ⟶ Z H₁ : OpenEmbedding ↑i₁ H₂ : OpenEmbedding ↑i₂ i₃ : S ⟶ T H₃ : Mono i₃ eq₁ : f₁ ≫ i₃ = i₁ ≫ g₁ eq₂ : f₂ ≫ i₃ = i₂ ≫ g₂ ⊢ IsOpen (Set.range ↑i₂) [PROOFSTEP] exact H₂.open_range [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S H : Embedding ↑f g : Y ⟶ S ⊢ Embedding ↑pullback.snd [PROOFSTEP] convert (homeoOfIso (asIso (pullback.snd : pullback (𝟙 S) g ⟶ _))).embedding.comp (pullback_map_embedding_of_embeddings (i₂ := 𝟙 Y) f g (𝟙 S) g H (homeoOfIso (Iso.refl _)).embedding (𝟙 _) rfl (by simp)) [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S H : Embedding ↑f g : Y ⟶ S ⊢ g ≫ 𝟙 S = 𝟙 Y ≫ g [PROOFSTEP] simp [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S H : Embedding ↑f g : Y ⟶ S e_2✝ : (forget TopCat).obj Y = ↑Y ⊢ ↑pullback.snd = ↑(homeoOfIso (asIso pullback.snd)) ∘ ↑(pullback.map f g (𝟙 S) g f (𝟙 Y) (𝟙 S) (_ : f ≫ 𝟙 S = f ≫ 𝟙 S) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) [PROOFSTEP] erw [← coe_comp] [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S H : Embedding ↑f g : Y ⟶ S e_2✝ : (forget TopCat).obj Y = ↑Y ⊢ ↑pullback.snd = ↑(pullback.map f g (𝟙 S) g f (𝟙 Y) (𝟙 S) (_ : f ≫ 𝟙 S = f ≫ 𝟙 S) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g) ≫ (asIso pullback.snd).hom) [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H : Embedding ↑g ⊢ Embedding ↑pullback.fst [PROOFSTEP] convert (homeoOfIso (asIso (pullback.fst : pullback f (𝟙 S) ⟶ _))).embedding.comp (pullback_map_embedding_of_embeddings (i₁ := 𝟙 X) f g f (𝟙 _) (homeoOfIso (Iso.refl _)).embedding H (𝟙 _) rfl (by simp)) [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H : Embedding ↑g ⊢ g ≫ 𝟙 S = g ≫ 𝟙 S [PROOFSTEP] simp [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H : Embedding ↑g e_2✝ : (forget TopCat).obj X = ↑X ⊢ ↑pullback.fst = ↑(homeoOfIso (asIso pullback.fst)) ∘ ↑(pullback.map f g f (𝟙 S) (𝟙 X) g (𝟙 S) (_ : f ≫ 𝟙 S = f ≫ 𝟙 S) (_ : g ≫ 𝟙 S = g ≫ 𝟙 S)) [PROOFSTEP] erw [← coe_comp] [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H : Embedding ↑g e_2✝ : (forget TopCat).obj X = ↑X ⊢ ↑pullback.fst = ↑(pullback.map f g f (𝟙 S) (𝟙 X) g (𝟙 S) (_ : f ≫ 𝟙 S = f ≫ 𝟙 S) (_ : g ≫ 𝟙 S = g ≫ 𝟙 S) ≫ (asIso pullback.fst).hom) [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : Embedding ↑f H₂ : Embedding ↑g ⊢ Embedding ↑(limit.π (cospan f g) WalkingCospan.one) [PROOFSTEP] convert H₂.comp (snd_embedding_of_left_embedding H₁ g) [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : Embedding ↑f H₂ : Embedding ↑g e_2✝ : (forget TopCat).obj ((cospan f g).obj WalkingCospan.one) = (forget TopCat).obj S ⊢ ↑(limit.π (cospan f g) WalkingCospan.one) = ↑g ∘ ↑pullback.snd [PROOFSTEP] erw [← coe_comp] [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : Embedding ↑f H₂ : Embedding ↑g e_2✝ : (forget TopCat).obj ((cospan f g).obj WalkingCospan.one) = (forget TopCat).obj S ⊢ ↑(limit.π (cospan f g) WalkingCospan.one) = ↑(pullback.snd ≫ g) [PROOFSTEP] congr [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : Embedding ↑f H₂ : Embedding ↑g e_2✝ : (forget TopCat).obj ((cospan f g).obj WalkingCospan.one) = (forget TopCat).obj S ⊢ ↑(limit.π (cospan f g) WalkingCospan.one) = ↑(pullback.snd ≫ g) [PROOFSTEP] rw [← limit.w _ WalkingCospan.Hom.inr] [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : Embedding ↑f H₂ : Embedding ↑g e_2✝ : (forget TopCat).obj ((cospan f g).obj WalkingCospan.one) = (forget TopCat).obj S ⊢ ↑(limit.π (cospan f g) WalkingCospan.right ≫ (cospan f g).map WalkingCospan.Hom.inr) = ↑(pullback.snd ≫ g) [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S H : OpenEmbedding ↑f g : Y ⟶ S ⊢ OpenEmbedding ↑pullback.snd [PROOFSTEP] convert (homeoOfIso (asIso (pullback.snd : pullback (𝟙 S) g ⟶ _))).openEmbedding.comp (pullback_map_openEmbedding_of_open_embeddings (i₂ := 𝟙 Y) f g (𝟙 _) g H (homeoOfIso (Iso.refl _)).openEmbedding (𝟙 _) rfl (by simp)) [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S H : OpenEmbedding ↑f g : Y ⟶ S ⊢ g ≫ 𝟙 S = 𝟙 Y ≫ g [PROOFSTEP] simp [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S H : OpenEmbedding ↑f g : Y ⟶ S e_2✝ : (forget TopCat).obj Y = ↑Y ⊢ ↑pullback.snd = ↑(homeoOfIso (asIso pullback.snd)) ∘ ↑(pullback.map f g (𝟙 S) g f (𝟙 Y) (𝟙 S) (_ : f ≫ 𝟙 S = f ≫ 𝟙 S) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g)) [PROOFSTEP] erw [← coe_comp] [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S H : OpenEmbedding ↑f g : Y ⟶ S e_2✝ : (forget TopCat).obj Y = ↑Y ⊢ ↑pullback.snd = ↑(pullback.map f g (𝟙 S) g f (𝟙 Y) (𝟙 S) (_ : f ≫ 𝟙 S = f ≫ 𝟙 S) (_ : g ≫ 𝟙 S = 𝟙 Y ≫ g) ≫ (asIso pullback.snd).hom) [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H : OpenEmbedding ↑g ⊢ OpenEmbedding ↑pullback.fst [PROOFSTEP] convert (homeoOfIso (asIso (pullback.fst : pullback f (𝟙 S) ⟶ _))).openEmbedding.comp (pullback_map_openEmbedding_of_open_embeddings (i₁ := 𝟙 X) f g f (𝟙 _) (homeoOfIso (Iso.refl _)).openEmbedding H (𝟙 _) rfl (by simp)) [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H : OpenEmbedding ↑g ⊢ g ≫ 𝟙 S = g ≫ 𝟙 S [PROOFSTEP] simp [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H : OpenEmbedding ↑g e_2✝ : (forget TopCat).obj X = ↑X ⊢ ↑pullback.fst = ↑(homeoOfIso (asIso pullback.fst)) ∘ ↑(pullback.map f g f (𝟙 S) (𝟙 X) g (𝟙 S) (_ : f ≫ 𝟙 S = f ≫ 𝟙 S) (_ : g ≫ 𝟙 S = g ≫ 𝟙 S)) [PROOFSTEP] erw [← coe_comp] [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H : OpenEmbedding ↑g e_2✝ : (forget TopCat).obj X = ↑X ⊢ ↑pullback.fst = ↑(pullback.map f g f (𝟙 S) (𝟙 X) g (𝟙 S) (_ : f ≫ 𝟙 S = f ≫ 𝟙 S) (_ : g ≫ 𝟙 S = g ≫ 𝟙 S) ≫ (asIso pullback.fst).hom) [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : OpenEmbedding ↑f H₂ : OpenEmbedding ↑g ⊢ OpenEmbedding ↑(limit.π (cospan f g) WalkingCospan.one) [PROOFSTEP] convert H₂.comp (snd_openEmbedding_of_left_openEmbedding H₁ g) [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : OpenEmbedding ↑f H₂ : OpenEmbedding ↑g e_2✝ : (forget TopCat).obj ((cospan f g).obj WalkingCospan.one) = (forget TopCat).obj S ⊢ ↑(limit.π (cospan f g) WalkingCospan.one) = ↑g ∘ ↑pullback.snd [PROOFSTEP] erw [← coe_comp] [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : OpenEmbedding ↑f H₂ : OpenEmbedding ↑g e_2✝ : (forget TopCat).obj ((cospan f g).obj WalkingCospan.one) = (forget TopCat).obj S ⊢ ↑(limit.π (cospan f g) WalkingCospan.one) = ↑(pullback.snd ≫ g) [PROOFSTEP] congr [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : OpenEmbedding ↑f H₂ : OpenEmbedding ↑g e_2✝ : (forget TopCat).obj ((cospan f g).obj WalkingCospan.one) = (forget TopCat).obj S ⊢ ↑(limit.π (cospan f g) WalkingCospan.one) = ↑(pullback.snd ≫ g) [PROOFSTEP] rw [← (limit.w _ WalkingCospan.Hom.inr)] [GOAL] case h.e'_5.h J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S H₁ : OpenEmbedding ↑f H₂ : OpenEmbedding ↑g e_2✝ : (forget TopCat).obj ((cospan f g).obj WalkingCospan.one) = (forget TopCat).obj S ⊢ ↑(limit.π (cospan f g) WalkingCospan.right ≫ (cospan f g).map WalkingCospan.Hom.inr) = ↑(pullback.snd ≫ g) [PROOFSTEP] rfl [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S hg : Embedding ↑g H : Set.range ↑f ⊆ Set.range ↑g ⊢ IsIso pullback.fst [PROOFSTEP] let esto : (pullback f g : TopCat) ≃ₜ X := (Homeomorph.ofEmbedding _ (fst_embedding_of_right_embedding f hg)).trans { toFun := Subtype.val invFun := fun x => ⟨x, by rw [pullback_fst_range] exact ⟨_, (H (Set.mem_range_self x)).choose_spec.symm⟩⟩ left_inv := fun ⟨_, _⟩ => rfl right_inv := fun x => rfl } [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S hg : Embedding ↑g H : Set.range ↑f ⊆ Set.range ↑g x : ↑X ⊢ x ∈ Set.range ↑pullback.fst [PROOFSTEP] rw [pullback_fst_range] [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S hg : Embedding ↑g H : Set.range ↑f ⊆ Set.range ↑g x : ↑X ⊢ x ∈ {x | ∃ y, ↑f x = ↑g y} [PROOFSTEP] exact ⟨_, (H (Set.mem_range_self x)).choose_spec.symm⟩ [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S g : Y ⟶ S hg : Embedding ↑g H : Set.range ↑f ⊆ Set.range ↑g esto : ↑(pullback f g) ≃ₜ ↑X := Homeomorph.trans (Homeomorph.ofEmbedding ↑pullback.fst (_ : Embedding ↑pullback.fst)) (Homeomorph.mk { toFun := Subtype.val, invFun := fun x => { val := x, property := (_ : x ∈ Set.range ↑pullback.fst) }, left_inv := (_ : ∀ (x : ↑(Set.range ↑pullback.fst)), (fun x => { val := x, property := (_ : x ∈ Set.range ↑pullback.fst) }) ↑x = x), right_inv := (_ : ∀ (x : ↑X), ↑((fun x => { val := x, property := (_ : x ∈ Set.range ↑pullback.fst) }) x) = ↑((fun x => { val := x, property := (_ : x ∈ Set.range ↑pullback.fst) }) x)) }) ⊢ IsIso pullback.fst [PROOFSTEP] convert IsIso.of_iso (isoOfHomeo esto) [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S hf : Embedding ↑f g : Y ⟶ S H : Set.range ↑g ⊆ Set.range ↑f ⊢ IsIso pullback.snd [PROOFSTEP] let esto : (pullback f g : TopCat) ≃ₜ Y := (Homeomorph.ofEmbedding _ (snd_embedding_of_left_embedding hf g)).trans { toFun := Subtype.val invFun := fun x => ⟨x, by rw [pullback_snd_range] exact ⟨_, (H (Set.mem_range_self x)).choose_spec⟩⟩ left_inv := fun ⟨_, _⟩ => rfl right_inv := fun x => rfl } [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S hf : Embedding ↑f g : Y ⟶ S H : Set.range ↑g ⊆ Set.range ↑f x : ↑Y ⊢ x ∈ Set.range ↑pullback.snd [PROOFSTEP] rw [pullback_snd_range] [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S hf : Embedding ↑f g : Y ⟶ S H : Set.range ↑g ⊆ Set.range ↑f x : ↑Y ⊢ x ∈ {y | ∃ x, ↑f x = ↑g y} [PROOFSTEP] exact ⟨_, (H (Set.mem_range_self x)).choose_spec⟩ [GOAL] J : Type v inst✝ : SmallCategory J X✝ Y✝ Z : TopCat X Y S : TopCat f : X ⟶ S hf : Embedding ↑f g : Y ⟶ S H : Set.range ↑g ⊆ Set.range ↑f esto : ↑(pullback f g) ≃ₜ ↑Y := Homeomorph.trans (Homeomorph.ofEmbedding ↑pullback.snd (_ : Embedding ↑pullback.snd)) (Homeomorph.mk { toFun := Subtype.val, invFun := fun x => { val := x, property := (_ : x ∈ Set.range ↑pullback.snd) }, left_inv := (_ : ∀ (x : ↑(Set.range ↑pullback.snd)), (fun x => { val := x, property := (_ : x ∈ Set.range ↑pullback.snd) }) ↑x = x), right_inv := (_ : ∀ (x : ↑Y), ↑((fun x => { val := x, property := (_ : x ∈ Set.range ↑pullback.snd) }) x) = ↑((fun x => { val := x, property := (_ : x ∈ Set.range ↑pullback.snd) }) x)) }) ⊢ IsIso pullback.snd [PROOFSTEP] convert IsIso.of_iso (isoOfHomeo esto) [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑X ⊢ ↑pullback.snd '' (↑pullback.fst ⁻¹' U) = ↑g ⁻¹' (↑f '' U) [PROOFSTEP] ext x [GOAL] case h J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑X x : (forget TopCat).obj Y ⊢ x ∈ ↑pullback.snd '' (↑pullback.fst ⁻¹' U) ↔ x ∈ ↑g ⁻¹' (↑f '' U) [PROOFSTEP] constructor [GOAL] case h.mp J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑X x : (forget TopCat).obj Y ⊢ x ∈ ↑pullback.snd '' (↑pullback.fst ⁻¹' U) → x ∈ ↑g ⁻¹' (↑f '' U) [PROOFSTEP] rintro ⟨y, hy, rfl⟩ [GOAL] case h.mp.intro.intro J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑X y : (forget TopCat).obj (pullback f g) hy : y ∈ ↑pullback.fst ⁻¹' U ⊢ ↑pullback.snd y ∈ ↑g ⁻¹' (↑f '' U) [PROOFSTEP] exact ⟨(pullback.fst : pullback f g ⟶ _) y, hy, ConcreteCategory.congr_hom pullback.condition y⟩ [GOAL] case h.mpr J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑X x : (forget TopCat).obj Y ⊢ x ∈ ↑g ⁻¹' (↑f '' U) → x ∈ ↑pullback.snd '' (↑pullback.fst ⁻¹' U) [PROOFSTEP] rintro ⟨y, hy, eq⟩ [GOAL] case h.mpr.intro.intro J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑X x : (forget TopCat).obj Y y : (forget TopCat).obj X hy : y ∈ U eq : ↑f y = ↑g x ⊢ x ∈ ↑pullback.snd '' (↑pullback.fst ⁻¹' U) [PROOFSTEP] exact ⟨(TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨_, _⟩, eq⟩, by simpa, by simp⟩ [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑X x : (forget TopCat).obj Y y : (forget TopCat).obj X hy : y ∈ U eq : ↑f y = ↑g x ⊢ ↑(pullbackIsoProdSubtype f g).inv { val := (y, x), property := eq } ∈ ↑pullback.fst ⁻¹' U [PROOFSTEP] simpa [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑X x : (forget TopCat).obj Y y : (forget TopCat).obj X hy : y ∈ U eq : ↑f y = ↑g x ⊢ ↑pullback.snd (↑(pullbackIsoProdSubtype f g).inv { val := (y, x), property := eq }) = x [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y ⊢ ↑pullback.fst '' (↑pullback.snd ⁻¹' U) = ↑f ⁻¹' (↑g '' U) [PROOFSTEP] ext x [GOAL] case h J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y x : (forget TopCat).obj X ⊢ x ∈ ↑pullback.fst '' (↑pullback.snd ⁻¹' U) ↔ x ∈ ↑f ⁻¹' (↑g '' U) [PROOFSTEP] constructor [GOAL] case h.mp J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y x : (forget TopCat).obj X ⊢ x ∈ ↑pullback.fst '' (↑pullback.snd ⁻¹' U) → x ∈ ↑f ⁻¹' (↑g '' U) [PROOFSTEP] rintro ⟨y, hy, rfl⟩ [GOAL] case h.mp.intro.intro J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y y : (forget TopCat).obj (pullback f g) hy : y ∈ ↑pullback.snd ⁻¹' U ⊢ ↑pullback.fst y ∈ ↑f ⁻¹' (↑g '' U) [PROOFSTEP] exact ⟨(pullback.snd : pullback f g ⟶ _) y, hy, (ConcreteCategory.congr_hom pullback.condition y).symm⟩ [GOAL] case h.mpr J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y x : (forget TopCat).obj X ⊢ x ∈ ↑f ⁻¹' (↑g '' U) → x ∈ ↑pullback.fst '' (↑pullback.snd ⁻¹' U) [PROOFSTEP] rintro ⟨y, hy, eq⟩ [GOAL] case h.mpr.intro.intro J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y x : (forget TopCat).obj X y : (forget TopCat).obj Y hy : y ∈ U eq : ↑g y = ↑f x ⊢ x ∈ ↑pullback.fst '' (↑pullback.snd ⁻¹' U) [PROOFSTEP] exact ⟨(TopCat.pullbackIsoProdSubtype f g).inv ⟨⟨_, _⟩, eq.symm⟩, by simpa, by simp⟩ [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y x : (forget TopCat).obj X y : (forget TopCat).obj Y hy : y ∈ U eq : ↑g y = ↑f x ⊢ ↑(pullbackIsoProdSubtype f g).inv { val := (x, y), property := (_ : ↑f x = ↑g y) } ∈ ↑pullback.snd ⁻¹' U [PROOFSTEP] simpa [GOAL] J : Type v inst✝ : SmallCategory J X Y Z : TopCat f : X ⟶ Z g : Y ⟶ Z U : Set ↑Y x : (forget TopCat).obj X y : (forget TopCat).obj Y hy : y ∈ U eq : ↑g y = ↑f x ⊢ ↑pullback.fst (↑(pullbackIsoProdSubtype f g).inv { val := (x, y), property := (_ : ↑f x = ↑g y) }) = x [PROOFSTEP] simp [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax c : Cocone F hc : IsColimit c ⊢ c.pt.str = ⨆ (j : J), coinduced (↑(NatTrans.app c.ι j)) (F.obj j).str [PROOFSTEP] let homeo := homeoOfIso (hc.coconePointUniqueUpToIso (colimitCoconeIsColimit F)) [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax c : Cocone F hc : IsColimit c homeo : ↑c.pt ≃ₜ ↑(colimitCocone F).pt := homeoOfIso (IsColimit.coconePointUniqueUpToIso hc (colimitCoconeIsColimit F)) ⊢ c.pt.str = ⨆ (j : J), coinduced (↑(NatTrans.app c.ι j)) (F.obj j).str [PROOFSTEP] ext [GOAL] case a.h.a J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax c : Cocone F hc : IsColimit c homeo : ↑c.pt ≃ₜ ↑(colimitCocone F).pt := homeoOfIso (IsColimit.coconePointUniqueUpToIso hc (colimitCoconeIsColimit F)) x✝ : Set ↑c.pt ⊢ IsOpen x✝ ↔ IsOpen x✝ [PROOFSTEP] refine' homeo.symm.isOpen_preimage.symm.trans (Iff.trans _ isOpen_iSup_iff.symm) [GOAL] case a.h.a J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax c : Cocone F hc : IsColimit c homeo : ↑c.pt ≃ₜ ↑(colimitCocone F).pt := homeoOfIso (IsColimit.coconePointUniqueUpToIso hc (colimitCoconeIsColimit F)) x✝ : Set ↑c.pt ⊢ IsOpen (↑(Homeomorph.symm homeo) ⁻¹' x✝) ↔ ∀ (i : J), IsOpen x✝ [PROOFSTEP] exact isOpen_iSup_iff [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax U : Set ↑(colimit F) ⊢ IsOpen U ↔ ∀ (j : J), IsOpen (↑(colimit.ι F j) ⁻¹' U) [PROOFSTEP] dsimp [topologicalSpace_coe] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax U : Set ↑(colimit F) ⊢ IsOpen U ↔ ∀ (j : J), IsOpen (↑(colimit.ι F j) ⁻¹' U) [PROOFSTEP] conv_lhs => rw [colimit_topology F] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax U : Set ↑(colimit F) | IsOpen U [PROOFSTEP] rw [colimit_topology F] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax U : Set ↑(colimit F) | IsOpen U [PROOFSTEP] rw [colimit_topology F] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax U : Set ↑(colimit F) | IsOpen U [PROOFSTEP] rw [colimit_topology F] [GOAL] J : Type v inst✝ : SmallCategory J F : J ⥤ TopCatMax U : Set ↑(colimit F) ⊢ IsOpen U ↔ ∀ (j : J), IsOpen (↑(colimit.ι F j) ⁻¹' U) [PROOFSTEP] exact isOpen_iSup_iff [GOAL] J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) ⊢ IsOpen U ↔ IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) [PROOFSTEP] rw [colimit_isOpen_iff] [GOAL] J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) ⊢ (∀ (j : WalkingParallelPair), IsOpen (↑(colimit.ι F j) ⁻¹' U)) ↔ IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) [PROOFSTEP] constructor [GOAL] case mp J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) ⊢ (∀ (j : WalkingParallelPair), IsOpen (↑(colimit.ι F j) ⁻¹' U)) → IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) [PROOFSTEP] intro H [GOAL] case mp J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) H : ∀ (j : WalkingParallelPair), IsOpen (↑(colimit.ι F j) ⁻¹' U) ⊢ IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) [PROOFSTEP] exact H _ [GOAL] case mpr J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) ⊢ IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) → ∀ (j : WalkingParallelPair), IsOpen (↑(colimit.ι F j) ⁻¹' U) [PROOFSTEP] intro H j [GOAL] case mpr J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) H : IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) j : WalkingParallelPair ⊢ IsOpen (↑(colimit.ι F j) ⁻¹' U) [PROOFSTEP] cases j [GOAL] case mpr.zero J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) H : IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) ⊢ IsOpen (↑(colimit.ι F WalkingParallelPair.zero) ⁻¹' U) [PROOFSTEP] rw [← colimit.w F WalkingParallelPairHom.left] [GOAL] case mpr.zero J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) H : IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) ⊢ IsOpen (↑(F.map WalkingParallelPairHom.left ≫ colimit.ι F WalkingParallelPair.one) ⁻¹' U) [PROOFSTEP] exact (F.map WalkingParallelPairHom.left).continuous_toFun.isOpen_preimage _ H [GOAL] case mpr.one J : Type v inst✝ : SmallCategory J F : WalkingParallelPair ⥤ TopCat U : Set ↑(colimit F) H : IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) ⊢ IsOpen (↑(colimit.ι F WalkingParallelPair.one) ⁻¹' U) [PROOFSTEP] exact H
{"mathlib_filename": "Mathlib.Topology.Category.TopCat.Limits.Pullbacks", "llama_tokens": 35391}
[GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj h₁ : e.toLocalEquiv = e'.toLocalEquiv h₂ : e.baseSet = e'.baseSet ⊢ e = e' [PROOFSTEP] cases e [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x : Z e' : Pretrivialization F proj toLocalEquiv✝ : LocalEquiv Z (B × F) open_target✝ : IsOpen toLocalEquiv✝.target baseSet✝ : Set B open_baseSet✝ : IsOpen baseSet✝ source_eq✝ : toLocalEquiv✝.source = proj ⁻¹' baseSet✝ target_eq✝ : toLocalEquiv✝.target = baseSet✝ ×ˢ univ proj_toFun✝ : ∀ (p : Z), p ∈ toLocalEquiv✝.source → (↑toLocalEquiv✝ p).fst = proj p h₁ : { toLocalEquiv := toLocalEquiv✝, open_target := open_target✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ }.toLocalEquiv = e'.toLocalEquiv h₂ : { toLocalEquiv := toLocalEquiv✝, open_target := open_target✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ }.baseSet = e'.baseSet ⊢ { toLocalEquiv := toLocalEquiv✝, open_target := open_target✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ } = e' [PROOFSTEP] cases e' [GOAL] case mk.mk ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x : Z toLocalEquiv✝¹ : LocalEquiv Z (B × F) open_target✝¹ : IsOpen toLocalEquiv✝¹.target baseSet✝¹ : Set B open_baseSet✝¹ : IsOpen baseSet✝¹ source_eq✝¹ : toLocalEquiv✝¹.source = proj ⁻¹' baseSet✝¹ target_eq✝¹ : toLocalEquiv✝¹.target = baseSet✝¹ ×ˢ univ proj_toFun✝¹ : ∀ (p : Z), p ∈ toLocalEquiv✝¹.source → (↑toLocalEquiv✝¹ p).fst = proj p toLocalEquiv✝ : LocalEquiv Z (B × F) open_target✝ : IsOpen toLocalEquiv✝.target baseSet✝ : Set B open_baseSet✝ : IsOpen baseSet✝ source_eq✝ : toLocalEquiv✝.source = proj ⁻¹' baseSet✝ target_eq✝ : toLocalEquiv✝.target = baseSet✝ ×ˢ univ proj_toFun✝ : ∀ (p : Z), p ∈ toLocalEquiv✝.source → (↑toLocalEquiv✝ p).fst = proj p h₁ : { toLocalEquiv := toLocalEquiv✝¹, open_target := open_target✝¹, baseSet := baseSet✝¹, open_baseSet := open_baseSet✝¹, source_eq := source_eq✝¹, target_eq := target_eq✝¹, proj_toFun := proj_toFun✝¹ }.toLocalEquiv = { toLocalEquiv := toLocalEquiv✝, open_target := open_target✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ }.toLocalEquiv h₂ : { toLocalEquiv := toLocalEquiv✝¹, open_target := open_target✝¹, baseSet := baseSet✝¹, open_baseSet := open_baseSet✝¹, source_eq := source_eq✝¹, target_eq := target_eq✝¹, proj_toFun := proj_toFun✝¹ }.baseSet = { toLocalEquiv := toLocalEquiv✝, open_target := open_target✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ }.baseSet ⊢ { toLocalEquiv := toLocalEquiv✝¹, open_target := open_target✝¹, baseSet := baseSet✝¹, open_baseSet := open_baseSet✝¹, source_eq := source_eq✝¹, target_eq := target_eq✝¹, proj_toFun := proj_toFun✝¹ } = { toLocalEquiv := toLocalEquiv✝, open_target := open_target✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ } [PROOFSTEP] congr [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj h₁ : ∀ (x : Z), ↑e x = ↑e' x h₂ : ∀ (x : B × F), ↑(LocalEquiv.symm e.toLocalEquiv) x = ↑(LocalEquiv.symm e'.toLocalEquiv) x h₃ : e.baseSet = e'.baseSet ⊢ e = e' [PROOFSTEP] ext1 <;> [ext1; exact h₃] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj h₁ : ∀ (x : Z), ↑e x = ↑e' x h₂ : ∀ (x : B × F), ↑(LocalEquiv.symm e.toLocalEquiv) x = ↑(LocalEquiv.symm e'.toLocalEquiv) x h₃ : e.baseSet = e'.baseSet ⊢ e = e' [PROOFSTEP] ext1 [GOAL] case h₁ ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj h₁ : ∀ (x : Z), ↑e x = ↑e' x h₂ : ∀ (x : B × F), ↑(LocalEquiv.symm e.toLocalEquiv) x = ↑(LocalEquiv.symm e'.toLocalEquiv) x h₃ : e.baseSet = e'.baseSet ⊢ e.toLocalEquiv = e'.toLocalEquiv [PROOFSTEP] ext1 [GOAL] case h₂ ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj h₁ : ∀ (x : Z), ↑e x = ↑e' x h₂ : ∀ (x : B × F), ↑(LocalEquiv.symm e.toLocalEquiv) x = ↑(LocalEquiv.symm e'.toLocalEquiv) x h₃ : e.baseSet = e'.baseSet ⊢ e.baseSet = e'.baseSet [PROOFSTEP] exact h₃ [GOAL] case h₁.h ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj h₁ : ∀ (x : Z), ↑e x = ↑e' x h₂ : ∀ (x : B × F), ↑(LocalEquiv.symm e.toLocalEquiv) x = ↑(LocalEquiv.symm e'.toLocalEquiv) x h₃ : e.baseSet = e'.baseSet x✝ : Z ⊢ ↑e.toLocalEquiv x✝ = ↑e'.toLocalEquiv x✝ [PROOFSTEP] apply h₁ [GOAL] case h₁.hsymm ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj h₁ : ∀ (x : Z), ↑e x = ↑e' x h₂ : ∀ (x : B × F), ↑(LocalEquiv.symm e.toLocalEquiv) x = ↑(LocalEquiv.symm e'.toLocalEquiv) x h₃ : e.baseSet = e'.baseSet x✝ : B × F ⊢ ↑(LocalEquiv.symm e.toLocalEquiv) x✝ = ↑(LocalEquiv.symm e'.toLocalEquiv) x✝ [PROOFSTEP] apply h₂ [GOAL] case h₁.hs ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj h₁ : ∀ (x : Z), ↑e x = ↑e' x h₂ : ∀ (x : B × F), ↑(LocalEquiv.symm e.toLocalEquiv) x = ↑(LocalEquiv.symm e'.toLocalEquiv) x h₃ : e.baseSet = e'.baseSet ⊢ e.source = e'.source [PROOFSTEP] rw [e.source_eq, e'.source_eq, h₃] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z inst✝ : Nonempty F e e' : Pretrivialization F proj h : e.toLocalEquiv = e'.toLocalEquiv ⊢ e = e' [PROOFSTEP] refine ext' _ _ h ?_ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z inst✝ : Nonempty F e e' : Pretrivialization F proj h : e.toLocalEquiv = e'.toLocalEquiv ⊢ e.baseSet = e'.baseSet [PROOFSTEP] simpa only [fst_image_prod, univ_nonempty, target_eq] using congr_arg (Prod.fst '' LocalEquiv.target ·) h [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x : Z ⊢ x ∈ e.source ↔ proj x ∈ e.baseSet [PROOFSTEP] rw [e.source_eq, mem_preimage] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z x : B × F ⊢ x ∈ e.target ↔ x.fst ∈ e.baseSet [PROOFSTEP] rw [e.target_eq, prod_univ, mem_preimage] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z x : B × F hx : x ∈ e.target ⊢ proj (↑(LocalEquiv.symm e.toLocalEquiv) x) = x.fst [PROOFSTEP] have := (e.coe_fst (e.map_target hx)).symm [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z x : B × F hx : x ∈ e.target this : proj (↑(LocalEquiv.symm e.toLocalEquiv) x) = (↑e (↑(LocalEquiv.symm e.toLocalEquiv) x)).fst ⊢ proj (↑(LocalEquiv.symm e.toLocalEquiv) x) = x.fst [PROOFSTEP] rwa [← e.coe_coe, e.right_inv hx] at this [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ x : Z ex : x ∈ e.source ⊢ ↑(LocalEquiv.symm e.toLocalEquiv) (proj x, (↑e x).snd) = x [PROOFSTEP] rw [← e.coe_fst ex, Prod.mk.eta, ← e.coe_coe, e.left_inv ex] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x : Z ⊢ ↑(LocalEquiv.symm e.toLocalEquiv) ⁻¹' (proj ⁻¹' e.baseSet) ∩ e.target = e.target [PROOFSTEP] refine' inter_eq_right_iff_subset.mpr fun x hx => _ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z x : B × F hx : x ∈ e.target ⊢ x ∈ ↑(LocalEquiv.symm e.toLocalEquiv) ⁻¹' (proj ⁻¹' e.baseSet) [PROOFSTEP] simp only [mem_preimage, LocalEquiv.invFun_as_coe, e.proj_symm_apply hx] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z x : B × F hx : x ∈ e.target ⊢ x.fst ∈ e.baseSet [PROOFSTEP] exact e.mem_target.mp hx [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x : Z s : Set B ⊢ ↑(LocalEquiv.symm e.toLocalEquiv) ⁻¹' (proj ⁻¹' s) ∩ e.baseSet ×ˢ univ = (s ∩ e.baseSet) ×ˢ univ [PROOFSTEP] ext ⟨x, y⟩ [GOAL] case h.mk ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z s : Set B x : B y : F ⊢ (x, y) ∈ ↑(LocalEquiv.symm e.toLocalEquiv) ⁻¹' (proj ⁻¹' s) ∩ e.baseSet ×ˢ univ ↔ (x, y) ∈ (s ∩ e.baseSet) ×ˢ univ [PROOFSTEP] suffices x ∈ e.baseSet → (proj (e.toLocalEquiv.symm (x, y)) ∈ s ↔ x ∈ s) by simpa only [prod_mk_mem_set_prod_eq, mem_inter_iff, and_true_iff, mem_univ, and_congr_left_iff] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z s : Set B x : B y : F this : x ∈ e.baseSet → (proj (↑(LocalEquiv.symm e.toLocalEquiv) (x, y)) ∈ s ↔ x ∈ s) ⊢ (x, y) ∈ ↑(LocalEquiv.symm e.toLocalEquiv) ⁻¹' (proj ⁻¹' s) ∩ e.baseSet ×ˢ univ ↔ (x, y) ∈ (s ∩ e.baseSet) ×ˢ univ [PROOFSTEP] simpa only [prod_mk_mem_set_prod_eq, mem_inter_iff, and_true_iff, mem_univ, and_congr_left_iff] [GOAL] case h.mk ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z s : Set B x : B y : F ⊢ x ∈ e.baseSet → (proj (↑(LocalEquiv.symm e.toLocalEquiv) (x, y)) ∈ s ↔ x ∈ s) [PROOFSTEP] intro h [GOAL] case h.mk ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e : Pretrivialization F proj x✝ : Z s : Set B x : B y : F h : x ∈ e.baseSet ⊢ proj (↑(LocalEquiv.symm e.toLocalEquiv) (x, y)) ∈ s ↔ x ∈ s [PROOFSTEP] rw [e.proj_symm_apply' h] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e f : Pretrivialization F proj ⊢ f.target ∩ ↑(LocalEquiv.symm f.toLocalEquiv) ⁻¹' e.source = (e.baseSet ∩ f.baseSet) ×ˢ univ [PROOFSTEP] rw [inter_comm, f.target_eq, e.source_eq, f.preimage_symm_proj_inter] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e f : Pretrivialization F proj ⊢ (LocalEquiv.trans (LocalEquiv.symm f.toLocalEquiv) e.toLocalEquiv).source = (e.baseSet ∩ f.baseSet) ×ˢ univ [PROOFSTEP] rw [LocalEquiv.trans_source, LocalEquiv.symm_source, e.target_inter_preimage_symm_source_eq] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj ⊢ LocalEquiv.symm (LocalEquiv.trans (LocalEquiv.symm e.toLocalEquiv) e'.toLocalEquiv) = LocalEquiv.trans (LocalEquiv.symm e'.toLocalEquiv) e.toLocalEquiv [PROOFSTEP] rw [LocalEquiv.trans_symm_eq_symm_trans_symm, LocalEquiv.symm_symm] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj ⊢ (LocalEquiv.trans (LocalEquiv.symm e.toLocalEquiv) e'.toLocalEquiv).source = (e.baseSet ∩ e'.baseSet) ×ˢ univ [PROOFSTEP] rw [LocalEquiv.trans_source, e'.source_eq, LocalEquiv.symm_source, e.target_eq, inter_comm, e.preimage_symm_proj_inter, inter_comm] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e e' : Pretrivialization F proj ⊢ (LocalEquiv.trans (LocalEquiv.symm e.toLocalEquiv) e'.toLocalEquiv).target = (e.baseSet ∩ e'.baseSet) ×ˢ univ [PROOFSTEP] rw [← LocalEquiv.symm_source, symm_trans_symm, symm_trans_source_eq, inter_comm] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e' : Pretrivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y✝ : E b✝ inst✝ : (x : B) → Zero (E x) e : Pretrivialization F TotalSpace.proj b : B hb : b ∈ e.baseSet y : F ⊢ { proj := b, snd := Pretrivialization.symm e b y } = ↑(LocalEquiv.symm e.toLocalEquiv) (b, y) [PROOFSTEP] simp only [e.symm_apply hb, TotalSpace.mk_cast (e.proj_symm_apply' hb), TotalSpace.eta] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e' : Pretrivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b inst✝ : (x : B) → Zero (E x) e : Pretrivialization F TotalSpace.proj z : TotalSpace F E hz : z.proj ∈ e.baseSet ⊢ Pretrivialization.symm e z.proj (↑e z).snd = z.snd [PROOFSTEP] rw [e.symm_apply hz, cast_eq_iff_heq, e.mk_proj_snd' hz, e.symm_apply_apply (e.mem_source.mpr hz)] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝² : TopologicalSpace B inst✝¹ : TopologicalSpace F proj : Z → B e✝ : Pretrivialization F proj x : Z e' : Pretrivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y✝ : E b✝ inst✝ : (x : B) → Zero (E x) e : Pretrivialization F TotalSpace.proj b : B hb : b ∈ e.baseSet y : F ⊢ ↑e { proj := b, snd := Pretrivialization.symm e b y } = (b, y) [PROOFSTEP] rw [e.mk_symm hb, e.apply_symm_apply (e.mk_mem_target.mpr hb)] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e e' : Trivialization F proj h₁ : e.toLocalHomeomorph = e'.toLocalHomeomorph h₂ : e.baseSet = e'.baseSet ⊢ e = e' [PROOFSTEP] cases e [GOAL] case mk ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z e' : Trivialization F proj toLocalHomeomorph✝ : LocalHomeomorph Z (B × F) baseSet✝ : Set B open_baseSet✝ : IsOpen baseSet✝ source_eq✝ : toLocalHomeomorph✝.source = proj ⁻¹' baseSet✝ target_eq✝ : toLocalHomeomorph✝.target = baseSet✝ ×ˢ univ proj_toFun✝ : ∀ (p : Z), p ∈ toLocalHomeomorph✝.source → (↑toLocalHomeomorph✝ p).fst = proj p h₁ : { toLocalHomeomorph := toLocalHomeomorph✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ }.toLocalHomeomorph = e'.toLocalHomeomorph h₂ : { toLocalHomeomorph := toLocalHomeomorph✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ }.baseSet = e'.baseSet ⊢ { toLocalHomeomorph := toLocalHomeomorph✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ } = e' [PROOFSTEP] cases e' [GOAL] case mk.mk ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z toLocalHomeomorph✝¹ : LocalHomeomorph Z (B × F) baseSet✝¹ : Set B open_baseSet✝¹ : IsOpen baseSet✝¹ source_eq✝¹ : toLocalHomeomorph✝¹.source = proj ⁻¹' baseSet✝¹ target_eq✝¹ : toLocalHomeomorph✝¹.target = baseSet✝¹ ×ˢ univ proj_toFun✝¹ : ∀ (p : Z), p ∈ toLocalHomeomorph✝¹.source → (↑toLocalHomeomorph✝¹ p).fst = proj p toLocalHomeomorph✝ : LocalHomeomorph Z (B × F) baseSet✝ : Set B open_baseSet✝ : IsOpen baseSet✝ source_eq✝ : toLocalHomeomorph✝.source = proj ⁻¹' baseSet✝ target_eq✝ : toLocalHomeomorph✝.target = baseSet✝ ×ˢ univ proj_toFun✝ : ∀ (p : Z), p ∈ toLocalHomeomorph✝.source → (↑toLocalHomeomorph✝ p).fst = proj p h₁ : { toLocalHomeomorph := toLocalHomeomorph✝¹, baseSet := baseSet✝¹, open_baseSet := open_baseSet✝¹, source_eq := source_eq✝¹, target_eq := target_eq✝¹, proj_toFun := proj_toFun✝¹ }.toLocalHomeomorph = { toLocalHomeomorph := toLocalHomeomorph✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ }.toLocalHomeomorph h₂ : { toLocalHomeomorph := toLocalHomeomorph✝¹, baseSet := baseSet✝¹, open_baseSet := open_baseSet✝¹, source_eq := source_eq✝¹, target_eq := target_eq✝¹, proj_toFun := proj_toFun✝¹ }.baseSet = { toLocalHomeomorph := toLocalHomeomorph✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ }.baseSet ⊢ { toLocalHomeomorph := toLocalHomeomorph✝¹, baseSet := baseSet✝¹, open_baseSet := open_baseSet✝¹, source_eq := source_eq✝¹, target_eq := target_eq✝¹, proj_toFun := proj_toFun✝¹ } = { toLocalHomeomorph := toLocalHomeomorph✝, baseSet := baseSet✝, open_baseSet := open_baseSet✝, source_eq := source_eq✝, target_eq := target_eq✝, proj_toFun := proj_toFun✝ } [PROOFSTEP] congr [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e e' : Trivialization F proj h : (fun e => toPretrivialization e) e = (fun e => toPretrivialization e) e' ⊢ e = e' [PROOFSTEP] ext1 [GOAL] case h₁ ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e e' : Trivialization F proj h : (fun e => toPretrivialization e) e = (fun e => toPretrivialization e) e' ⊢ e.toLocalHomeomorph = e'.toLocalHomeomorph case h₂ ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e e' : Trivialization F proj h : (fun e => toPretrivialization e) e = (fun e => toPretrivialization e) e' ⊢ e.baseSet = e'.baseSet [PROOFSTEP] exacts [LocalHomeomorph.toLocalEquiv_injective (congr_arg Pretrivialization.toLocalEquiv h), congr_arg Pretrivialization.baseSet h] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z ⊢ x ∈ e.source ↔ proj x ∈ e.baseSet [PROOFSTEP] rw [e.source_eq, mem_preimage] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z ex : x ∈ e.source ⊢ map proj (𝓝 x) = 𝓝 (proj x) [PROOFSTEP] rw [← e.coe_fst ex, ← map_congr (e.coe_fst_eventuallyEq_proj ex), ← map_map, ← e.coe_coe, e.map_nhds_eq ex, map_fst_nhds] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z α : Type u_6 l : Filter α f : α → Z z : Z hz : z ∈ e.source ⊢ Tendsto f l (𝓝 z) ↔ Tendsto (proj ∘ f) l (𝓝 (proj z)) ∧ Tendsto (fun x => (↑e (f x)).snd) l (𝓝 (↑e z).snd) [PROOFSTEP] rw [e.nhds_eq_comap_inf_principal hz, tendsto_inf, tendsto_comap_iff, Prod.tendsto_iff, coe_coe, tendsto_principal, coe_fst _ hz] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z α : Type u_6 l : Filter α f : α → Z z : Z hz : z ∈ e.source ⊢ ((Tendsto (fun n => ((↑e ∘ f) n).fst) l (𝓝 (proj z)) ∧ Tendsto (fun n => ((↑e ∘ f) n).snd) l (𝓝 (↑e z).snd)) ∧ ∀ᶠ (a : α) in l, f a ∈ e.source) ↔ Tendsto (proj ∘ f) l (𝓝 (proj z)) ∧ Tendsto (fun x => (↑e (f x)).snd) l (𝓝 (↑e z).snd) [PROOFSTEP] by_cases hl : ∀ᶠ x in l, f x ∈ e.source [GOAL] case pos ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z α : Type u_6 l : Filter α f : α → Z z : Z hz : z ∈ e.source hl : ∀ᶠ (x : α) in l, f x ∈ e.source ⊢ ((Tendsto (fun n => ((↑e ∘ f) n).fst) l (𝓝 (proj z)) ∧ Tendsto (fun n => ((↑e ∘ f) n).snd) l (𝓝 (↑e z).snd)) ∧ ∀ᶠ (a : α) in l, f a ∈ e.source) ↔ Tendsto (proj ∘ f) l (𝓝 (proj z)) ∧ Tendsto (fun x => (↑e (f x)).snd) l (𝓝 (↑e z).snd) [PROOFSTEP] simp only [hl, and_true] [GOAL] case pos ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z α : Type u_6 l : Filter α f : α → Z z : Z hz : z ∈ e.source hl : ∀ᶠ (x : α) in l, f x ∈ e.source ⊢ Tendsto (fun n => ((↑e ∘ f) n).fst) l (𝓝 (proj z)) ∧ Tendsto (fun n => ((↑e ∘ f) n).snd) l (𝓝 (↑e z).snd) ↔ Tendsto (proj ∘ f) l (𝓝 (proj z)) ∧ Tendsto (fun x => (↑e (f x)).snd) l (𝓝 (↑e z).snd) [PROOFSTEP] refine (tendsto_congr' ?_).and Iff.rfl [GOAL] case pos ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z α : Type u_6 l : Filter α f : α → Z z : Z hz : z ∈ e.source hl : ∀ᶠ (x : α) in l, f x ∈ e.source ⊢ (fun n => ((↑e ∘ f) n).fst) =ᶠ[l] proj ∘ f [PROOFSTEP] exact hl.mono fun x ↦ e.coe_fst [GOAL] case neg ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z α : Type u_6 l : Filter α f : α → Z z : Z hz : z ∈ e.source hl : ¬∀ᶠ (x : α) in l, f x ∈ e.source ⊢ ((Tendsto (fun n => ((↑e ∘ f) n).fst) l (𝓝 (proj z)) ∧ Tendsto (fun n => ((↑e ∘ f) n).snd) l (𝓝 (↑e z).snd)) ∧ ∀ᶠ (a : α) in l, f a ∈ e.source) ↔ Tendsto (proj ∘ f) l (𝓝 (proj z)) ∧ Tendsto (fun x => (↑e (f x)).snd) l (𝓝 (↑e z).snd) [PROOFSTEP] simp only [hl, and_false, false_iff, not_and] [GOAL] case neg ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z α : Type u_6 l : Filter α f : α → Z z : Z hz : z ∈ e.source hl : ¬∀ᶠ (x : α) in l, f x ∈ e.source ⊢ Tendsto (proj ∘ f) l (𝓝 (proj z)) → ¬Tendsto (fun x => (↑e (f x)).snd) l (𝓝 (↑e z).snd) [PROOFSTEP] rw [e.source_eq] at hl hz [GOAL] case neg ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z α : Type u_6 l : Filter α f : α → Z z : Z hz : z ∈ proj ⁻¹' e.baseSet hl : ¬∀ᶠ (x : α) in l, f x ∈ proj ⁻¹' e.baseSet ⊢ Tendsto (proj ∘ f) l (𝓝 (proj z)) → ¬Tendsto (fun x => (↑e (f x)).snd) l (𝓝 (↑e z).snd) [PROOFSTEP] exact fun h _ ↦ hl <| h <| e.open_baseSet.mem_nhds hz [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x z : Z hz : z ∈ e.source ⊢ 𝓝 z = comap proj (𝓝 (proj z)) ⊓ comap (Prod.snd ∘ ↑e) (𝓝 (↑e z).snd) [PROOFSTEP] refine eq_of_forall_le_iff fun l ↦ ?_ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x z : Z hz : z ∈ e.source l : Filter Z ⊢ l ≤ 𝓝 z ↔ l ≤ comap proj (𝓝 (proj z)) ⊓ comap (Prod.snd ∘ ↑e) (𝓝 (↑e z).snd) [PROOFSTEP] rw [le_inf_iff, ← tendsto_iff_comap, ← tendsto_iff_comap] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x z : Z hz : z ∈ e.source l : Filter Z ⊢ l ≤ 𝓝 z ↔ Tendsto proj l (𝓝 (proj z)) ∧ Tendsto (Prod.snd ∘ ↑e) l (𝓝 (↑e z).snd) [PROOFSTEP] exact e.tendsto_nhds_iff hz [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z b : B hb : b ∈ e.baseSet p : F ⊢ ↑(LocalHomeomorph.symm e.toLocalHomeomorph) (b, p) ∈ proj ⁻¹' {b} [PROOFSTEP] rw [mem_preimage, e.proj_symm_apply' hb, mem_singleton_iff] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z Z' : Type u_6 inst✝ : TopologicalSpace Z' h : Z' ≃ₜ Z ⊢ (LocalHomeomorph.trans (Homeomorph.toLocalHomeomorph h) e.toLocalHomeomorph).toLocalEquiv.source = proj ∘ ↑h ⁻¹' e.baseSet [PROOFSTEP] simp [source_eq, preimage_preimage, (· ∘ ·)] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z Z' : Type u_6 inst✝ : TopologicalSpace Z' h : Z' ≃ₜ Z ⊢ (LocalHomeomorph.trans (Homeomorph.toLocalHomeomorph h) e.toLocalHomeomorph).toLocalEquiv.target = e.baseSet ×ˢ univ [PROOFSTEP] simp [target_eq] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z Z' : Type u_6 inst✝ : TopologicalSpace Z' h : Z' ≃ₜ Z p : Z' hp : p ∈ (LocalHomeomorph.trans (Homeomorph.toLocalHomeomorph h) e.toLocalHomeomorph).toLocalEquiv.source ⊢ (↑(LocalHomeomorph.trans (Homeomorph.toLocalHomeomorph h) e.toLocalHomeomorph) p).fst = (proj ∘ ↑h) p [PROOFSTEP] have hp : h p ∈ e.source := by simpa using hp [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z Z' : Type u_6 inst✝ : TopologicalSpace Z' h : Z' ≃ₜ Z p : Z' hp : p ∈ (LocalHomeomorph.trans (Homeomorph.toLocalHomeomorph h) e.toLocalHomeomorph).toLocalEquiv.source ⊢ ↑h p ∈ e.source [PROOFSTEP] simpa using hp [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z Z' : Type u_6 inst✝ : TopologicalSpace Z' h : Z' ≃ₜ Z p : Z' hp✝ : p ∈ (LocalHomeomorph.trans (Homeomorph.toLocalHomeomorph h) e.toLocalHomeomorph).toLocalEquiv.source hp : ↑h p ∈ e.source ⊢ (↑(LocalHomeomorph.trans (Homeomorph.toLocalHomeomorph h) e.toLocalHomeomorph) p).fst = (proj ∘ ↑h) p [PROOFSTEP] simp [hp] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z X : Type u_6 inst✝ : TopologicalSpace X f : Z → X z : Z e : Trivialization F proj he : proj z ∈ e.baseSet hf : ContinuousAt (f ∘ ↑(LocalEquiv.symm e.toLocalEquiv)) (↑e z) ⊢ ContinuousAt f z [PROOFSTEP] have hez : z ∈ e.toLocalEquiv.symm.target := by rw [LocalEquiv.symm_target, e.mem_source] exact he [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z X : Type u_6 inst✝ : TopologicalSpace X f : Z → X z : Z e : Trivialization F proj he : proj z ∈ e.baseSet hf : ContinuousAt (f ∘ ↑(LocalEquiv.symm e.toLocalEquiv)) (↑e z) ⊢ z ∈ (LocalEquiv.symm e.toLocalEquiv).target [PROOFSTEP] rw [LocalEquiv.symm_target, e.mem_source] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z X : Type u_6 inst✝ : TopologicalSpace X f : Z → X z : Z e : Trivialization F proj he : proj z ∈ e.baseSet hf : ContinuousAt (f ∘ ↑(LocalEquiv.symm e.toLocalEquiv)) (↑e z) ⊢ proj z ∈ e.baseSet [PROOFSTEP] exact he [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z X : Type u_6 inst✝ : TopologicalSpace X f : Z → X z : Z e : Trivialization F proj he : proj z ∈ e.baseSet hf : ContinuousAt (f ∘ ↑(LocalEquiv.symm e.toLocalEquiv)) (↑e z) hez : z ∈ (LocalEquiv.symm e.toLocalEquiv).target ⊢ ContinuousAt f z [PROOFSTEP] rwa [e.toLocalHomeomorph.symm.continuousAt_iff_continuousAt_comp_right hez, LocalHomeomorph.symm_symm] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z X : Type u_6 inst✝ : TopologicalSpace X f : X → Z x : X e : Trivialization F proj hf_proj : ContinuousAt (proj ∘ f) x he : proj (f x) ∈ e.baseSet hf : ContinuousAt (↑e ∘ f) x ⊢ ContinuousAt f x [PROOFSTEP] rw [e.continuousAt_iff_continuousAt_comp_left] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z X : Type u_6 inst✝ : TopologicalSpace X f : X → Z x : X e : Trivialization F proj hf_proj : ContinuousAt (proj ∘ f) x he : proj (f x) ∈ e.baseSet hf : ContinuousAt (↑e ∘ f) x ⊢ ContinuousAt (↑e.toLocalHomeomorph ∘ f) x [PROOFSTEP] exact hf [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z X : Type u_6 inst✝ : TopologicalSpace X f : X → Z x : X e : Trivialization F proj hf_proj : ContinuousAt (proj ∘ f) x he : proj (f x) ∈ e.baseSet hf : ContinuousAt (↑e ∘ f) x ⊢ f ⁻¹' e.source ∈ 𝓝 x [PROOFSTEP] rw [e.source_eq, ← preimage_comp] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z X : Type u_6 inst✝ : TopologicalSpace X f : X → Z x : X e : Trivialization F proj hf_proj : ContinuousAt (proj ∘ f) x he : proj (f x) ∈ e.baseSet hf : ContinuousAt (↑e ∘ f) x ⊢ proj ∘ f ⁻¹' e.baseSet ∈ 𝓝 x [PROOFSTEP] exact hf_proj.preimage_mem_nhds (e.open_baseSet.mem_nhds he) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b inst✝ : (x : B) → Zero (E x) e : Trivialization F TotalSpace.proj ⊢ ContinuousOn (fun z => TotalSpace.mk' F z.fst (Trivialization.symm e z.fst z.snd)) (e.baseSet ×ˢ univ) [PROOFSTEP] have : ∀ z ∈ e.baseSet ×ˢ (univ : Set F), TotalSpace.mk z.1 (e.symm z.1 z.2) = e.toLocalHomeomorph.symm z := by rintro x ⟨hx : x.1 ∈ e.baseSet, _⟩ rw [e.mk_symm hx] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b inst✝ : (x : B) → Zero (E x) e : Trivialization F TotalSpace.proj ⊢ ∀ (z : B × F), z ∈ e.baseSet ×ˢ univ → { proj := z.fst, snd := Trivialization.symm e z.fst z.snd } = ↑(LocalHomeomorph.symm e.toLocalHomeomorph) z [PROOFSTEP] rintro x ⟨hx : x.1 ∈ e.baseSet, _⟩ [GOAL] case intro ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b inst✝ : (x : B) → Zero (E x) e : Trivialization F TotalSpace.proj x : B × F hx : x.fst ∈ e.baseSet right✝ : x.snd ∈ univ ⊢ { proj := x.fst, snd := Trivialization.symm e x.fst x.snd } = ↑(LocalHomeomorph.symm e.toLocalHomeomorph) x [PROOFSTEP] rw [e.mk_symm hx] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b inst✝ : (x : B) → Zero (E x) e : Trivialization F TotalSpace.proj this : ∀ (z : B × F), z ∈ e.baseSet ×ˢ univ → { proj := z.fst, snd := Trivialization.symm e z.fst z.snd } = ↑(LocalHomeomorph.symm e.toLocalHomeomorph) z ⊢ ContinuousOn (fun z => TotalSpace.mk' F z.fst (Trivialization.symm e z.fst z.snd)) (e.baseSet ×ˢ univ) [PROOFSTEP] refine' ContinuousOn.congr _ this [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b inst✝ : (x : B) → Zero (E x) e : Trivialization F TotalSpace.proj this : ∀ (z : B × F), z ∈ e.baseSet ×ˢ univ → { proj := z.fst, snd := Trivialization.symm e z.fst z.snd } = ↑(LocalHomeomorph.symm e.toLocalHomeomorph) z ⊢ ContinuousOn (fun x => ↑(LocalHomeomorph.symm e.toLocalHomeomorph) x) (e.baseSet ×ˢ univ) [PROOFSTEP] rw [← e.target_eq] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b inst✝ : (x : B) → Zero (E x) e : Trivialization F TotalSpace.proj this : ∀ (z : B × F), z ∈ e.baseSet ×ˢ univ → { proj := z.fst, snd := Trivialization.symm e z.fst z.snd } = ↑(LocalHomeomorph.symm e.toLocalHomeomorph) z ⊢ ContinuousOn (fun x => ↑(LocalHomeomorph.symm e.toLocalHomeomorph) x) e.target [PROOFSTEP] exact e.toLocalHomeomorph.continuousOn_symm [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b F' : Type u_6 inst✝ : TopologicalSpace F' e : Trivialization F proj h : F ≃ₜ F' ⊢ (LocalHomeomorph.transHomeomorph e.toLocalHomeomorph (Homeomorph.prodCongr (Homeomorph.refl B) h)).toLocalEquiv.target = e.baseSet ×ˢ univ [PROOFSTEP] simp [target_eq, prod_univ, preimage_preimage] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ (b, coordChange e₁ e₂ b x) = ↑e₂ (↑(LocalHomeomorph.symm e₁.toLocalHomeomorph) (b, x)) [PROOFSTEP] refine' Prod.ext _ rfl [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ (b, coordChange e₁ e₂ b x).fst = (↑e₂ (↑(LocalHomeomorph.symm e₁.toLocalHomeomorph) (b, x))).fst [PROOFSTEP] rw [e₂.coe_fst', ← e₁.coe_fst', e₁.apply_symm_apply' h₁] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ proj (↑(LocalHomeomorph.symm e₁.toLocalHomeomorph) (b, x)) ∈ e₁.baseSet [PROOFSTEP] rwa [e₁.proj_symm_apply' h₁] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ proj (↑(LocalHomeomorph.symm e₁.toLocalHomeomorph) (b, x)) ∈ e₂.baseSet [PROOFSTEP] rwa [e₁.proj_symm_apply' h₁] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b e₁ e₂ : Trivialization F proj p : Z h : proj p ∈ e₁.baseSet ⊢ coordChange e₁ e₂ (proj p) (↑e₁ p).snd = (↑e₂ p).snd [PROOFSTEP] rw [coordChange, e₁.symm_apply_mk_proj (e₁.mem_source.2 h)] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e : Trivialization F proj b : B h : b ∈ e.baseSet x : F ⊢ coordChange e e b x = x [PROOFSTEP] rw [coordChange, e.apply_symm_apply' h] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ e₃ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ coordChange e₂ e₃ b (coordChange e₁ e₂ b x) = coordChange e₁ e₃ b x [PROOFSTEP] rw [coordChange, e₁.mk_coordChange _ h₁ h₂, ← e₂.coe_coe, e₂.left_inv, coordChange] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ e₃ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ ↑(LocalHomeomorph.symm e₁.toLocalHomeomorph) (b, x) ∈ e₂.source [PROOFSTEP] rwa [e₂.mem_source, e₁.proj_symm_apply' h₁] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet ⊢ Continuous (coordChange e₁ e₂ b) [PROOFSTEP] refine' continuous_snd.comp (e₂.toLocalHomeomorph.continuousOn.comp_continuous (e₁.toLocalHomeomorph.continuousOn_symm.comp_continuous _ _) _) [GOAL] case refine'_1 ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet ⊢ Continuous fun x => (b, x) [PROOFSTEP] exact continuous_const.prod_mk continuous_id [GOAL] case refine'_2 ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet ⊢ ∀ (x : F), (b, x) ∈ e₁.target [PROOFSTEP] exact fun x => e₁.mem_target.2 h₁ [GOAL] case refine'_3 ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet ⊢ ∀ (x : F), ↑(LocalHomeomorph.symm e₁.toLocalHomeomorph) (b, x) ∈ e₂.source [PROOFSTEP] intro x [GOAL] case refine'_3 ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ ↑(LocalHomeomorph.symm e₁.toLocalHomeomorph) (b, x) ∈ e₂.source [PROOFSTEP] rwa [e₂.mem_source, e₁.proj_symm_apply' h₁] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ coordChange e₂ e₁ b (coordChange e₁ e₂ b x) = x [PROOFSTEP] simp only [*, coordChange_coordChange, coordChange_same_apply] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝³ : TopologicalSpace B inst✝² : TopologicalSpace F proj : Z → B inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace (TotalSpace F E) e : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b✝ : B y : E b✝ e₁ e₂ : Trivialization F proj b : B h₁ : b ∈ e₁.baseSet h₂ : b ∈ e₂.baseSet x : F ⊢ coordChange e₁ e₂ b (coordChange e₂ e₁ b x) = x [PROOFSTEP] simp only [*, coordChange_coordChange, coordChange_same_apply] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e : Trivialization F proj s : Set B x : Z hx : x ∈ e.source ⊢ ↑e.toLocalHomeomorph x ∈ s ×ˢ univ ↔ x ∈ proj ⁻¹' s [PROOFSTEP] simp [e.coe_fst', hx] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e : Trivialization F proj s : Set B hs : IsOpen s ⊢ (LocalHomeomorph.symm (LocalHomeomorph.IsImage.restr (_ : LocalHomeomorph.IsImage (LocalHomeomorph.symm e.toLocalHomeomorph) (s ×ˢ univ) (proj ⁻¹' s)) (_ : IsOpen ((LocalHomeomorph.symm e.toLocalHomeomorph).toLocalEquiv.source ∩ s ×ˢ univ)))).toLocalEquiv.source = proj ⁻¹' (e.baseSet ∩ s) [PROOFSTEP] simp [source_eq] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e : Trivialization F proj s : Set B hs : IsOpen s ⊢ (LocalHomeomorph.symm (LocalHomeomorph.IsImage.restr (_ : LocalHomeomorph.IsImage (LocalHomeomorph.symm e.toLocalHomeomorph) (s ×ˢ univ) (proj ⁻¹' s)) (_ : IsOpen ((LocalHomeomorph.symm e.toLocalHomeomorph).toLocalEquiv.source ∩ s ×ˢ univ)))).toLocalEquiv.target = (e.baseSet ∩ s) ×ˢ univ [PROOFSTEP] simp [target_eq, prod_univ] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e : Trivialization F proj s : Set B ⊢ e.source ∩ frontier (proj ⁻¹' s) = proj ⁻¹' (e.baseSet ∩ frontier s) [PROOFSTEP] rw [← (e.isImage_preimage_prod s).frontier.preimage_eq, frontier_prod_univ_eq, (e.isImage_preimage_prod _).preimage_eq, e.source_eq, preimage_inter] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj s : Set B Hs : e.baseSet ∩ frontier s = e'.baseSet ∩ frontier s Heq : EqOn (↑e) (↑e') (proj ⁻¹' (e.baseSet ∩ frontier s)) ⊢ e.source ∩ frontier (proj ⁻¹' s) = e'.source ∩ frontier (proj ⁻¹' s) [PROOFSTEP] rw [e.frontier_preimage, e'.frontier_preimage, Hs] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj s : Set B Hs : e.baseSet ∩ frontier s = e'.baseSet ∩ frontier s Heq : EqOn (↑e) (↑e') (proj ⁻¹' (e.baseSet ∩ frontier s)) ⊢ EqOn (↑e.toLocalHomeomorph) (↑e'.toLocalHomeomorph) (e.source ∩ frontier (proj ⁻¹' s)) [PROOFSTEP] rwa [e.frontier_preimage] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj s : Set B Hs : e.baseSet ∩ frontier s = e'.baseSet ∩ frontier s Heq : EqOn (↑e) (↑e') (proj ⁻¹' (e.baseSet ∩ frontier s)) ⊢ (LocalHomeomorph.piecewise e.toLocalHomeomorph e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ) (_ : LocalHomeomorph.IsImage e.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : LocalHomeomorph.IsImage e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : e.source ∩ frontier (proj ⁻¹' s) = e'.source ∩ frontier (proj ⁻¹' s)) (_ : EqOn (↑e.toLocalHomeomorph) (↑e'.toLocalHomeomorph) (e.source ∩ frontier (proj ⁻¹' s)))).toLocalEquiv.source = proj ⁻¹' Set.ite s e.baseSet e'.baseSet [PROOFSTEP] simp [source_eq] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj s : Set B Hs : e.baseSet ∩ frontier s = e'.baseSet ∩ frontier s Heq : EqOn (↑e) (↑e') (proj ⁻¹' (e.baseSet ∩ frontier s)) ⊢ (LocalHomeomorph.piecewise e.toLocalHomeomorph e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ) (_ : LocalHomeomorph.IsImage e.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : LocalHomeomorph.IsImage e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : e.source ∩ frontier (proj ⁻¹' s) = e'.source ∩ frontier (proj ⁻¹' s)) (_ : EqOn (↑e.toLocalHomeomorph) (↑e'.toLocalHomeomorph) (e.source ∩ frontier (proj ⁻¹' s)))).toLocalEquiv.target = Set.ite s e.baseSet e'.baseSet ×ˢ univ [PROOFSTEP] simp [target_eq, prod_univ] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj s : Set B Hs : e.baseSet ∩ frontier s = e'.baseSet ∩ frontier s Heq : EqOn (↑e) (↑e') (proj ⁻¹' (e.baseSet ∩ frontier s)) p : Z ⊢ p ∈ (LocalHomeomorph.piecewise e.toLocalHomeomorph e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ) (_ : LocalHomeomorph.IsImage e.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : LocalHomeomorph.IsImage e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : e.source ∩ frontier (proj ⁻¹' s) = e'.source ∩ frontier (proj ⁻¹' s)) (_ : EqOn (↑e.toLocalHomeomorph) (↑e'.toLocalHomeomorph) (e.source ∩ frontier (proj ⁻¹' s)))).toLocalEquiv.source → (↑(LocalHomeomorph.piecewise e.toLocalHomeomorph e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ) (_ : LocalHomeomorph.IsImage e.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : LocalHomeomorph.IsImage e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : e.source ∩ frontier (proj ⁻¹' s) = e'.source ∩ frontier (proj ⁻¹' s)) (_ : EqOn (↑e.toLocalHomeomorph) (↑e'.toLocalHomeomorph) (e.source ∩ frontier (proj ⁻¹' s)))) p).fst = proj p [PROOFSTEP] rintro (⟨he, hs⟩ | ⟨he, hs⟩) -- porting note: was `<;> simp [*]` [GOAL] case inl.intro ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj s : Set B Hs : e.baseSet ∩ frontier s = e'.baseSet ∩ frontier s Heq : EqOn (↑e) (↑e') (proj ⁻¹' (e.baseSet ∩ frontier s)) p : Z he : p ∈ e.source hs : p ∈ proj ⁻¹' s ⊢ (↑(LocalHomeomorph.piecewise e.toLocalHomeomorph e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ) (_ : LocalHomeomorph.IsImage e.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : LocalHomeomorph.IsImage e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : e.source ∩ frontier (proj ⁻¹' s) = e'.source ∩ frontier (proj ⁻¹' s)) (_ : EqOn (↑e.toLocalHomeomorph) (↑e'.toLocalHomeomorph) (e.source ∩ frontier (proj ⁻¹' s)))) p).fst = proj p [PROOFSTEP] simp [piecewise_eq_of_mem _ _ _ hs, *] [GOAL] case inr.intro ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj s : Set B Hs : e.baseSet ∩ frontier s = e'.baseSet ∩ frontier s Heq : EqOn (↑e) (↑e') (proj ⁻¹' (e.baseSet ∩ frontier s)) p : Z he : p ∈ e'.source hs : ¬p ∈ proj ⁻¹' s ⊢ (↑(LocalHomeomorph.piecewise e.toLocalHomeomorph e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ) (_ : LocalHomeomorph.IsImage e.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : LocalHomeomorph.IsImage e'.toLocalHomeomorph (proj ⁻¹' s) (s ×ˢ univ)) (_ : e.source ∩ frontier (proj ⁻¹' s) = e'.source ∩ frontier (proj ⁻¹' s)) (_ : EqOn (↑e.toLocalHomeomorph) (↑e'.toLocalHomeomorph) (e.source ∩ frontier (proj ⁻¹' s)))) p).fst = proj p [PROOFSTEP] simp [piecewise_eq_of_not_mem _ _ _ hs, *] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F proj : Z → B inst✝⁴ : TopologicalSpace Z inst✝³ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝² : TopologicalSpace B' inst✝¹ : LinearOrder B inst✝ : OrderTopology B e e' : Trivialization F proj a : B He : a ∈ e.baseSet He' : a ∈ e'.baseSet Heq : ∀ (p : Z), proj p = a → ↑e p = ↑e' p x : B hx : x ∈ frontier (Iic a) ⊢ x ∈ e.baseSet ↔ x ∈ e'.baseSet [PROOFSTEP] obtain rfl : x = a := mem_singleton_iff.1 (frontier_Iic_subset _ hx) [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F proj : Z → B inst✝⁴ : TopologicalSpace Z inst✝³ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝² : TopologicalSpace B' inst✝¹ : LinearOrder B inst✝ : OrderTopology B e e' : Trivialization F proj x : B He : x ∈ e.baseSet He' : x ∈ e'.baseSet Heq : ∀ (p : Z), proj p = x → ↑e p = ↑e' p hx : x ∈ frontier (Iic x) ⊢ x ∈ e.baseSet ↔ x ∈ e'.baseSet [PROOFSTEP] simp [He, He'] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F proj : Z → B inst✝⁴ : TopologicalSpace Z inst✝³ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝² : TopologicalSpace B' inst✝¹ : LinearOrder B inst✝ : OrderTopology B e e' : Trivialization F proj a : B He : a ∈ e.baseSet He' : a ∈ e'.baseSet ⊢ ∀ (p : Z), proj p = a → ↑e p = ↑(transFiberHomeomorph e' (Trivialization.coordChangeHomeomorph e' e He' He)) p [PROOFSTEP] rintro p rfl [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F proj : Z → B inst✝⁴ : TopologicalSpace Z inst✝³ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝² : TopologicalSpace B' inst✝¹ : LinearOrder B inst✝ : OrderTopology B e e' : Trivialization F proj p : Z He : proj p ∈ e.baseSet He' : proj p ∈ e'.baseSet ⊢ ↑e p = ↑(transFiberHomeomorph e' (Trivialization.coordChangeHomeomorph e' e He' He)) p [PROOFSTEP] ext1 [GOAL] case h₁ ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F proj : Z → B inst✝⁴ : TopologicalSpace Z inst✝³ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝² : TopologicalSpace B' inst✝¹ : LinearOrder B inst✝ : OrderTopology B e e' : Trivialization F proj p : Z He : proj p ∈ e.baseSet He' : proj p ∈ e'.baseSet ⊢ (↑e p).fst = (↑(transFiberHomeomorph e' (Trivialization.coordChangeHomeomorph e' e He' He)) p).fst [PROOFSTEP] simp [e.coe_fst', e'.coe_fst', *] [GOAL] case h₂ ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁶ : TopologicalSpace B inst✝⁵ : TopologicalSpace F proj : Z → B inst✝⁴ : TopologicalSpace Z inst✝³ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝² : TopologicalSpace B' inst✝¹ : LinearOrder B inst✝ : OrderTopology B e e' : Trivialization F proj p : Z He : proj p ∈ e.baseSet He' : proj p ∈ e'.baseSet ⊢ (↑e p).snd = (↑(transFiberHomeomorph e' (Trivialization.coordChangeHomeomorph e' e He' He)) p).snd [PROOFSTEP] simp [coordChange_apply_snd, *] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet ⊢ Disjoint e.source e'.source [PROOFSTEP] rw [e.source_eq, e'.source_eq] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet ⊢ Disjoint (proj ⁻¹' e.baseSet) (proj ⁻¹' e'.baseSet) [PROOFSTEP] exact H.preimage _ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet ⊢ Disjoint e.target e'.target [PROOFSTEP] rw [e.target_eq, e'.target_eq, disjoint_iff_inf_le] [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet ⊢ e.baseSet ×ˢ univ ⊓ e'.baseSet ×ˢ univ ≤ ⊥ [PROOFSTEP] intro x hx [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x✝ : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet x : B × F hx : x ∈ e.baseSet ×ˢ univ ⊓ e'.baseSet ×ˢ univ ⊢ x ∈ ⊥ [PROOFSTEP] exact H.le_bot ⟨hx.1.1, hx.2.1⟩ [GOAL] ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet ⊢ ∀ (p : Z), p ∈ (LocalHomeomorph.disjointUnion e.toLocalHomeomorph e'.toLocalHomeomorph (_ : Disjoint e.source e'.source) (_ : Disjoint e.target e'.target)).toLocalEquiv.source → (↑(LocalHomeomorph.disjointUnion e.toLocalHomeomorph e'.toLocalHomeomorph (_ : Disjoint e.source e'.source) (_ : Disjoint e.target e'.target)) p).fst = proj p [PROOFSTEP] rintro p (hp | hp') [GOAL] case inl ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet p : Z hp : p ∈ e.source ⊢ (↑(LocalHomeomorph.disjointUnion e.toLocalHomeomorph e'.toLocalHomeomorph (_ : Disjoint e.source e'.source) (_ : Disjoint e.target e'.target)) p).fst = proj p [PROOFSTEP] show (e.source.piecewise e e' p).1 = proj p [GOAL] case inl ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet p : Z hp : p ∈ e.source ⊢ (Set.piecewise e.source (↑e) (↑e') p).fst = proj p [PROOFSTEP] rw [piecewise_eq_of_mem, e.coe_fst] [GOAL] case inl ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet p : Z hp : p ∈ e.source ⊢ p ∈ e.source [PROOFSTEP] exact hp [GOAL] case inl.hi ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet p : Z hp : p ∈ e.source ⊢ p ∈ e.source [PROOFSTEP] exact hp [GOAL] case inr ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet p : Z hp' : p ∈ e'.source ⊢ (↑(LocalHomeomorph.disjointUnion e.toLocalHomeomorph e'.toLocalHomeomorph (_ : Disjoint e.source e'.source) (_ : Disjoint e.target e'.target)) p).fst = proj p [PROOFSTEP] show (e.source.piecewise e e' p).1 = proj p [GOAL] case inr ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet p : Z hp' : p ∈ e'.source ⊢ (Set.piecewise e.source (↑e) (↑e') p).fst = proj p [PROOFSTEP] rw [piecewise_eq_of_not_mem, e'.coe_fst hp'] [GOAL] case inr.hi ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet p : Z hp' : p ∈ e'.source ⊢ ¬p ∈ e.source [PROOFSTEP] simp only [source_eq] at hp' ⊢ [GOAL] case inr.hi ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e'✝ : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e e' : Trivialization F proj H : Disjoint e.baseSet e'.baseSet p : Z hp' : p ∈ proj ⁻¹' e'.baseSet ⊢ ¬p ∈ proj ⁻¹' e.baseSet [PROOFSTEP] exact fun h => H.le_bot ⟨h, hp'⟩
{"mathlib_filename": "Mathlib.Topology.FiberBundle.Trivialization", "llama_tokens": 31632}
{"mathlib_filename": "Mathlib.Lean.Expr.Basic", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : LocallyCompactSpace α inst✝¹ : Mul β inst✝ : ContinuousMul β ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] refine' continuous_of_continuous_uncurry _ _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : LocallyCompactSpace α inst✝¹ : Mul β inst✝ : ContinuousMul β ⊢ Continuous (Function.uncurry fun x y => ↑(x.fst * x.snd) y) [PROOFSTEP] have h1 : Continuous fun x : (C(α, β) × C(α, β)) × α => x.fst.fst x.snd := continuous_eval'.comp (continuous_fst.prod_map continuous_id) [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : LocallyCompactSpace α inst✝¹ : Mul β inst✝ : ContinuousMul β h1 : Continuous fun x => ↑x.fst.fst x.snd ⊢ Continuous (Function.uncurry fun x y => ↑(x.fst * x.snd) y) [PROOFSTEP] have h2 : Continuous fun x : (C(α, β) × C(α, β)) × α => x.fst.snd x.snd := continuous_eval'.comp (continuous_snd.prod_map continuous_id) [GOAL] α : Type u_1 β : Type u_2 inst✝⁴ : TopologicalSpace α inst✝³ : TopologicalSpace β inst✝² : LocallyCompactSpace α inst✝¹ : Mul β inst✝ : ContinuousMul β h1 : Continuous fun x => ↑x.fst.fst x.snd h2 : Continuous fun x => ↑x.fst.snd x.snd ⊢ Continuous (Function.uncurry fun x y => ↑(x.fst * x.snd) y) [PROOFSTEP] exact h1.mul h2 [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommMonoid β inst✝ : ContinuousMul β ι : Type u_3 s : Finset ι f : ι → C(α, β) a : α ⊢ ↑(∏ i in s, f i) a = ∏ i in s, ↑(f i) a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] letI : UniformSpace β := TopologicalGroup.toUniformSpace β [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this : UniformSpace β := TopologicalGroup.toUniformSpace β ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] have : UniformGroup β := comm_topologicalGroup_is_uniform [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this✝ : UniformSpace β := TopologicalGroup.toUniformSpace β this : UniformGroup β ⊢ Continuous fun p => p.fst * p.snd [PROOFSTEP] rw [continuous_iff_continuousAt] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this✝ : UniformSpace β := TopologicalGroup.toUniformSpace β this : UniformGroup β ⊢ ∀ (x : C(α, β) × C(α, β)), ContinuousAt (fun p => p.fst * p.snd) x [PROOFSTEP] rintro ⟨f, g⟩ [GOAL] case mk α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this✝ : UniformSpace β := TopologicalGroup.toUniformSpace β this : UniformGroup β f g : C(α, β) ⊢ ContinuousAt (fun p => p.fst * p.snd) (f, g) [PROOFSTEP] rw [ContinuousAt, tendsto_iff_forall_compact_tendstoUniformlyOn, nhds_prod_eq] [GOAL] case mk α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this✝ : UniformSpace β := TopologicalGroup.toUniformSpace β this : UniformGroup β f g : C(α, β) ⊢ ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑(i.fst * i.snd) a) (↑((f, g).fst * (f, g).snd)) (nhds f ×ˢ nhds g) K [PROOFSTEP] exact fun K hK => uniformContinuous_mul.comp_tendstoUniformlyOn ((tendsto_iff_forall_compact_tendstoUniformlyOn.mp Filter.tendsto_id K hK).prod (tendsto_iff_forall_compact_tendstoUniformlyOn.mp Filter.tendsto_id K hK)) [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β ⊢ Continuous fun a => a⁻¹ [PROOFSTEP] letI : UniformSpace β := TopologicalGroup.toUniformSpace β [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this : UniformSpace β := TopologicalGroup.toUniformSpace β ⊢ Continuous fun a => a⁻¹ [PROOFSTEP] have : UniformGroup β := comm_topologicalGroup_is_uniform [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this✝ : UniformSpace β := TopologicalGroup.toUniformSpace β this : UniformGroup β ⊢ Continuous fun a => a⁻¹ [PROOFSTEP] rw [continuous_iff_continuousAt] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this✝ : UniformSpace β := TopologicalGroup.toUniformSpace β this : UniformGroup β ⊢ ∀ (x : C(α, β)), ContinuousAt (fun a => a⁻¹) x [PROOFSTEP] intro f [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this✝ : UniformSpace β := TopologicalGroup.toUniformSpace β this : UniformGroup β f : C(α, β) ⊢ ContinuousAt (fun a => a⁻¹) f [PROOFSTEP] rw [ContinuousAt, tendsto_iff_forall_compact_tendstoUniformlyOn] [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β inst✝¹ : CommGroup β inst✝ : TopologicalGroup β this✝ : UniformSpace β := TopologicalGroup.toUniformSpace β this : UniformGroup β f : C(α, β) ⊢ ∀ (K : Set α), IsCompact K → TendstoUniformlyOn (fun i a => ↑i⁻¹ a) (↑f⁻¹) (nhds f) K [PROOFSTEP] exact fun K hK => uniformContinuous_inv.comp_tendstoUniformlyOn (tendsto_iff_forall_compact_tendstoUniformlyOn.mp Filter.tendsto_id K hK) -- TODO: rewrite the next three lemmas for products and deduce sum case via `to_additive`, once -- definition of `tprod` is in place [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β γ : Type u_3 inst✝¹ : AddCommMonoid β inst✝ : ContinuousAdd β f : γ → C(α, β) g : C(α, β) hf : HasSum f g x : α ⊢ HasSum (fun i => ↑(f i) x) (↑g x) [PROOFSTEP] let ev : C(α, β) →+ β := (Pi.evalAddMonoidHom _ x).comp coeFnAddMonoidHom [GOAL] α : Type u_1 β : Type u_2 inst✝³ : TopologicalSpace α inst✝² : TopologicalSpace β γ : Type u_3 inst✝¹ : AddCommMonoid β inst✝ : ContinuousAdd β f : γ → C(α, β) g : C(α, β) hf : HasSum f g x : α ev : C(α, β) →+ β := AddMonoidHom.comp (Pi.evalAddMonoidHom (fun a => β) x) coeFnAddMonoidHom ⊢ HasSum (fun i => ↑(f i) x) (↑g x) [PROOFSTEP] exact hf.map ev (ContinuousMap.continuous_eval_const x) [GOAL] α : Type u_1 β : Type u_2 inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : TopologicalSpace M M₂ : Type u_6 inst✝⁴ : TopologicalSpace M₂ inst✝³ : LocallyCompactSpace α inst✝² : TopologicalSpace R inst✝¹ : SMul R M inst✝ : ContinuousSMul R M ⊢ Continuous fun p => p.fst • p.snd [PROOFSTEP] refine' continuous_of_continuous_uncurry _ _ [GOAL] α : Type u_1 β : Type u_2 inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : TopologicalSpace M M₂ : Type u_6 inst✝⁴ : TopologicalSpace M₂ inst✝³ : LocallyCompactSpace α inst✝² : TopologicalSpace R inst✝¹ : SMul R M inst✝ : ContinuousSMul R M ⊢ Continuous (Function.uncurry fun x y => ↑(x.fst • x.snd) y) [PROOFSTEP] have h : Continuous fun x : (R × C(α, M)) × α => x.fst.snd x.snd := continuous_eval'.comp (continuous_snd.prod_map continuous_id) [GOAL] α : Type u_1 β : Type u_2 inst✝⁷ : TopologicalSpace α inst✝⁶ : TopologicalSpace β R : Type u_3 R₁ : Type u_4 M : Type u_5 inst✝⁵ : TopologicalSpace M M₂ : Type u_6 inst✝⁴ : TopologicalSpace M₂ inst✝³ : LocallyCompactSpace α inst✝² : TopologicalSpace R inst✝¹ : SMul R M inst✝ : ContinuousSMul R M h : Continuous fun x => ↑x.fst.snd x.snd ⊢ Continuous (Function.uncurry fun x y => ↑(x.fst • x.snd) y) [PROOFSTEP] exact (continuous_fst.comp continuous_fst).smul h [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ ⊢ (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1 [PROOFSTEP] ext _ [GOAL] case h α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ a✝ : α ⊢ ↑((fun c => mk fun x => ↑(algebraMap R A) c) 1) a✝ = ↑1 a✝ [PROOFSTEP] exact (algebraMap R A).map_one [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ c₁ c₂ : R ⊢ OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂ [PROOFSTEP] ext _ [GOAL] case h α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ c₁ c₂ : R a✝ : α ⊢ ↑(OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂)) a✝ = ↑(OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) a✝ [PROOFSTEP] exact (algebraMap R A).map_mul _ _ [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) }, map_mul' := (_ : ∀ (c₁ c₂ : R), OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) }) 0 = 0 [PROOFSTEP] ext _ [GOAL] case h α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ a✝ : α ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) }, map_mul' := (_ : ∀ (c₁ c₂ : R), OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) }) 0) a✝ = ↑0 a✝ [PROOFSTEP] exact (algebraMap R A).map_zero [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ c₁ c₂ : R ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) }, map_mul' := (_ : ∀ (c₁ c₂ : R), OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) }) (c₁ + c₂) = OneHom.toFun (↑{ toOneHom := { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) }, map_mul' := (_ : ∀ (c₁ c₂ : R), OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) }) c₁ + OneHom.toFun (↑{ toOneHom := { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) }, map_mul' := (_ : ∀ (c₁ c₂ : R), OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) }) c₂ [PROOFSTEP] ext _ [GOAL] case h α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ c₁ c₂ : R a✝ : α ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) }, map_mul' := (_ : ∀ (c₁ c₂ : R), OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) }) (c₁ + c₂)) a✝ = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) }, map_mul' := (_ : ∀ (c₁ c₂ : R), OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) }) c₁ + OneHom.toFun (↑{ toOneHom := { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) }, map_mul' := (_ : ∀ (c₁ c₂ : R), OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } (c₁ * c₂) = OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₁ * OneHom.toFun { toFun := fun c => mk fun x => ↑(algebraMap R A) c, map_one' := (_ : (fun c => mk fun x => ↑(algebraMap R A) c) 1 = 1) } c₂) }) c₂) a✝ [PROOFSTEP] exact (algebraMap R A).map_add _ _ [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ c : R f : (fun x => C(α, A)) c ⊢ ↑C c * f = f * ↑C c [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ c : R f : (fun x => C(α, A)) c x : α ⊢ ↑(↑C c * f) x = ↑(f * ↑C c) x [PROOFSTEP] exact Algebra.commutes' _ _ [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ c : R f : (fun x => C(α, A)) c ⊢ c • f = ↑C c * f [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ c : R f : (fun x => C(α, A)) c x : α ⊢ ↑(c • f) x = ↑(↑C c * f) x [PROOFSTEP] exact Algebra.smul_def' _ _ [GOAL] α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) ⊢ (fun g => comp g f) 1 = 1 [PROOFSTEP] ext [GOAL] case h α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) a✝ : α ⊢ ↑((fun g => comp g f) 1) a✝ = ↑1 a✝ [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) g₁ g₂ : C(β, A) ⊢ OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂ [PROOFSTEP] ext [GOAL] case h α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) g₁ g₂ : C(β, A) a✝ : α ⊢ ↑(OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂)) a✝ = ↑(OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) a✝ [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) 0 = 0 [PROOFSTEP] ext [GOAL] case h α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) a✝ : α ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) 0) a✝ = ↑0 a✝ [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) g₁ g₂ : C(β, A) ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) (g₁ + g₂) = OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) g₁ + OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) g₂ [PROOFSTEP] ext [GOAL] case h α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) g₁ g₂ : C(β, A) a✝ : α ⊢ ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) (g₁ + g₂)) a✝ = ↑(OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) g₁ + OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) g₂) a✝ [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) r : R ⊢ OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) 0 = 0), map_add' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) (g₁ + g₂) = OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) g₁ + OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) g₂) }) (↑(algebraMap R C(β, A)) r) = ↑(algebraMap R C(α, A)) r [PROOFSTEP] ext [GOAL] case h α✝ : Type u_1 inst✝¹¹ : TopologicalSpace α✝ R : Type u_2 inst✝¹⁰ : CommSemiring R A : Type u_3 inst✝⁹ : TopologicalSpace A inst✝⁸ : Semiring A inst✝⁷ : Algebra R A inst✝⁶ : TopologicalSemiring A A₂ : Type u_4 inst✝⁵ : TopologicalSpace A₂ inst✝⁴ : Semiring A₂ inst✝³ : Algebra R A₂ inst✝² : TopologicalSemiring A₂ α : Type u_5 β : Type u_6 inst✝¹ : TopologicalSpace α inst✝ : TopologicalSpace β f : C(α, β) r : R a✝ : α ⊢ ↑(OneHom.toFun (↑↑{ toMonoidHom := { toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }, map_zero' := (_ : OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) 0 = 0), map_add' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) (g₁ + g₂) = OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) g₁ + OneHom.toFun (↑{ toOneHom := { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) }, map_mul' := (_ : ∀ (g₁ g₂ : C(β, A)), OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } (g₁ * g₂) = OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₁ * OneHom.toFun { toFun := fun g => comp g f, map_one' := (_ : (fun g => comp g f) 1 = 1) } g₂) }) g₂) }) (↑(algebraMap R C(β, A)) r)) a✝ = ↑(↑(algebraMap R C(α, A)) r) a✝ [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ s s' : Subalgebra R C(α, A) r : s ≤ s' h : (fun s => SeparatesPoints s) s x y : α n : x ≠ y ⊢ ∃ f, f ∈ (fun f => ↑f) '' ↑s' ∧ f x ≠ f y [PROOFSTEP] obtain ⟨f, m, w⟩ := h n [GOAL] case intro.intro α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ s s' : Subalgebra R C(α, A) r : s ≤ s' h : (fun s => SeparatesPoints s) s x y : α n : x ≠ y f : α → A m : f ∈ (fun f => ↑f) '' ↑s w : f x ≠ f y ⊢ ∃ f, f ∈ (fun f => ↑f) '' ↑s' ∧ f x ≠ f y [PROOFSTEP] rcases m with ⟨f, ⟨m, rfl⟩⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ s s' : Subalgebra R C(α, A) r : s ≤ s' h : (fun s => SeparatesPoints s) s x y : α n : x ≠ y f : C(α, A) m : f ∈ ↑s w : (fun f => ↑f) f x ≠ (fun f => ↑f) f y ⊢ ∃ f, f ∈ (fun f => ↑f) '' ↑s' ∧ f x ≠ f y [PROOFSTEP] exact ⟨_, ⟨f, ⟨r m, rfl⟩⟩, w⟩ [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ k : R a : α ⊢ ↑(↑(algebraMap R C(α, A)) k) a = k • 1 [PROOFSTEP] rw [Algebra.algebraMap_eq_smul_one] [GOAL] α : Type u_1 inst✝⁹ : TopologicalSpace α R : Type u_2 inst✝⁸ : CommSemiring R A : Type u_3 inst✝⁷ : TopologicalSpace A inst✝⁶ : Semiring A inst✝⁵ : Algebra R A inst✝⁴ : TopologicalSemiring A A₂ : Type u_4 inst✝³ : TopologicalSpace A₂ inst✝² : Semiring A₂ inst✝¹ : Algebra R A₂ inst✝ : TopologicalSemiring A₂ k : R a : α ⊢ ↑(k • 1) a = k • 1 [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f y = v y [PROOFSTEP] by_cases n : x = y [GOAL] case pos α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : x = y ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f y = v y [PROOFSTEP] subst n [GOAL] case pos α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x : α ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f x = v x [PROOFSTEP] refine' ⟨_, (v x • (1 : s) : s).prop, mul_one _, mul_one _⟩ [GOAL] case neg α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : ¬x = y ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f y = v y [PROOFSTEP] obtain ⟨_, ⟨f, hf, rfl⟩, hxy⟩ := h n [GOAL] case neg.intro.intro.intro.intro α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f✝ : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : ¬x = y f : C(α, 𝕜) hf : f ∈ ↑s hxy : (fun f => ↑f) f x ≠ (fun f => ↑f) f y ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f y = v y [PROOFSTEP] replace hxy : f x - f y ≠ 0 := sub_ne_zero_of_ne hxy [GOAL] case neg.intro.intro.intro.intro α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f✝ : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : ¬x = y f : C(α, 𝕜) hf : f ∈ ↑s hxy : ↑f x - ↑f y ≠ 0 ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f y = v y [PROOFSTEP] let a := v x [GOAL] case neg.intro.intro.intro.intro α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f✝ : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : ¬x = y f : C(α, 𝕜) hf : f ∈ ↑s hxy : ↑f x - ↑f y ≠ 0 a : 𝕜 := v x ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f y = v y [PROOFSTEP] let b := v y [GOAL] case neg.intro.intro.intro.intro α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f✝ : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : ¬x = y f : C(α, 𝕜) hf : f ∈ ↑s hxy : ↑f x - ↑f y ≠ 0 a : 𝕜 := v x b : 𝕜 := v y ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f y = v y [PROOFSTEP] let f' : s := ((b - a) * (f x - f y)⁻¹) • (algebraMap _ s (f x) - (⟨f, hf⟩ : s)) + algebraMap _ s a [GOAL] case neg.intro.intro.intro.intro α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f✝ : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : ¬x = y f : C(α, 𝕜) hf : f ∈ ↑s hxy : ↑f x - ↑f y ≠ 0 a : 𝕜 := v x b : 𝕜 := v y f' : { x // x ∈ s } := ((b - a) * (↑f x - ↑f y)⁻¹) • (↑(algebraMap ((fun x => 𝕜) x) { x // x ∈ s }) (↑f x) - { val := f, property := hf }) + ↑(algebraMap 𝕜 { x // x ∈ s }) a ⊢ ∃ f, f ∈ ↑s ∧ ↑f x = v x ∧ ↑f y = v y [PROOFSTEP] refine' ⟨f', f'.prop, _, _⟩ [GOAL] case neg.intro.intro.intro.intro.refine'_1 α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f✝ : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : ¬x = y f : C(α, 𝕜) hf : f ∈ ↑s hxy : ↑f x - ↑f y ≠ 0 a : 𝕜 := v x b : 𝕜 := v y f' : { x // x ∈ s } := ((b - a) * (↑f x - ↑f y)⁻¹) • (↑(algebraMap ((fun x => 𝕜) x) { x // x ∈ s }) (↑f x) - { val := f, property := hf }) + ↑(algebraMap 𝕜 { x // x ∈ s }) a ⊢ ↑↑f' x = v x [PROOFSTEP] simp [GOAL] case neg.intro.intro.intro.intro.refine'_2 α : Type u_1 inst✝¹² : TopologicalSpace α R : Type u_2 inst✝¹¹ : CommSemiring R A : Type u_3 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : Algebra R A inst✝⁷ : TopologicalSemiring A A₂ : Type u_4 inst✝⁶ : TopologicalSpace A₂ inst✝⁵ : Semiring A₂ inst✝⁴ : Algebra R A₂ inst✝³ : TopologicalSemiring A₂ 𝕜 : Type u_5 inst✝² : TopologicalSpace 𝕜 s✝ : Set C(α, 𝕜) f✝ : ↑s✝ x✝ : α inst✝¹ : Field 𝕜 inst✝ : TopologicalRing 𝕜 s : Subalgebra 𝕜 C(α, 𝕜) h : SeparatesPoints s v : α → 𝕜 x y : α n : ¬x = y f : C(α, 𝕜) hf : f ∈ ↑s hxy : ↑f x - ↑f y ≠ 0 a : 𝕜 := v x b : 𝕜 := v y f' : { x // x ∈ s } := ((b - a) * (↑f x - ↑f y)⁻¹) • (↑(algebraMap ((fun x => 𝕜) x) { x // x ∈ s }) (↑f x) - { val := f, property := hf }) + ↑(algebraMap 𝕜 { x // x ∈ s }) a ⊢ ↑↑f' y = v y [PROOFSTEP] simp [inv_mul_cancel_right₀ hxy] [GOAL] α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) ⊢ s₁ = s₂ [PROOFSTEP] cases isEmpty_or_nonempty α [GOAL] case inl α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : IsEmpty α ⊢ s₁ = s₂ [PROOFSTEP] haveI : Subsingleton C(α, R) := FunLike.coe_injective.subsingleton [GOAL] case inl α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : IsEmpty α this : Subsingleton C(α, R) ⊢ s₁ = s₂ [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case inr α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α ⊢ s₁ = s₂ [PROOFSTEP] inhabit α [GOAL] case inr α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α inhabited_h : Inhabited α ⊢ s₁ = s₂ [PROOFSTEP] ext f [GOAL] case inr.h α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α inhabited_h : Inhabited α f : C(α, R) ⊢ f ∈ s₁ ↔ f ∈ s₂ [PROOFSTEP] have h : f = algebraMap R C(α, R) (f default) := by ext x' simp only [mul_one, Algebra.id.smul_eq_mul, algebraMap_apply] congr simp [GOAL] α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α inhabited_h : Inhabited α f : C(α, R) ⊢ f = ↑(algebraMap R C(α, R)) (↑f default) [PROOFSTEP] ext x' [GOAL] case h α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α inhabited_h : Inhabited α f : C(α, R) x' : α ⊢ ↑f x' = ↑(↑(algebraMap R C(α, R)) (↑f default)) x' [PROOFSTEP] simp only [mul_one, Algebra.id.smul_eq_mul, algebraMap_apply] [GOAL] case h α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α inhabited_h : Inhabited α f : C(α, R) x' : α ⊢ ↑f x' = ↑f default [PROOFSTEP] congr [GOAL] case h.h.e_6.h α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α inhabited_h : Inhabited α f : C(α, R) x' : α ⊢ x' = default [PROOFSTEP] simp [GOAL] case inr.h α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α inhabited_h : Inhabited α f : C(α, R) h : f = ↑(algebraMap R C(α, R)) (↑f default) ⊢ f ∈ s₁ ↔ f ∈ s₂ [PROOFSTEP] rw [h] [GOAL] case inr.h α : Type u_1 inst✝⁴ : TopologicalSpace α R : Type u_2 inst✝³ : CommSemiring R inst✝² : TopologicalSpace R inst✝¹ : TopologicalSemiring R inst✝ : Subsingleton α s₁ s₂ : Subalgebra R C(α, R) h✝ : Nonempty α inhabited_h : Inhabited α f : C(α, R) h : f = ↑(algebraMap R C(α, R)) (↑f default) ⊢ ↑(algebraMap R C(α, R)) (↑f default) ∈ s₁ ↔ ↑(algebraMap R C(α, R)) (↑f default) ∈ s₂ [PROOFSTEP] simp only [Subalgebra.algebraMap_mem] [GOAL] α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M f : C(α, M) ⊢ 1 • f = f [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M f : C(α, M) x : α ⊢ ↑(1 • f) x = ↑f x [PROOFSTEP] exact one_smul R (f x) [GOAL] α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M c₁ c₂ : C(α, R) f : C(α, M) ⊢ (c₁ * c₂) • f = c₁ • c₂ • f [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M c₁ c₂ : C(α, R) f : C(α, M) x : α ⊢ ↑((c₁ * c₂) • f) x = ↑(c₁ • c₂ • f) x [PROOFSTEP] exact mul_smul (c₁ x) (c₂ x) (f x) [GOAL] α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M r : C(α, R) ⊢ r • 0 = 0 [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M r : C(α, R) x : α ⊢ ↑(r • 0) x = ↑0 x [PROOFSTEP] exact smul_zero _ [GOAL] α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M c : C(α, R) f g : C(α, M) ⊢ c • (f + g) = c • f + c • g [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M c : C(α, R) f g : C(α, M) x : α ⊢ ↑(c • (f + g)) x = ↑(c • f + c • g) x [PROOFSTEP] exact smul_add (c x) (f x) (g x) [GOAL] α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M c₁ c₂ : C(α, R) f : C(α, M) ⊢ (c₁ + c₂) • f = c₁ • f + c₂ • f [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M c₁ c₂ : C(α, R) f : C(α, M) x : α ⊢ ↑((c₁ + c₂) • f) x = ↑(c₁ • f + c₂ • f) x [PROOFSTEP] exact add_smul (c₁ x) (c₂ x) (f x) [GOAL] α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M f : C(α, M) ⊢ 0 • f = 0 [PROOFSTEP] ext x [GOAL] case h α : Type u_1 inst✝⁸ : TopologicalSpace α R : Type u_2 inst✝⁷ : Semiring R inst✝⁶ : TopologicalSpace R inst✝⁵ : TopologicalSemiring R M : Type u_3 inst✝⁴ : TopologicalSpace M inst✝³ : AddCommMonoid M inst✝² : ContinuousAdd M inst✝¹ : Module R M inst✝ : ContinuousSMul R M f : C(α, M) x : α ⊢ ↑(0 • f) x = ↑0 x [PROOFSTEP] exact zero_smul _ _ [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹⁴ : TopologicalSpace X inst✝¹³ : TopologicalSpace Y inst✝¹² : TopologicalSpace Z 𝕜 : Type u_4 inst✝¹¹ : CommSemiring 𝕜 A : Type u_5 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : TopologicalSemiring A inst✝⁷ : StarRing A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra 𝕜 A inst✝⁴ : AddCommGroup X inst✝³ : TopologicalAddGroup X inst✝² : AddCommMonoid Y inst✝¹ : ContinuousAdd Y inst✝ : T2Space Y f : C(X, Y) p : X ⊢ Function.Periodic (↑(∑' (n : ℤ), comp f (ContinuousMap.addRight (n • p)))) p [PROOFSTEP] intro x [GOAL] X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹⁴ : TopologicalSpace X inst✝¹³ : TopologicalSpace Y inst✝¹² : TopologicalSpace Z 𝕜 : Type u_4 inst✝¹¹ : CommSemiring 𝕜 A : Type u_5 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : TopologicalSemiring A inst✝⁷ : StarRing A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra 𝕜 A inst✝⁴ : AddCommGroup X inst✝³ : TopologicalAddGroup X inst✝² : AddCommMonoid Y inst✝¹ : ContinuousAdd Y inst✝ : T2Space Y f : C(X, Y) p x : X ⊢ ↑(∑' (n : ℤ), comp f (ContinuousMap.addRight (n • p))) (x + p) = ↑(∑' (n : ℤ), comp f (ContinuousMap.addRight (n • p))) x [PROOFSTEP] by_cases h : Summable fun n : ℤ => f.comp (ContinuousMap.addRight (n • p)) [GOAL] case pos X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹⁴ : TopologicalSpace X inst✝¹³ : TopologicalSpace Y inst✝¹² : TopologicalSpace Z 𝕜 : Type u_4 inst✝¹¹ : CommSemiring 𝕜 A : Type u_5 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : TopologicalSemiring A inst✝⁷ : StarRing A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra 𝕜 A inst✝⁴ : AddCommGroup X inst✝³ : TopologicalAddGroup X inst✝² : AddCommMonoid Y inst✝¹ : ContinuousAdd Y inst✝ : T2Space Y f : C(X, Y) p x : X h : Summable fun n => comp f (ContinuousMap.addRight (n • p)) ⊢ ↑(∑' (n : ℤ), comp f (ContinuousMap.addRight (n • p))) (x + p) = ↑(∑' (n : ℤ), comp f (ContinuousMap.addRight (n • p))) x [PROOFSTEP] convert congr_arg (fun f : C(X, Y) => f x) ((Equiv.addRight (1 : ℤ)).tsum_eq _) using 1 -- Porting note: in mathlib3 the proof from here was: -- simp_rw [←tsum_apply h, ←tsum_apply ((equiv.add_right (1 : ℤ)).summable_iff.mpr h), -- equiv.coe_add_right, comp_apply, coe_add_right, add_one_zsmul, add_comm (_ • p) p, -- ←add_assoc] -- However now the second `←tsum_apply` doesn't fire unless we use `erw`. [GOAL] case h.e'_2 X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹⁴ : TopologicalSpace X inst✝¹³ : TopologicalSpace Y inst✝¹² : TopologicalSpace Z 𝕜 : Type u_4 inst✝¹¹ : CommSemiring 𝕜 A : Type u_5 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : TopologicalSemiring A inst✝⁷ : StarRing A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra 𝕜 A inst✝⁴ : AddCommGroup X inst✝³ : TopologicalAddGroup X inst✝² : AddCommMonoid Y inst✝¹ : ContinuousAdd Y inst✝ : T2Space Y f : C(X, Y) p x : X h : Summable fun n => comp f (ContinuousMap.addRight (n • p)) ⊢ ↑(∑' (n : ℤ), comp f (ContinuousMap.addRight (n • p))) (x + p) = ↑(∑' (c : ℤ), comp f (ContinuousMap.addRight (↑(Equiv.addRight 1) c • p))) x [PROOFSTEP] simp_rw [← tsum_apply h] [GOAL] case h.e'_2 X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹⁴ : TopologicalSpace X inst✝¹³ : TopologicalSpace Y inst✝¹² : TopologicalSpace Z 𝕜 : Type u_4 inst✝¹¹ : CommSemiring 𝕜 A : Type u_5 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : TopologicalSemiring A inst✝⁷ : StarRing A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra 𝕜 A inst✝⁴ : AddCommGroup X inst✝³ : TopologicalAddGroup X inst✝² : AddCommMonoid Y inst✝¹ : ContinuousAdd Y inst✝ : T2Space Y f : C(X, Y) p x : X h : Summable fun n => comp f (ContinuousMap.addRight (n • p)) ⊢ ∑' (i : ℤ), ↑(comp f (ContinuousMap.addRight (i • p))) (x + p) = ↑(∑' (c : ℤ), comp f (ContinuousMap.addRight (↑(Equiv.addRight 1) c • p))) x [PROOFSTEP] erw [← tsum_apply ((Equiv.addRight (1 : ℤ)).summable_iff.mpr h)] [GOAL] case h.e'_2 X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹⁴ : TopologicalSpace X inst✝¹³ : TopologicalSpace Y inst✝¹² : TopologicalSpace Z 𝕜 : Type u_4 inst✝¹¹ : CommSemiring 𝕜 A : Type u_5 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : TopologicalSemiring A inst✝⁷ : StarRing A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra 𝕜 A inst✝⁴ : AddCommGroup X inst✝³ : TopologicalAddGroup X inst✝² : AddCommMonoid Y inst✝¹ : ContinuousAdd Y inst✝ : T2Space Y f : C(X, Y) p x : X h : Summable fun n => comp f (ContinuousMap.addRight (n • p)) ⊢ ∑' (i : ℤ), ↑(comp f (ContinuousMap.addRight (i • p))) (x + p) = ∑' (i : ℤ), ↑(((fun n => comp f (ContinuousMap.addRight (n • p))) ∘ ↑(Equiv.addRight 1)) i) x [PROOFSTEP] simp [coe_addRight, add_one_zsmul, add_comm (_ • p) p, ← add_assoc] [GOAL] case neg X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹⁴ : TopologicalSpace X inst✝¹³ : TopologicalSpace Y inst✝¹² : TopologicalSpace Z 𝕜 : Type u_4 inst✝¹¹ : CommSemiring 𝕜 A : Type u_5 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : TopologicalSemiring A inst✝⁷ : StarRing A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra 𝕜 A inst✝⁴ : AddCommGroup X inst✝³ : TopologicalAddGroup X inst✝² : AddCommMonoid Y inst✝¹ : ContinuousAdd Y inst✝ : T2Space Y f : C(X, Y) p x : X h : ¬Summable fun n => comp f (ContinuousMap.addRight (n • p)) ⊢ ↑(∑' (n : ℤ), comp f (ContinuousMap.addRight (n • p))) (x + p) = ↑(∑' (n : ℤ), comp f (ContinuousMap.addRight (n • p))) x [PROOFSTEP] rw [tsum_eq_zero_of_not_summable h] [GOAL] case neg X : Type u_1 Y : Type u_2 Z : Type u_3 inst✝¹⁴ : TopologicalSpace X inst✝¹³ : TopologicalSpace Y inst✝¹² : TopologicalSpace Z 𝕜 : Type u_4 inst✝¹¹ : CommSemiring 𝕜 A : Type u_5 inst✝¹⁰ : TopologicalSpace A inst✝⁹ : Semiring A inst✝⁸ : TopologicalSemiring A inst✝⁷ : StarRing A inst✝⁶ : ContinuousStar A inst✝⁵ : Algebra 𝕜 A inst✝⁴ : AddCommGroup X inst✝³ : TopologicalAddGroup X inst✝² : AddCommMonoid Y inst✝¹ : ContinuousAdd Y inst✝ : T2Space Y f : C(X, Y) p x : X h : ¬Summable fun n => comp f (ContinuousMap.addRight (n • p)) ⊢ ↑0 (x + p) = ↑0 x [PROOFSTEP] simp only [coe_zero, Pi.zero_apply] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace Y 𝕜 : Type u_3 inst✝⁶ : CommSemiring 𝕜 A : Type u_4 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : TopologicalSemiring A inst✝² : StarRing A inst✝¹ : ContinuousStar A inst✝ : Algebra 𝕜 A f : X ≃ₜ Y src✝ : C(Y, A) →⋆ₐ[𝕜] C(X, A) := ContinuousMap.compStarAlgHom' 𝕜 A (toContinuousMap f) g : C(Y, A) ⊢ ↑(ContinuousMap.compStarAlgHom' 𝕜 A (toContinuousMap (Homeomorph.symm f))) (↑(ContinuousMap.compStarAlgHom' 𝕜 A (toContinuousMap f)) g) = g [PROOFSTEP] simp only [ContinuousMap.compStarAlgHom'_apply, ContinuousMap.comp_assoc, toContinuousMap_comp_symm, ContinuousMap.comp_id] [GOAL] X : Type u_1 Y : Type u_2 inst✝⁸ : TopologicalSpace X inst✝⁷ : TopologicalSpace Y 𝕜 : Type u_3 inst✝⁶ : CommSemiring 𝕜 A : Type u_4 inst✝⁵ : TopologicalSpace A inst✝⁴ : Semiring A inst✝³ : TopologicalSemiring A inst✝² : StarRing A inst✝¹ : ContinuousStar A inst✝ : Algebra 𝕜 A f : X ≃ₜ Y src✝ : C(Y, A) →⋆ₐ[𝕜] C(X, A) := ContinuousMap.compStarAlgHom' 𝕜 A (toContinuousMap f) g : C(X, A) ⊢ ↑(ContinuousMap.compStarAlgHom' 𝕜 A (toContinuousMap f)) (↑(ContinuousMap.compStarAlgHom' 𝕜 A (toContinuousMap (Homeomorph.symm f))) g) = g [PROOFSTEP] simp only [ContinuousMap.compStarAlgHom'_apply, ContinuousMap.comp_assoc, symm_comp_toContinuousMap, ContinuousMap.comp_id]
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Algebra", "llama_tokens": 28920}
[GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P g1 g2 : G p : P h : g1 +ᵥ p = g2 +ᵥ p ⊢ g1 = g2 [PROOFSTEP] rw [← vadd_vsub g1 p, h, vadd_vsub] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P g : G p1 p2 : P ⊢ g +ᵥ p1 -ᵥ p2 = g + (p1 -ᵥ p2) [PROOFSTEP] apply vadd_right_cancel p2 [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P g : G p1 p2 : P ⊢ g +ᵥ p1 -ᵥ p2 +ᵥ p2 = g + (p1 -ᵥ p2) +ᵥ p2 [PROOFSTEP] rw [vsub_vadd, add_vadd, vsub_vadd] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p : P ⊢ p -ᵥ p = 0 [PROOFSTEP] rw [← zero_add (p -ᵥ p), ← vadd_vsub_assoc, vadd_vsub] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 : P h : p1 -ᵥ p2 = 0 ⊢ p1 = p2 [PROOFSTEP] rw [← vsub_vadd p1 p2, h, zero_vadd] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 p3 : P ⊢ p1 -ᵥ p2 + (p2 -ᵥ p3) = p1 -ᵥ p3 [PROOFSTEP] apply vadd_right_cancel p3 [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 p3 : P ⊢ p1 -ᵥ p2 + (p2 -ᵥ p3) +ᵥ p3 = p1 -ᵥ p3 +ᵥ p3 [PROOFSTEP] rw [add_vadd, vsub_vadd, vsub_vadd, vsub_vadd] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 : P ⊢ -(p1 -ᵥ p2) = p2 -ᵥ p1 [PROOFSTEP] refine' neg_eq_of_add_eq_zero_right (vadd_right_cancel p1 _) [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 : P ⊢ p1 -ᵥ p2 + (p2 -ᵥ p1) +ᵥ p1 = 0 +ᵥ p1 [PROOFSTEP] rw [vsub_add_vsub_cancel, vsub_self] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P g : G p q : P ⊢ g +ᵥ p -ᵥ q = g - (q -ᵥ p) [PROOFSTEP] rw [vadd_vsub_assoc, sub_eq_add_neg, neg_vsub_eq_vsub_rev] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 : P g : G ⊢ p1 -ᵥ (g +ᵥ p2) = p1 -ᵥ p2 - g [PROOFSTEP] rw [← add_right_inj (p2 -ᵥ p1 : G), vsub_add_vsub_cancel, ← neg_vsub_eq_vsub_rev, vadd_vsub, ← add_sub_assoc, ← neg_vsub_eq_vsub_rev, neg_add_self, zero_sub] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 p3 : P ⊢ p1 -ᵥ p3 - (p2 -ᵥ p3) = p1 -ᵥ p2 [PROOFSTEP] rw [← vsub_vadd_eq_vsub_sub, vsub_vadd] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P v₁ v₂ : G p₁ p₂ : P ⊢ v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ -v₁ + v₂ = p₁ -ᵥ p₂ [PROOFSTEP] rw [eq_vadd_iff_vsub_eq, vadd_vsub_assoc, ← add_right_inj (-v₁), neg_add_cancel_left, eq_comm] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p : P ⊢ {p} -ᵥ {p} = {0} [PROOFSTEP] rw [Set.singleton_vsub_singleton, vsub_self] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P v₁ v₂ : G p : P ⊢ v₁ +ᵥ p -ᵥ (v₂ +ᵥ p) = v₁ - v₂ [PROOFSTEP] rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, vsub_self, add_zero] [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 p : P h : p1 -ᵥ p = p2 -ᵥ p ⊢ p1 = p2 [PROOFSTEP] rwa [← sub_eq_zero, vsub_sub_vsub_cancel_right, vsub_eq_zero_iff_eq] at h [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 p : P h : p -ᵥ p1 = p -ᵥ p2 ⊢ p1 = p2 [PROOFSTEP] refine' vadd_left_cancel (p -ᵥ p2) _ [GOAL] G : Type u_1 P : Type u_2 inst✝ : AddGroup G T : AddTorsor G P p1 p2 p : P h : p -ᵥ p1 = p -ᵥ p2 ⊢ p -ᵥ p2 +ᵥ p1 = p -ᵥ p2 +ᵥ p2 [PROOFSTEP] rw [vsub_vadd, ← h, vsub_vadd] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddCommGroup G inst✝ : AddTorsor G P p1 p2 p3 : P ⊢ p3 -ᵥ p2 - (p3 -ᵥ p1) = p1 -ᵥ p2 [PROOFSTEP] rw [sub_eq_add_neg, neg_vsub_eq_vsub_rev, add_comm, vsub_add_vsub_cancel] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddCommGroup G inst✝ : AddTorsor G P v : G p1 p2 : P ⊢ v +ᵥ p1 -ᵥ (v +ᵥ p2) = p1 -ᵥ p2 [PROOFSTEP] rw [vsub_vadd_eq_vsub_sub, vadd_vsub_assoc, add_sub_cancel'] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddCommGroup G inst✝ : AddTorsor G P p1 p2 p3 : P ⊢ p1 -ᵥ p2 +ᵥ p3 = p3 -ᵥ p2 +ᵥ p1 [PROOFSTEP] rw [← @vsub_eq_zero_iff_eq G, vadd_vsub_assoc, vsub_vadd_eq_vsub_sub] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddCommGroup G inst✝ : AddTorsor G P p1 p2 p3 : P ⊢ p1 -ᵥ p2 + (p3 -ᵥ p1 - (p3 -ᵥ p2)) = 0 [PROOFSTEP] simp [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddCommGroup G inst✝ : AddTorsor G P v₁ v₂ : G p₁ p₂ : P ⊢ v₁ +ᵥ p₁ = v₂ +ᵥ p₂ ↔ v₂ - v₁ = p₁ -ᵥ p₂ [PROOFSTEP] rw [vadd_eq_vadd_iff_neg_add_eq_vsub, neg_add_eq_sub] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddCommGroup G inst✝ : AddTorsor G P p₁ p₂ p₃ p₄ : P ⊢ p₁ -ᵥ p₂ - (p₃ -ᵥ p₄) = p₁ -ᵥ p₃ - (p₂ -ᵥ p₄) [PROOFSTEP] rw [← vsub_vadd_eq_vsub_sub, vsub_vadd_comm, vsub_vadd_eq_vsub_sub] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P p p' : P ⊢ (fun v => -v +ᵥ p) ((fun x x_1 => x -ᵥ x_1) p p') = p' [PROOFSTEP] simp [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P p : P v : G ⊢ (fun x x_1 => x -ᵥ x_1) p ((fun v => -v +ᵥ p) v) = v [PROOFSTEP] simp [vsub_vadd_eq_vsub_sub] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P v : G p : P ⊢ (fun x x_1 => x +ᵥ x_1) (-v) ((fun x x_1 => x +ᵥ x_1) v p) = p [PROOFSTEP] simp [vadd_vadd] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P v : G p : P ⊢ (fun x x_1 => x +ᵥ x_1) v ((fun x x_1 => x +ᵥ x_1) (-v) p) = p [PROOFSTEP] simp [vadd_vadd] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P x y : P ⊢ -(x -ᵥ ↑(pointReflection x) y) = -(y -ᵥ x) [PROOFSTEP] simp [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P x y : P ⊢ ↑(pointReflection x) y -ᵥ y = 2 • (x -ᵥ y) [PROOFSTEP] simp [pointReflection, two_nsmul, vadd_vsub_assoc] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P x y : P ⊢ -(y -ᵥ ↑(pointReflection x) y) = -(2 • (y -ᵥ x)) [PROOFSTEP] simp [← neg_nsmul] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P x : P ⊢ ∀ (x_1 : P), ↑(pointReflection x).symm x_1 = ↑(pointReflection x) x_1 [PROOFSTEP] simp [pointReflection] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P x y : P ⊢ ↑(pointReflection x) y = ↑(pointReflection x).symm y [PROOFSTEP] rw [pointReflection_symm] [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P x y : P h : Injective bit0 ⊢ ↑(pointReflection x) y = y ↔ y = x [PROOFSTEP] rw [pointReflection_apply, eq_comm, eq_vadd_iff_vsub_eq, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero, h.eq_iff, vsub_eq_zero_iff_eq, eq_comm] [GOAL] G✝ : Type u_1 P✝ : Type u_2 inst✝³ : AddGroup G✝ inst✝² : AddTorsor G✝ P✝ G : Type u_3 P : Type u_4 inst✝¹ : AddCommGroup G inst✝ : AddTorsor G P h : Injective bit0 y x₁ x₂ : P hy : ↑(pointReflection x₁) y = ↑(pointReflection x₂) y ⊢ x₁ = x₂ [PROOFSTEP] rwa [pointReflection_apply, pointReflection_apply, vadd_eq_vadd_iff_sub_eq_vsub, vsub_sub_vsub_cancel_right, ← neg_vsub_eq_vsub_rev, neg_eq_iff_add_eq_zero, ← bit0, ← bit0_zero, h.eq_iff, vsub_eq_zero_iff_eq] at hy [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P ⊢ Subsingleton G ↔ Subsingleton P [PROOFSTEP] inhabit P [GOAL] G : Type u_1 P : Type u_2 inst✝¹ : AddGroup G inst✝ : AddTorsor G P inhabited_h : Inhabited P ⊢ Subsingleton G ↔ Subsingleton P [PROOFSTEP] exact (Equiv.vaddConst default).subsingleton_congr
{"mathlib_filename": "Mathlib.Algebra.AddTorsor", "llama_tokens": 4135}
{"mathlib_filename": "Mathlib.Lean.Meta.Simp", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Meta.DiscrTree", "llama_tokens": 0}
[GOAL] R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A ⊢ lift #{ x // IsAlgebraic R x } ≤ lift #R[X] * ℵ₀ [PROOFSTEP] rw [← mk_uLift, ← mk_uLift] [GOAL] R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A ⊢ #(ULift { x // IsAlgebraic R x }) ≤ #(ULift R[X]) * ℵ₀ [PROOFSTEP] choose g hg₁ hg₂ using fun x : {x : A | IsAlgebraic R x} => x.coe_prop [GOAL] R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A g : ↑{x | IsAlgebraic R x} → R[X] hg₁ : ∀ (x : ↑{x | IsAlgebraic R x}), g x ≠ 0 hg₂ : ∀ (x : ↑{x | IsAlgebraic R x}), ↑(aeval ↑x) (g x) = 0 ⊢ #(ULift { x // IsAlgebraic R x }) ≤ #(ULift R[X]) * ℵ₀ [PROOFSTEP] refine' lift_mk_le_lift_mk_mul_of_lift_mk_preimage_le g fun f => _ [GOAL] R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A g : ↑{x | IsAlgebraic R x} → R[X] hg₁ : ∀ (x : ↑{x | IsAlgebraic R x}), g x ≠ 0 hg₂ : ∀ (x : ↑{x | IsAlgebraic R x}), ↑(aeval ↑x) (g x) = 0 f : R[X] ⊢ lift #↑(g ⁻¹' {f}) ≤ ℵ₀ [PROOFSTEP] rw [lift_le_aleph0, le_aleph0_iff_set_countable] [GOAL] R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A g : ↑{x | IsAlgebraic R x} → R[X] hg₁ : ∀ (x : ↑{x | IsAlgebraic R x}), g x ≠ 0 hg₂ : ∀ (x : ↑{x | IsAlgebraic R x}), ↑(aeval ↑x) (g x) = 0 f : R[X] ⊢ Set.Countable (g ⁻¹' {f}) [PROOFSTEP] suffices : MapsTo (↑) (g ⁻¹' { f }) (f.rootSet A) [GOAL] R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A g : ↑{x | IsAlgebraic R x} → R[X] hg₁ : ∀ (x : ↑{x | IsAlgebraic R x}), g x ≠ 0 hg₂ : ∀ (x : ↑{x | IsAlgebraic R x}), ↑(aeval ↑x) (g x) = 0 f : R[X] this : MapsTo Subtype.val (g ⁻¹' {f}) (rootSet f A) ⊢ Set.Countable (g ⁻¹' {f}) case this R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A g : ↑{x | IsAlgebraic R x} → R[X] hg₁ : ∀ (x : ↑{x | IsAlgebraic R x}), g x ≠ 0 hg₂ : ∀ (x : ↑{x | IsAlgebraic R x}), ↑(aeval ↑x) (g x) = 0 f : R[X] ⊢ MapsTo Subtype.val (g ⁻¹' {f}) (rootSet f A) [PROOFSTEP] exact this.countable_of_injOn (Subtype.coe_injective.injOn _) (f.rootSet_finite A).countable [GOAL] case this R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A g : ↑{x | IsAlgebraic R x} → R[X] hg₁ : ∀ (x : ↑{x | IsAlgebraic R x}), g x ≠ 0 hg₂ : ∀ (x : ↑{x | IsAlgebraic R x}), ↑(aeval ↑x) (g x) = 0 f : R[X] ⊢ MapsTo Subtype.val (g ⁻¹' {f}) (rootSet f A) [PROOFSTEP] rintro x (rfl : g x = f) [GOAL] case this R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A g : ↑{x | IsAlgebraic R x} → R[X] hg₁ : ∀ (x : ↑{x | IsAlgebraic R x}), g x ≠ 0 hg₂ : ∀ (x : ↑{x | IsAlgebraic R x}), ↑(aeval ↑x) (g x) = 0 x : ↑{x | IsAlgebraic R x} ⊢ ↑x ∈ rootSet (g x) A [PROOFSTEP] exact mem_rootSet.2 ⟨hg₁ x, hg₂ x⟩ [GOAL] R : Type u A : Type v inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A ⊢ lift (max #R ℵ₀) * ℵ₀ ≤ max (lift #R) ℵ₀ [PROOFSTEP] simp [GOAL] R : Type u A : Type v inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : IsDomain A inst✝² : Algebra R A inst✝¹ : NoZeroSMulDivisors R A inst✝ : Countable R ⊢ Set.Countable {x | IsAlgebraic R x} [PROOFSTEP] rw [← le_aleph0_iff_set_countable, ← lift_le] [GOAL] R : Type u A : Type v inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : IsDomain A inst✝² : Algebra R A inst✝¹ : NoZeroSMulDivisors R A inst✝ : Countable R ⊢ lift #↑{x | IsAlgebraic R x} ≤ lift ℵ₀ [PROOFSTEP] apply (cardinal_mk_lift_le_max R A).trans [GOAL] R : Type u A : Type v inst✝⁵ : CommRing R inst✝⁴ : CommRing A inst✝³ : IsDomain A inst✝² : Algebra R A inst✝¹ : NoZeroSMulDivisors R A inst✝ : Countable R ⊢ max (lift #R) ℵ₀ ≤ lift ℵ₀ [PROOFSTEP] simp [GOAL] R A : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A ⊢ #{ x // IsAlgebraic R x } ≤ #R[X] * ℵ₀ [PROOFSTEP] rw [← lift_id #_, ← lift_id #(R[X])] [GOAL] R A : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A ⊢ lift #{ x // IsAlgebraic R x } ≤ lift #R[X] * ℵ₀ [PROOFSTEP] exact cardinal_mk_lift_le_mul R A [GOAL] R A : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A ⊢ #{ x // IsAlgebraic R x } ≤ max #R ℵ₀ [PROOFSTEP] rw [← lift_id #_, ← lift_id #R] [GOAL] R A : Type u inst✝⁴ : CommRing R inst✝³ : CommRing A inst✝² : IsDomain A inst✝¹ : Algebra R A inst✝ : NoZeroSMulDivisors R A ⊢ lift #{ x // IsAlgebraic R x } ≤ max (lift #R) ℵ₀ [PROOFSTEP] exact cardinal_mk_lift_le_max R A
{"mathlib_filename": "Mathlib.Algebra.AlgebraicCard", "llama_tokens": 2758}
{"mathlib_filename": "Mathlib.Lean.EnvExtension", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.IO.Process", "llama_tokens": 0}
[GOAL] R : Type u_1 inst✝¹ : MonoidWithZero R inst✝ : Nontrivial R ⊢ ¬Squarefree 0 [PROOFSTEP] erw [not_forall] [GOAL] R : Type u_1 inst✝¹ : MonoidWithZero R inst✝ : Nontrivial R ⊢ ∃ x, ¬(x * x ∣ 0 → IsUnit x) [PROOFSTEP] exact ⟨0, by simp⟩ [GOAL] R : Type u_1 inst✝¹ : MonoidWithZero R inst✝ : Nontrivial R ⊢ ¬(0 * 0 ∣ 0 → IsUnit 0) [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝¹ : MonoidWithZero R inst✝ : Nontrivial R m : R hm : Squarefree m ⊢ m ≠ 0 [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 inst✝¹ : MonoidWithZero R inst✝ : Nontrivial R hm : Squarefree 0 ⊢ False [PROOFSTEP] exact not_squarefree_zero hm [GOAL] R : Type u_1 inst✝ : CommMonoid R x : R h : Irreducible x ⊢ Squarefree x [PROOFSTEP] rintro y ⟨z, hz⟩ [GOAL] case intro R : Type u_1 inst✝ : CommMonoid R x : R h : Irreducible x y z : R hz : x = y * y * z ⊢ IsUnit y [PROOFSTEP] rw [mul_assoc] at hz [GOAL] case intro R : Type u_1 inst✝ : CommMonoid R x : R h : Irreducible x y z : R hz : x = y * (y * z) ⊢ IsUnit y [PROOFSTEP] rcases h.isUnit_or_isUnit hz with (hu | hu) [GOAL] case intro.inl R : Type u_1 inst✝ : CommMonoid R x : R h : Irreducible x y z : R hz : x = y * (y * z) hu : IsUnit y ⊢ IsUnit y [PROOFSTEP] exact hu [GOAL] case intro.inr R : Type u_1 inst✝ : CommMonoid R x : R h : Irreducible x y z : R hz : x = y * (y * z) hu : IsUnit (y * z) ⊢ IsUnit y [PROOFSTEP] apply isUnit_of_mul_isUnit_left hu [GOAL] R : Type u_1 inst✝¹ : CommMonoid R inst✝ : DecidableRel Dvd.dvd r : R ⊢ Squarefree r ↔ ∀ (x : R), multiplicity x r ≤ 1 ∨ IsUnit x [PROOFSTEP] refine' forall_congr' fun a => _ [GOAL] R : Type u_1 inst✝¹ : CommMonoid R inst✝ : DecidableRel Dvd.dvd r a : R ⊢ a * a ∣ r → IsUnit a ↔ multiplicity a r ≤ 1 ∨ IsUnit a [PROOFSTEP] rw [← sq, pow_dvd_iff_le_multiplicity, or_iff_not_imp_left, not_le, imp_congr _ Iff.rfl] [GOAL] R : Type u_1 inst✝¹ : CommMonoid R inst✝ : DecidableRel Dvd.dvd r a : R ⊢ ↑2 ≤ multiplicity a r ↔ 1 < multiplicity a r [PROOFSTEP] rw [← one_add_one_eq_two] [GOAL] R : Type u_1 inst✝¹ : CommMonoid R inst✝ : DecidableRel Dvd.dvd r a : R ⊢ ↑(1 + 1) ≤ multiplicity a r ↔ 1 < multiplicity a r [PROOFSTEP] simpa using PartENat.add_one_le_iff_lt (PartENat.natCast_ne_top 1) [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : WfDvdMonoid R a b : R ha : Prime a hb : b ≠ 0 ⊢ Finite a b [PROOFSTEP] classical revert hb refine' WfDvdMonoid.induction_on_irreducible b (fun c => c.irrefl.elim) (fun u hu _ => _) fun b p hb hp ih _ => _ · rw [multiplicity.finite_iff_dom, multiplicity.isUnit_right ha.not_unit hu] exact PartENat.dom_natCast 0 · refine' multiplicity.finite_mul ha (multiplicity.finite_iff_dom.mpr (PartENat.dom_of_le_natCast (show multiplicity a p ≤ ↑1 from _))) (ih hb) norm_cast exact ((multiplicity.squarefree_iff_multiplicity_le_one p).mp hp.squarefree a).resolve_right ha.not_unit [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : WfDvdMonoid R a b : R ha : Prime a hb : b ≠ 0 ⊢ Finite a b [PROOFSTEP] revert hb [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : WfDvdMonoid R a b : R ha : Prime a ⊢ b ≠ 0 → Finite a b [PROOFSTEP] refine' WfDvdMonoid.induction_on_irreducible b (fun c => c.irrefl.elim) (fun u hu _ => _) fun b p hb hp ih _ => _ [GOAL] case refine'_1 R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : WfDvdMonoid R a b : R ha : Prime a u : R hu : IsUnit u x✝ : u ≠ 0 ⊢ Finite a u [PROOFSTEP] rw [multiplicity.finite_iff_dom, multiplicity.isUnit_right ha.not_unit hu] [GOAL] case refine'_1 R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : WfDvdMonoid R a b : R ha : Prime a u : R hu : IsUnit u x✝ : u ≠ 0 ⊢ 0.Dom [PROOFSTEP] exact PartENat.dom_natCast 0 [GOAL] case refine'_2 R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : WfDvdMonoid R a b✝ : R ha : Prime a b p : R hb : b ≠ 0 hp : Irreducible p ih : b ≠ 0 → Finite a b x✝ : p * b ≠ 0 ⊢ Finite a (p * b) [PROOFSTEP] refine' multiplicity.finite_mul ha (multiplicity.finite_iff_dom.mpr (PartENat.dom_of_le_natCast (show multiplicity a p ≤ ↑1 from _))) (ih hb) [GOAL] case refine'_2 R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : WfDvdMonoid R a b✝ : R ha : Prime a b p : R hb : b ≠ 0 hp : Irreducible p ih : b ≠ 0 → Finite a b x✝ : p * b ≠ 0 ⊢ multiplicity a p ≤ 1 [PROOFSTEP] norm_cast [GOAL] case refine'_2 R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : WfDvdMonoid R a b✝ : R ha : Prime a b p : R hb : b ≠ 0 hp : Irreducible p ih : b ≠ 0 → Finite a b x✝ : p * b ≠ 0 ⊢ multiplicity a p ≤ 1 [PROOFSTEP] exact ((multiplicity.squarefree_iff_multiplicity_le_one p).mp hp.squarefree a).resolve_right ha.not_unit [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R ⊢ (∀ (x : R), Irreducible x → ¬x * x ∣ r) ↔ (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r [PROOFSTEP] symm [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R ⊢ (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r ↔ ∀ (x : R), Irreducible x → ¬x * x ∣ r [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R ⊢ (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r → ∀ (x : R), Irreducible x → ¬x * x ∣ r [PROOFSTEP] rintro (⟨rfl, h⟩ | h) [GOAL] case mp.inl.intro R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R h : ∀ (x : R), ¬Irreducible x ⊢ ∀ (x : R), Irreducible x → ¬x * x ∣ 0 [PROOFSTEP] simpa using h [GOAL] case mp.inr R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : Squarefree r ⊢ ∀ (x : R), Irreducible x → ¬x * x ∣ r [PROOFSTEP] intro x hx t [GOAL] case mp.inr R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : Squarefree r x : R hx : Irreducible x t : x * x ∣ r ⊢ False [PROOFSTEP] exact hx.not_unit (h x t) [GOAL] case mpr R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R ⊢ (∀ (x : R), Irreducible x → ¬x * x ∣ r) → (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r [PROOFSTEP] intro h [GOAL] case mpr R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r ⊢ (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r [PROOFSTEP] rcases eq_or_ne r 0 with (rfl | hr) [GOAL] case mpr.inl R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R h : ∀ (x : R), Irreducible x → ¬x * x ∣ 0 ⊢ (0 = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree 0 [PROOFSTEP] exact Or.inl (by simpa using h) [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R h : ∀ (x : R), Irreducible x → ¬x * x ∣ 0 ⊢ 0 = 0 ∧ ∀ (x : R), ¬Irreducible x [PROOFSTEP] simpa using h [GOAL] case mpr.inr R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 ⊢ (r = 0 ∧ ∀ (x : R), ¬Irreducible x) ∨ Squarefree r [PROOFSTEP] right [GOAL] case mpr.inr.h R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 ⊢ Squarefree r [PROOFSTEP] intro x hx [GOAL] case mpr.inr.h R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 x : R hx : x * x ∣ r ⊢ IsUnit x [PROOFSTEP] by_contra i [GOAL] case mpr.inr.h R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 x : R hx : x * x ∣ r i : ¬IsUnit x ⊢ False [PROOFSTEP] have : x ≠ 0 := by rintro rfl apply hr simpa only [zero_dvd_iff, mul_zero] using hx [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 x : R hx : x * x ∣ r i : ¬IsUnit x ⊢ x ≠ 0 [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 hx : 0 * 0 ∣ r i : ¬IsUnit 0 ⊢ False [PROOFSTEP] apply hr [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 hx : 0 * 0 ∣ r i : ¬IsUnit 0 ⊢ r = 0 [PROOFSTEP] simpa only [zero_dvd_iff, mul_zero] using hx [GOAL] case mpr.inr.h R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 x : R hx : x * x ∣ r i : ¬IsUnit x this : x ≠ 0 ⊢ False [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := WfDvdMonoid.exists_irreducible_factor i this [GOAL] case mpr.inr.h.intro.intro R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R h : ∀ (x : R), Irreducible x → ¬x * x ∣ r hr : r ≠ 0 x : R hx : x * x ∣ r i : ¬IsUnit x this : x ≠ 0 j : R hj₁ : Irreducible j hj₂ : j ∣ x ⊢ False [PROOFSTEP] exact h _ hj₁ ((mul_dvd_mul hj₂ hj₂).trans hx) [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R hr : r ≠ 0 ⊢ Squarefree r ↔ ∀ (x : R), Irreducible x → ¬x * x ∣ r [PROOFSTEP] simpa [hr] using (irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree r).symm [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R hr : ∃ x, Irreducible x ⊢ Squarefree r ↔ ∀ (x : R), Irreducible x → ¬x * x ∣ r [PROOFSTEP] rw [irreducible_sq_not_dvd_iff_eq_zero_and_no_irreducibles_or_squarefree, ← not_exists] [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R inst✝ : WfDvdMonoid R r : R hr : ∃ x, Irreducible x ⊢ Squarefree r ↔ (r = 0 ∧ ¬∃ x, Irreducible x) ∨ Squarefree r [PROOFSTEP] simp only [hr, not_true, false_or_iff, and_false_iff] [GOAL] R : Type u_1 inst✝ : CancelCommMonoidWithZero R x : R h0 : x ≠ 0 h : IsRadical x ⊢ Squarefree x [PROOFSTEP] rintro z ⟨w, rfl⟩ [GOAL] case intro R : Type u_1 inst✝ : CancelCommMonoidWithZero R z w : R h0 : z * z * w ≠ 0 h : IsRadical (z * z * w) ⊢ IsUnit z [PROOFSTEP] specialize h 2 (z * w) ⟨w, by simp_rw [pow_two, mul_left_comm, ← mul_assoc]⟩ [GOAL] R : Type u_1 inst✝ : CancelCommMonoidWithZero R z w : R h0 : z * z * w ≠ 0 h : IsRadical (z * z * w) ⊢ (z * w) ^ 2 = z * z * w * w [PROOFSTEP] simp_rw [pow_two, mul_left_comm, ← mul_assoc] [GOAL] case intro R : Type u_1 inst✝ : CancelCommMonoidWithZero R z w : R h0 : z * z * w ≠ 0 h : z * z * w ∣ z * w ⊢ IsUnit z [PROOFSTEP] rwa [← one_mul (z * w), mul_assoc, mul_dvd_mul_iff_right, ← isUnit_iff_dvd_one] at h [GOAL] case intro R : Type u_1 inst✝ : CancelCommMonoidWithZero R z w : R h0 : z * z * w ≠ 0 h : z * (z * w) ∣ 1 * (z * w) ⊢ z * w ≠ 0 [PROOFSTEP] rw [mul_assoc, mul_ne_zero_iff] at h0 [GOAL] case intro R : Type u_1 inst✝ : CancelCommMonoidWithZero R z w : R h0 : z ≠ 0 ∧ z * w ≠ 0 h : z * (z * w) ∣ 1 * (z * w) ⊢ z * w ≠ 0 [PROOFSTEP] exact h0.2 [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R hy : x ∣ y ^ 2 ⊢ x ∣ gcd x y [PROOFSTEP] by_cases gcd x y = 0 [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R hy : x ∣ y ^ 2 ⊢ x ∣ gcd x y [PROOFSTEP] by_cases gcd x y = 0 [GOAL] case pos R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R hy : x ∣ y ^ 2 h : gcd x y = 0 ⊢ x ∣ gcd x y [PROOFSTEP] rw [h] [GOAL] case pos R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R hy : x ∣ y ^ 2 h : gcd x y = 0 ⊢ x ∣ 0 [PROOFSTEP] apply dvd_zero [GOAL] case neg R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R hy : x ∣ y ^ 2 h : ¬gcd x y = 0 ⊢ x ∣ gcd x y [PROOFSTEP] replace hy := ((dvd_gcd_iff x x _).2 ⟨dvd_rfl, hy⟩).trans gcd_pow_right_dvd_pow_gcd [GOAL] case neg R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R h : ¬gcd x y = 0 hy : x ∣ gcd x y ^ 2 ⊢ x ∣ gcd x y [PROOFSTEP] obtain ⟨z, hz⟩ := gcd_dvd_left x y [GOAL] case neg.intro R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R h : ¬gcd x y = 0 hy : x ∣ gcd x y ^ 2 z : R hz : x = gcd x y * z ⊢ x ∣ gcd x y [PROOFSTEP] nth_rw 1 [hz] at hy ⊢ [GOAL] case neg.intro R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R h : ¬gcd x y = 0 z : R hy : gcd x y * z ∣ gcd x y ^ 2 hz : x = gcd x y * z ⊢ gcd x y * z ∣ gcd x y [PROOFSTEP] rw [pow_two, mul_dvd_mul_iff_left h] at hy [GOAL] case neg.intro R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R h : ¬gcd x y = 0 z : R hy : z ∣ gcd x y hz : x = gcd x y * z ⊢ gcd x y * z ∣ gcd x y [PROOFSTEP] obtain ⟨w, hw⟩ := hy [GOAL] case neg.intro.intro R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R h : ¬gcd x y = 0 z : R hz : x = gcd x y * z w : R hw : gcd x y = z * w ⊢ gcd x y * z ∣ gcd x y [PROOFSTEP] exact (hx z ⟨w, by rwa [mul_right_comm, ← hw]⟩).mul_right_dvd.2 dvd_rfl [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R hx : Squarefree x y : R h : ¬gcd x y = 0 z : R hz : x = gcd x y * z w : R hw : gcd x y = z * w ⊢ x = z * z * w [PROOFSTEP] rwa [mul_right_comm, ← hw] [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R x : R ⊢ x = 0 → IsRadical x [PROOFSTEP] rintro rfl [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R ⊢ IsRadical 0 [PROOFSTEP] rw [zero_isRadical_iff] [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : GCDMonoid R ⊢ IsReduced R [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 ⊢ Squarefree x ↔ Multiset.Nodup (normalizedFactors x) [PROOFSTEP] have drel : DecidableRel (Dvd.dvd : R → R → Prop) := by classical infer_instance [GOAL] R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 ⊢ DecidableRel Dvd.dvd [PROOFSTEP] classical infer_instance [GOAL] R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 ⊢ DecidableRel Dvd.dvd [PROOFSTEP] infer_instance [GOAL] R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd ⊢ Squarefree x ↔ Multiset.Nodup (normalizedFactors x) [PROOFSTEP] rw [multiplicity.squarefree_iff_multiplicity_le_one, Multiset.nodup_iff_count_le_one] [GOAL] R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd ⊢ (∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1) ↔ ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] haveI := nontrivial_of_ne x 0 x0 [GOAL] R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R ⊢ (∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1) ↔ ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R ⊢ (∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1) → ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] intro h a [GOAL] case mpr R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R ⊢ (∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1) → ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 [PROOFSTEP] intro h a [GOAL] case mp R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R ⊢ Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] by_cases hmem : a ∈ normalizedFactors x [GOAL] case pos R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R hmem : a ∈ normalizedFactors x ⊢ Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] have ha := irreducible_of_normalized_factor _ hmem [GOAL] case pos R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R hmem : a ∈ normalizedFactors x ha : Irreducible a ⊢ Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] rcases h a with (h | h) [GOAL] case pos.inl R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h✝ : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R hmem : a ∈ normalizedFactors x ha : Irreducible a h : multiplicity a x ≤ 1 ⊢ Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] rw [← normalize_normalized_factor _ hmem] [GOAL] case pos.inl R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h✝ : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R hmem : a ∈ normalizedFactors x ha : Irreducible a h : multiplicity a x ≤ 1 ⊢ Multiset.count (↑normalize a) (normalizedFactors x) ≤ 1 [PROOFSTEP] rw [multiplicity_eq_count_normalizedFactors ha x0] at h [GOAL] case pos.inl R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h✝ : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R hmem : a ∈ normalizedFactors x ha : Irreducible a h : ↑(Multiset.count (↑normalize a) (normalizedFactors x)) ≤ 1 ⊢ Multiset.count (↑normalize a) (normalizedFactors x) ≤ 1 [PROOFSTEP] assumption_mod_cast [GOAL] case pos.inr R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h✝ : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R hmem : a ∈ normalizedFactors x ha : Irreducible a h : IsUnit a ⊢ Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] have := ha.1 [GOAL] case pos.inr R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this✝ : Nontrivial R h✝ : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R hmem : a ∈ normalizedFactors x ha : Irreducible a h : IsUnit a this : ¬IsUnit a ⊢ Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] contradiction [GOAL] case neg R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (x_1 : R), multiplicity x_1 x ≤ 1 ∨ IsUnit x_1 a : R hmem : ¬a ∈ normalizedFactors x ⊢ Multiset.count a (normalizedFactors x) ≤ 1 [PROOFSTEP] simp [Multiset.count_eq_zero_of_not_mem hmem] [GOAL] case mpr R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 a : R ⊢ multiplicity a x ≤ 1 ∨ IsUnit a [PROOFSTEP] rw [or_iff_not_imp_right] [GOAL] case mpr R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 a : R ⊢ ¬IsUnit a → multiplicity a x ≤ 1 [PROOFSTEP] intro hu [GOAL] case mpr R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 a : R hu : ¬IsUnit a ⊢ multiplicity a x ≤ 1 [PROOFSTEP] by_cases h0 : a = 0 [GOAL] case pos R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 a : R hu : ¬IsUnit a h0 : a = 0 ⊢ multiplicity a x ≤ 1 [PROOFSTEP] simp [h0, x0] [GOAL] case neg R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 a : R hu : ¬IsUnit a h0 : ¬a = 0 ⊢ multiplicity a x ≤ 1 [PROOFSTEP] rcases WfDvdMonoid.exists_irreducible_factor hu h0 with ⟨b, hib, hdvd⟩ [GOAL] case neg.intro.intro R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 a : R hu : ¬IsUnit a h0 : ¬a = 0 b : R hib : Irreducible b hdvd : b ∣ a ⊢ multiplicity a x ≤ 1 [PROOFSTEP] apply le_trans (multiplicity.multiplicity_le_multiplicity_of_dvd_left hdvd) [GOAL] case neg.intro.intro R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 a : R hu : ¬IsUnit a h0 : ¬a = 0 b : R hib : Irreducible b hdvd : b ∣ a ⊢ multiplicity b x ≤ 1 [PROOFSTEP] rw [multiplicity_eq_count_normalizedFactors hib x0] [GOAL] case neg.intro.intro R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R h : ∀ (a : R), Multiset.count a (normalizedFactors x) ≤ 1 a : R hu : ¬IsUnit a h0 : ¬a = 0 b : R hib : Irreducible b hdvd : b ∣ a ⊢ ↑(Multiset.count (↑normalize b) (normalizedFactors x)) ≤ 1 [PROOFSTEP] specialize h (normalize b) [GOAL] case neg.intro.intro R : Type u_1 inst✝³ : CancelCommMonoidWithZero R inst✝² : UniqueFactorizationMonoid R inst✝¹ : NormalizationMonoid R inst✝ : DecidableEq R x : R x0 : x ≠ 0 drel : DecidableRel Dvd.dvd this : Nontrivial R a : R hu : ¬IsUnit a h0 : ¬a = 0 b : R hib : Irreducible b hdvd : b ∣ a h : Multiset.count (↑normalize b) (normalizedFactors x) ≤ 1 ⊢ ↑(Multiset.count (↑normalize b) (normalizedFactors x)) ≤ 1 [PROOFSTEP] assumption_mod_cast [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : UniqueFactorizationMonoid R x y : R n : ℕ hsq : Squarefree x h0 : n ≠ 0 ⊢ x ∣ y ^ n ↔ x ∣ y [PROOFSTEP] classical haveI := UniqueFactorizationMonoid.toGCDMonoid R exact ⟨hsq.isRadical n y, fun h => h.pow h0⟩ [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : UniqueFactorizationMonoid R x y : R n : ℕ hsq : Squarefree x h0 : n ≠ 0 ⊢ x ∣ y ^ n ↔ x ∣ y [PROOFSTEP] haveI := UniqueFactorizationMonoid.toGCDMonoid R [GOAL] R : Type u_1 inst✝¹ : CancelCommMonoidWithZero R inst✝ : UniqueFactorizationMonoid R x y : R n : ℕ hsq : Squarefree x h0 : n ≠ 0 this : GCDMonoid R ⊢ x ∣ y ^ n ↔ x ∣ y [PROOFSTEP] exact ⟨hsq.isRadical n y, fun h => h.pow h0⟩ [GOAL] R : Type u_1 n : ℤ ⊢ Squarefree (natAbs n) ↔ Squarefree n [PROOFSTEP] simp_rw [Squarefree, natAbs_surjective.forall, ← natAbs_mul, natAbs_dvd_natAbs, isUnit_iff_natAbs_eq, Nat.isUnit_iff] [GOAL] R : Type u_1 n : ℕ ⊢ Squarefree ↑n ↔ Squarefree n [PROOFSTEP] rw [← squarefree_natAbs, natAbs_ofNat]
{"mathlib_filename": "Mathlib.Algebra.Squarefree", "llama_tokens": 12271}
[GOAL] X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } ⊢ Quotient.mk IsometryRel.setoid p = toGHSpace X ↔ ∃ Ψ, Isometry Ψ ∧ range Ψ = ↑p [PROOFSTEP] simp only [toGHSpace, Quotient.eq] [GOAL] X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } ⊢ p ≈ NonemptyCompacts.kuratowskiEmbedding X ↔ ∃ Ψ, Isometry Ψ ∧ range Ψ = ↑p [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } h : p ≈ NonemptyCompacts.kuratowskiEmbedding X ⊢ ∃ Ψ, Isometry Ψ ∧ range Ψ = ↑p [PROOFSTEP] rcases Setoid.symm h with ⟨e⟩ [GOAL] case refine'_1.intro X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } h : p ≈ NonemptyCompacts.kuratowskiEmbedding X e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ p } ⊢ ∃ Ψ, Isometry Ψ ∧ range Ψ = ↑p [PROOFSTEP] have f := (kuratowskiEmbedding.isometry X).isometryEquivOnRange.trans e [GOAL] case refine'_1.intro X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } h : p ≈ NonemptyCompacts.kuratowskiEmbedding X e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ p } f : X ≃ᵢ { x // x ∈ p } ⊢ ∃ Ψ, Isometry Ψ ∧ range Ψ = ↑p [PROOFSTEP] use fun x => f x, isometry_subtype_coe.comp f.isometry [GOAL] case right X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } h : p ≈ NonemptyCompacts.kuratowskiEmbedding X e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ p } f : X ≃ᵢ { x // x ∈ p } ⊢ (range fun x => ↑(↑f x)) = ↑p [PROOFSTEP] erw [range_comp, f.range_eq_univ, Set.image_univ, Subtype.range_coe] [GOAL] case refine'_2 X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } ⊢ (∃ Ψ, Isometry Ψ ∧ range Ψ = ↑p) → p ≈ NonemptyCompacts.kuratowskiEmbedding X [PROOFSTEP] rintro ⟨Ψ, ⟨isomΨ, rangeΨ⟩⟩ [GOAL] case refine'_2.intro.intro X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } isomΨ : Isometry Ψ rangeΨ : range Ψ = ↑p ⊢ p ≈ NonemptyCompacts.kuratowskiEmbedding X [PROOFSTEP] have f := ((kuratowskiEmbedding.isometry X).isometryEquivOnRange.symm.trans isomΨ.isometryEquivOnRange).symm [GOAL] case refine'_2.intro.intro X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } isomΨ : Isometry Ψ rangeΨ : range Ψ = ↑p f : ↑(range Ψ) ≃ᵢ ↑(range (kuratowskiEmbedding X)) ⊢ p ≈ NonemptyCompacts.kuratowskiEmbedding X [PROOFSTEP] have E : (range Ψ ≃ᵢ NonemptyCompacts.kuratowskiEmbedding X) = (p ≃ᵢ range (kuratowskiEmbedding X)) := by dsimp only [NonemptyCompacts.kuratowskiEmbedding]; rw [rangeΨ]; rfl [GOAL] X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } isomΨ : Isometry Ψ rangeΨ : range Ψ = ↑p f : ↑(range Ψ) ≃ᵢ ↑(range (kuratowskiEmbedding X)) ⊢ (↑(range Ψ) ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X }) = ({ x // x ∈ p } ≃ᵢ ↑(range (kuratowskiEmbedding X))) [PROOFSTEP] dsimp only [NonemptyCompacts.kuratowskiEmbedding] [GOAL] X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } isomΨ : Isometry Ψ rangeΨ : range Ψ = ↑p f : ↑(range Ψ) ≃ᵢ ↑(range (kuratowskiEmbedding X)) ⊢ (↑(range Ψ) ≃ᵢ { x // x ∈ { toCompacts := { carrier := range (kuratowskiEmbedding X), isCompact' := (_ : IsCompact (range (kuratowskiEmbedding X))) }, nonempty' := (_ : Set.Nonempty (range fun y => kuratowskiEmbedding X y)) } }) = ({ x // x ∈ p } ≃ᵢ ↑(range (kuratowskiEmbedding X))) [PROOFSTEP] rw [rangeΨ] [GOAL] X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } isomΨ : Isometry Ψ rangeΨ : range Ψ = ↑p f : ↑(range Ψ) ≃ᵢ ↑(range (kuratowskiEmbedding X)) ⊢ (↑↑p ≃ᵢ { x // x ∈ { toCompacts := { carrier := range (kuratowskiEmbedding X), isCompact' := (_ : IsCompact (range (kuratowskiEmbedding X))) }, nonempty' := (_ : Set.Nonempty (range fun y => kuratowskiEmbedding X y)) } }) = ({ x // x ∈ p } ≃ᵢ ↑(range (kuratowskiEmbedding X))) [PROOFSTEP] rfl [GOAL] case refine'_2.intro.intro X : Type u inst✝² : MetricSpace X inst✝¹ : CompactSpace X inst✝ : Nonempty X p : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } isomΨ : Isometry Ψ rangeΨ : range Ψ = ↑p f : ↑(range Ψ) ≃ᵢ ↑(range (kuratowskiEmbedding X)) E : (↑(range Ψ) ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X }) = ({ x // x ∈ p } ≃ᵢ ↑(range (kuratowskiEmbedding X))) ⊢ p ≈ NonemptyCompacts.kuratowskiEmbedding X [PROOFSTEP] exact ⟨cast E f⟩ [GOAL] p : GHSpace ⊢ toGHSpace (Rep p) = p [PROOFSTEP] change toGHSpace (Quot.out p : NonemptyCompacts ℓ_infty_ℝ) = p [GOAL] p : GHSpace ⊢ toGHSpace { x // x ∈ Quot.out p } = p [PROOFSTEP] rw [← eq_toGHSpace] [GOAL] p : GHSpace ⊢ Quotient.mk IsometryRel.setoid (Quot.out p) = p [PROOFSTEP] exact Quot.out_eq p [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ toGHSpace X = toGHSpace Y → Nonempty (X ≃ᵢ Y) [PROOFSTEP] simp only [toGHSpace] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding X) = Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding Y) → Nonempty (X ≃ᵢ Y) [PROOFSTEP] rw [Quotient.eq] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ NonemptyCompacts.kuratowskiEmbedding X ≈ NonemptyCompacts.kuratowskiEmbedding Y → Nonempty (X ≃ᵢ Y) [PROOFSTEP] rintro ⟨e⟩ [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y } ⊢ Nonempty (X ≃ᵢ Y) [PROOFSTEP] have I : (NonemptyCompacts.kuratowskiEmbedding X ≃ᵢ NonemptyCompacts.kuratowskiEmbedding Y) = (range (kuratowskiEmbedding X) ≃ᵢ range (kuratowskiEmbedding Y)) := by dsimp only [NonemptyCompacts.kuratowskiEmbedding]; rfl [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y } ⊢ ({ x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y }) = (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) [PROOFSTEP] dsimp only [NonemptyCompacts.kuratowskiEmbedding] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y } ⊢ ({ x // x ∈ { toCompacts := { carrier := range (kuratowskiEmbedding X), isCompact' := (_ : IsCompact (range (kuratowskiEmbedding X))) }, nonempty' := (_ : Set.Nonempty (range fun y => kuratowskiEmbedding X y)) } } ≃ᵢ { x // x ∈ { toCompacts := { carrier := range (kuratowskiEmbedding Y), isCompact' := (_ : IsCompact (range (kuratowskiEmbedding Y))) }, nonempty' := (_ : Set.Nonempty (range fun y => kuratowskiEmbedding Y y)) } }) = (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) [PROOFSTEP] rfl [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y } I : ({ x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y }) = (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) ⊢ Nonempty (X ≃ᵢ Y) [PROOFSTEP] have f := (kuratowskiEmbedding.isometry X).isometryEquivOnRange [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y } I : ({ x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y }) = (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) f : X ≃ᵢ ↑(range (kuratowskiEmbedding X)) ⊢ Nonempty (X ≃ᵢ Y) [PROOFSTEP] have g := (kuratowskiEmbedding.isometry Y).isometryEquivOnRange.symm [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : { x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y } I : ({ x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y }) = (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) f : X ≃ᵢ ↑(range (kuratowskiEmbedding X)) g : ↑(range (kuratowskiEmbedding Y)) ≃ᵢ Y ⊢ Nonempty (X ≃ᵢ Y) [PROOFSTEP] exact ⟨f.trans <| (cast I e).trans g⟩ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ Nonempty (X ≃ᵢ Y) → toGHSpace X = toGHSpace Y [PROOFSTEP] rintro ⟨e⟩ [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : X ≃ᵢ Y ⊢ toGHSpace X = toGHSpace Y [PROOFSTEP] simp only [toGHSpace, Quotient.eq'] [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : X ≃ᵢ Y ⊢ Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding X) = Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding Y) [PROOFSTEP] have f := (kuratowskiEmbedding.isometry X).isometryEquivOnRange.symm [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : X ≃ᵢ Y f : ↑(range (kuratowskiEmbedding X)) ≃ᵢ X ⊢ Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding X) = Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding Y) [PROOFSTEP] have g := (kuratowskiEmbedding.isometry Y).isometryEquivOnRange [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : X ≃ᵢ Y f : ↑(range (kuratowskiEmbedding X)) ≃ᵢ X g : Y ≃ᵢ ↑(range (kuratowskiEmbedding Y)) ⊢ Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding X) = Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding Y) [PROOFSTEP] have I : (range (kuratowskiEmbedding X) ≃ᵢ range (kuratowskiEmbedding Y)) = (NonemptyCompacts.kuratowskiEmbedding X ≃ᵢ NonemptyCompacts.kuratowskiEmbedding Y) := by dsimp only [NonemptyCompacts.kuratowskiEmbedding]; rfl [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : X ≃ᵢ Y f : ↑(range (kuratowskiEmbedding X)) ≃ᵢ X g : Y ≃ᵢ ↑(range (kuratowskiEmbedding Y)) ⊢ (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) = ({ x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y }) [PROOFSTEP] dsimp only [NonemptyCompacts.kuratowskiEmbedding] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : X ≃ᵢ Y f : ↑(range (kuratowskiEmbedding X)) ≃ᵢ X g : Y ≃ᵢ ↑(range (kuratowskiEmbedding Y)) ⊢ (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) = ({ x // x ∈ { toCompacts := { carrier := range (kuratowskiEmbedding X), isCompact' := (_ : IsCompact (range (kuratowskiEmbedding X))) }, nonempty' := (_ : Set.Nonempty (range fun y => kuratowskiEmbedding X y)) } } ≃ᵢ { x // x ∈ { toCompacts := { carrier := range (kuratowskiEmbedding Y), isCompact' := (_ : IsCompact (range (kuratowskiEmbedding Y))) }, nonempty' := (_ : Set.Nonempty (range fun y => kuratowskiEmbedding Y y)) } }) [PROOFSTEP] rfl [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : X ≃ᵢ Y f : ↑(range (kuratowskiEmbedding X)) ≃ᵢ X g : Y ≃ᵢ ↑(range (kuratowskiEmbedding Y)) I : (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) = ({ x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y }) ⊢ Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding X) = Quotient.mk IsometryRel.setoid (NonemptyCompacts.kuratowskiEmbedding Y) [PROOFSTEP] rw [Quotient.eq] [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y e : X ≃ᵢ Y f : ↑(range (kuratowskiEmbedding X)) ≃ᵢ X g : Y ≃ᵢ ↑(range (kuratowskiEmbedding Y)) I : (↑(range (kuratowskiEmbedding X)) ≃ᵢ ↑(range (kuratowskiEmbedding Y))) = ({ x // x ∈ NonemptyCompacts.kuratowskiEmbedding X } ≃ᵢ { x // x ∈ NonemptyCompacts.kuratowskiEmbedding Y }) ⊢ NonemptyCompacts.kuratowskiEmbedding X ≈ NonemptyCompacts.kuratowskiEmbedding Y [PROOFSTEP] exact ⟨cast I ((f.trans e).trans g)⟩ [GOAL] p q : GHSpace ⊢ dist p q = ghDist (GHSpace.Rep p) (GHSpace.Rep q) [PROOFSTEP] rw [ghDist, p.toGHSpace_rep, q.toGHSpace_rep] [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] rcases exists_mem_of_nonempty X with ⟨xX, _⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] let s : Set γ := range Φ ∪ range Ψ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] let Φ' : X → Subtype s := fun y => ⟨Φ y, mem_union_left _ (mem_range_self _)⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] let Ψ' : Y → Subtype s := fun y => ⟨Ψ y, mem_union_right _ (mem_range_self _)⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] have IΦ' : Isometry Φ' := fun x y => ha x y [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] have IΨ' : Isometry Ψ' := fun x y => hb x y [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] have : IsCompact s := (isCompact_range ha.continuous).union (isCompact_range hb.continuous) [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this : IsCompact s ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] letI : MetricSpace (Subtype s) := by infer_instance [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this : IsCompact s ⊢ MetricSpace (Subtype s) [PROOFSTEP] infer_instance [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝ : IsCompact s this : MetricSpace (Subtype s) := inferInstance ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] haveI : CompactSpace (Subtype s) := ⟨isCompact_iff_isCompact_univ.1 ‹IsCompact s›⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝¹ : IsCompact s this✝ : MetricSpace (Subtype s) := inferInstance this : CompactSpace (Subtype s) ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] haveI : Nonempty (Subtype s) := ⟨Φ' xX⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] have ΦΦ' : Φ = Subtype.val ∘ Φ' := by funext; rfl [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) ⊢ Φ = Subtype.val ∘ Φ' [PROOFSTEP] funext [GOAL] case h X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) x✝ : X ⊢ Φ x✝ = (Subtype.val ∘ Φ') x✝ [PROOFSTEP] rfl [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] have ΨΨ' : Ψ = Subtype.val ∘ Ψ' := by funext; rfl [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ⊢ Ψ = Subtype.val ∘ Ψ' [PROOFSTEP] funext [GOAL] case h X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' x✝ : Y ⊢ Ψ x✝ = (Subtype.val ∘ Ψ') x✝ [PROOFSTEP] rfl [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] have : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') := by rw [ΦΦ', ΨΨ', range_comp, range_comp] exact hausdorffDist_image isometry_subtype_coe [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' ⊢ hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') [PROOFSTEP] rw [ΦΦ', ΨΨ', range_comp, range_comp] [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝² : IsCompact s this✝¹ : MetricSpace (Subtype s) := inferInstance this✝ : CompactSpace (Subtype s) this : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' ⊢ hausdorffDist (Subtype.val '' range Φ') (Subtype.val '' range Ψ') = hausdorffDist (range Φ') (range Ψ') [PROOFSTEP] exact hausdorffDist_image isometry_subtype_coe [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝³ : IsCompact s this✝² : MetricSpace (Subtype s) := inferInstance this✝¹ : CompactSpace (Subtype s) this✝ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') ⊢ ghDist X Y ≤ hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] rw [this] -- Embed `s` in `ℓ^∞(ℝ)` through its Kuratowski embedding [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝³ : IsCompact s this✝² : MetricSpace (Subtype s) := inferInstance this✝¹ : CompactSpace (Subtype s) this✝ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') ⊢ ghDist X Y ≤ hausdorffDist (range Φ') (range Ψ') [PROOFSTEP] let F := kuratowskiEmbedding (Subtype s) [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝³ : IsCompact s this✝² : MetricSpace (Subtype s) := inferInstance this✝¹ : CompactSpace (Subtype s) this✝ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) ⊢ ghDist X Y ≤ hausdorffDist (range Φ') (range Ψ') [PROOFSTEP] have : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') := hausdorffDist_image (kuratowskiEmbedding.isometry _) [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') ⊢ ghDist X Y ≤ hausdorffDist (range Φ') (range Ψ') [PROOFSTEP] rw [← this] -- Let `A` and `B` be the images of `X` and `Y` under this embedding. They are in `ℓ^∞(ℝ)`, and -- their Hausdorff distance is the same as in the original space. [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') ⊢ ghDist X Y ≤ hausdorffDist (F '' range Φ') (F '' range Ψ') [PROOFSTEP] let A : NonemptyCompacts ℓ_infty_ℝ := ⟨⟨F '' range Φ', (isCompact_range IΦ'.continuous).image (kuratowskiEmbedding.isometry _).continuous⟩, (range_nonempty _).image _⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } ⊢ ghDist X Y ≤ hausdorffDist (F '' range Φ') (F '' range Ψ') [PROOFSTEP] let B : NonemptyCompacts ℓ_infty_ℝ := ⟨⟨F '' range Ψ', (isCompact_range IΨ'.continuous).image (kuratowskiEmbedding.isometry _).continuous⟩, (range_nonempty _).image _⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } ⊢ ghDist X Y ≤ hausdorffDist (F '' range Φ') (F '' range Ψ') [PROOFSTEP] have AX : ⟦A⟧ = toGHSpace X := by rw [eq_toGHSpace_iff] exact ⟨fun x => F (Φ' x), (kuratowskiEmbedding.isometry _).comp IΦ', range_comp _ _⟩ [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } ⊢ Quotient.mk IsometryRel.setoid A = toGHSpace X [PROOFSTEP] rw [eq_toGHSpace_iff] [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } ⊢ ∃ Ψ, Isometry Ψ ∧ range Ψ = ↑A [PROOFSTEP] exact ⟨fun x => F (Φ' x), (kuratowskiEmbedding.isometry _).comp IΦ', range_comp _ _⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X ⊢ ghDist X Y ≤ hausdorffDist (F '' range Φ') (F '' range Ψ') [PROOFSTEP] have BY : ⟦B⟧ = toGHSpace Y := by rw [eq_toGHSpace_iff] exact ⟨fun x => F (Ψ' x), (kuratowskiEmbedding.isometry _).comp IΨ', range_comp _ _⟩ [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X ⊢ Quotient.mk IsometryRel.setoid B = toGHSpace Y [PROOFSTEP] rw [eq_toGHSpace_iff] [GOAL] X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X ⊢ ∃ Ψ, Isometry Ψ ∧ range Ψ = ↑B [PROOFSTEP] exact ⟨fun x => F (Ψ' x), (kuratowskiEmbedding.isometry _).comp IΨ', range_comp _ _⟩ [GOAL] case intro X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X BY : Quotient.mk IsometryRel.setoid B = toGHSpace Y ⊢ ghDist X Y ≤ hausdorffDist (F '' range Φ') (F '' range Ψ') [PROOFSTEP] refine' csInf_le ⟨0, _⟩ _ [GOAL] case intro.refine'_1 X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X BY : Quotient.mk IsometryRel.setoid B = toGHSpace Y ⊢ 0 ∈ lowerBounds ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = toGHSpace X} ×ˢ {b | Quotient.mk IsometryRel.setoid b = toGHSpace Y}) [PROOFSTEP] simp only [lowerBounds, mem_image, mem_prod, mem_setOf_eq, Prod.exists, and_imp, forall_exists_index] [GOAL] case intro.refine'_1 X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X BY : Quotient.mk IsometryRel.setoid B = toGHSpace Y ⊢ ∀ ⦃a : ℝ⦄ (x x_1 : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid x = toGHSpace X → Quotient.mk IsometryRel.setoid x_1 = toGHSpace Y → hausdorffDist ↑x ↑x_1 = a → 0 ≤ a [PROOFSTEP] intro t _ _ _ _ ht [GOAL] case intro.refine'_1 X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X BY : Quotient.mk IsometryRel.setoid B = toGHSpace Y t : ℝ x✝¹ x✝ : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } a✝¹ : Quotient.mk IsometryRel.setoid x✝¹ = toGHSpace X a✝ : Quotient.mk IsometryRel.setoid x✝ = toGHSpace Y ht : hausdorffDist ↑x✝¹ ↑x✝ = t ⊢ 0 ≤ t [PROOFSTEP] rw [← ht] [GOAL] case intro.refine'_1 X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X BY : Quotient.mk IsometryRel.setoid B = toGHSpace Y t : ℝ x✝¹ x✝ : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } a✝¹ : Quotient.mk IsometryRel.setoid x✝¹ = toGHSpace X a✝ : Quotient.mk IsometryRel.setoid x✝ = toGHSpace Y ht : hausdorffDist ↑x✝¹ ↑x✝ = t ⊢ 0 ≤ hausdorffDist ↑x✝¹ ↑x✝ [PROOFSTEP] exact hausdorffDist_nonneg [GOAL] case intro.refine'_2 X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X BY : Quotient.mk IsometryRel.setoid B = toGHSpace Y ⊢ hausdorffDist (F '' range Φ') (F '' range Ψ') ∈ (fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = toGHSpace X} ×ˢ {b | Quotient.mk IsometryRel.setoid b = toGHSpace Y} [PROOFSTEP] apply (mem_image _ _ _).2 [GOAL] case intro.refine'_2 X : Type u inst✝⁶ : MetricSpace X inst✝⁵ : CompactSpace X inst✝⁴ : Nonempty X Y : Type v inst✝³ : MetricSpace Y inst✝² : CompactSpace Y inst✝¹ : Nonempty Y γ : Type w inst✝ : MetricSpace γ Φ : X → γ Ψ : Y → γ ha : Isometry Φ hb : Isometry Ψ xX : X h✝ : xX ∈ univ s : Set γ := range Φ ∪ range Ψ Φ' : X → Subtype s := fun y => { val := Φ y, property := (_ : Φ y ∈ range Φ ∪ range Ψ) } Ψ' : Y → Subtype s := fun y => { val := Ψ y, property := (_ : Ψ y ∈ range Φ ∪ range Ψ) } IΦ' : Isometry Φ' IΨ' : Isometry Ψ' this✝⁴ : IsCompact s this✝³ : MetricSpace (Subtype s) := inferInstance this✝² : CompactSpace (Subtype s) this✝¹ : Nonempty (Subtype s) ΦΦ' : Φ = Subtype.val ∘ Φ' ΨΨ' : Ψ = Subtype.val ∘ Ψ' this✝ : hausdorffDist (range Φ) (range Ψ) = hausdorffDist (range Φ') (range Ψ') F : Subtype s → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (Subtype s) this : hausdorffDist (F '' range Φ') (F '' range Ψ') = hausdorffDist (range Φ') (range Ψ') A : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Φ', isCompact' := (_ : IsCompact (F '' range Φ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Φ')) } B : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } := { toCompacts := { carrier := F '' range Ψ', isCompact' := (_ : IsCompact (F '' range Ψ')) }, nonempty' := (_ : Set.Nonempty ((fun a => F a) '' range Ψ')) } AX : Quotient.mk IsometryRel.setoid A = toGHSpace X BY : Quotient.mk IsometryRel.setoid B = toGHSpace Y ⊢ ∃ x, x ∈ {a | Quotient.mk IsometryRel.setoid a = toGHSpace X} ×ˢ {b | Quotient.mk IsometryRel.setoid b = toGHSpace Y} ∧ hausdorffDist ↑x.fst ↑x.snd = hausdorffDist (F '' range Φ') (F '' range Ψ') [PROOFSTEP] exists (⟨A, B⟩ : NonemptyCompacts ℓ_infty_ℝ × NonemptyCompacts ℓ_infty_ℝ) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) = ghDist X Y [PROOFSTEP] inhabit X [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h : Inhabited X ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) = ghDist X Y [PROOFSTEP] inhabit Y [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) = ghDist X Y [PROOFSTEP] have A : ∀ p q : NonemptyCompacts ℓ_infty_ℝ, ⟦p⟧ = toGHSpace X → ⟦q⟧ = toGHSpace Y → hausdorffDist (p : Set ℓ_infty_ℝ) q < diam (univ : Set X) + 1 + diam (univ : Set Y) → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist (p : Set ℓ_infty_ℝ) q := by intro p q hp hq bound rcases eq_toGHSpace_iff.1 hp with ⟨Φ, ⟨Φisom, Φrange⟩⟩ rcases eq_toGHSpace_iff.1 hq with ⟨Ψ, ⟨Ψisom, Ψrange⟩⟩ have I : diam (range Φ ∪ range Ψ) ≤ 2 * diam (univ : Set X) + 1 + 2 * diam (univ : Set Y) := by rcases exists_mem_of_nonempty X with ⟨xX, _⟩ have : ∃ y ∈ range Ψ, dist (Φ xX) y < diam (univ : Set X) + 1 + diam (univ : Set Y) := by rw [Ψrange] have : Φ xX ∈ ↑p := Φrange.subst (mem_range_self _) exact exists_dist_lt_of_hausdorffDist_lt this bound (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) rcases this with ⟨y, hy, dy⟩ rcases mem_range.1 hy with ⟨z, hzy⟩ rw [← hzy] at dy have DΦ : diam (range Φ) = diam (univ : Set X) := Φisom.diam_range have DΨ : diam (range Ψ) = diam (univ : Set Y) := Ψisom.diam_range calc diam (range Φ ∪ range Ψ) ≤ diam (range Φ) + dist (Φ xX) (Ψ z) + diam (range Ψ) := diam_union (mem_range_self _) (mem_range_self _) _ ≤ diam (univ : Set X) + (diam (univ : Set X) + 1 + diam (univ : Set Y)) + diam (univ : Set Y) := by rw [DΦ, DΨ] gcongr -- apply add_le_add (add_le_add le_rfl (le_of_lt dy)) le_rfl _ = 2 * diam (univ : Set X) + 1 + 2 * diam (univ : Set Y) := by ring let f : Sum X Y → ℓ_infty_ℝ := fun x => match x with | inl y => Φ y | inr z => Ψ z let F : Sum X Y × Sum X Y → ℝ := fun p => dist (f p.1) (f p.2) -- check that the induced "distance" is a candidate have Fgood : F ∈ candidates X Y := by simp only [candidates, forall_const, and_true_iff, add_comm, eq_self_iff_true, dist_eq_zero, and_self_iff, Set.mem_setOf_eq] repeat' constructor · exact fun x y => calc F (inl x, inl y) = dist (Φ x) (Φ y) := rfl _ = dist x y := Φisom.dist_eq x y · exact fun x y => calc F (inr x, inr y) = dist (Ψ x) (Ψ y) := rfl _ = dist x y := Ψisom.dist_eq x y · exact fun x y => dist_comm _ _ · exact fun x y z => dist_triangle _ _ _ · exact fun x y => calc F (x, y) ≤ diam (range Φ ∪ range Ψ) := by have A : ∀ z : Sum X Y, f z ∈ range Φ ∪ range Ψ := by intro z cases z · apply mem_union_left; apply mem_range_self · apply mem_union_right; apply mem_range_self refine' dist_le_diam_of_mem _ (A _) (A _) rw [Φrange, Ψrange] exact (p ⊔ q).isCompact.bounded _ ≤ 2 * diam (univ : Set X) + 1 + 2 * diam (univ : Set Y) := I let Fb := candidatesBOfCandidates F Fgood have : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb := hausdorffDist_optimal_le_HD _ _ (candidatesBOfCandidates_mem F Fgood) refine' le_trans this (le_of_forall_le_of_dense fun r hr => _) have I1 : ∀ x : X, (⨅ y, Fb (inl x, inr y)) ≤ r := by intro x have : f (inl x) ∈ ↑p := Φrange.subst (mem_range_self _) rcases exists_dist_lt_of_hausdorffDist_lt this hr (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) with ⟨z, zq, hz⟩ have : z ∈ range Ψ := by rwa [← Ψrange] at zq rcases mem_range.1 this with ⟨y, hy⟩ calc (⨅ y, Fb (inl x, inr y)) ≤ Fb (inl x, inr y) := ciInf_le (by simpa only [add_zero] using HD_below_aux1 0) y _ = dist (Φ x) (Ψ y) := rfl _ = dist (f (inl x)) z := by rw [hy] _ ≤ r := le_of_lt hz have I2 : ∀ y : Y, (⨅ x, Fb (inl x, inr y)) ≤ r := by intro y have : f (inr y) ∈ ↑q := Ψrange.subst (mem_range_self _) rcases exists_dist_lt_of_hausdorffDist_lt' this hr (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) with ⟨z, zq, hz⟩ have : z ∈ range Φ := by rwa [← Φrange] at zq rcases mem_range.1 this with ⟨x, hx⟩ calc (⨅ x, Fb (inl x, inr y)) ≤ Fb (inl x, inr y) := ciInf_le (by simpa only [add_zero] using HD_below_aux2 0) x _ = dist (Φ x) (Ψ y) := rfl _ = dist z (f (inr y)) := by rw [hx] _ ≤ r := le_of_lt hz simp only [HD, ciSup_le I1, ciSup_le I2, max_le_iff, and_self_iff] /- Get the same inequality for any coupling. If the coupling is quite good, the desired inequality has been proved above. If it is bad, then the inequality is obvious. -/ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y ⊢ ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] intro p q hp hq bound [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] rcases eq_toGHSpace_iff.1 hp with ⟨Φ, ⟨Φisom, Φrange⟩⟩ [GOAL] case intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] rcases eq_toGHSpace_iff.1 hq with ⟨Ψ, ⟨Ψisom, Ψrange⟩⟩ [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] have I : diam (range Φ ∪ range Ψ) ≤ 2 * diam (univ : Set X) + 1 + 2 * diam (univ : Set Y) := by rcases exists_mem_of_nonempty X with ⟨xX, _⟩ have : ∃ y ∈ range Ψ, dist (Φ xX) y < diam (univ : Set X) + 1 + diam (univ : Set Y) := by rw [Ψrange] have : Φ xX ∈ ↑p := Φrange.subst (mem_range_self _) exact exists_dist_lt_of_hausdorffDist_lt this bound (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) rcases this with ⟨y, hy, dy⟩ rcases mem_range.1 hy with ⟨z, hzy⟩ rw [← hzy] at dy have DΦ : diam (range Φ) = diam (univ : Set X) := Φisom.diam_range have DΨ : diam (range Ψ) = diam (univ : Set Y) := Ψisom.diam_range calc diam (range Φ ∪ range Ψ) ≤ diam (range Φ) + dist (Φ xX) (Ψ z) + diam (range Ψ) := diam_union (mem_range_self _) (mem_range_self _) _ ≤ diam (univ : Set X) + (diam (univ : Set X) + 1 + diam (univ : Set Y)) + diam (univ : Set Y) := by rw [DΦ, DΨ] gcongr -- apply add_le_add (add_le_add le_rfl (le_of_lt dy)) le_rfl _ = 2 * diam (univ : Set X) + 1 + 2 * diam (univ : Set Y) := by ring [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q ⊢ diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] rcases exists_mem_of_nonempty X with ⟨xX, _⟩ [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ ⊢ diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] have : ∃ y ∈ range Ψ, dist (Φ xX) y < diam (univ : Set X) + 1 + diam (univ : Set Y) := by rw [Ψrange] have : Φ xX ∈ ↑p := Φrange.subst (mem_range_self _) exact exists_dist_lt_of_hausdorffDist_lt this bound (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ ⊢ ∃ y, y ∈ range Ψ ∧ dist (Φ xX) y < diam univ + 1 + diam univ [PROOFSTEP] rw [Ψrange] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ ⊢ ∃ y, y ∈ ↑q ∧ dist (Φ xX) y < diam univ + 1 + diam univ [PROOFSTEP] have : Φ xX ∈ ↑p := Φrange.subst (mem_range_self _) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ this : Φ xX ∈ ↑p ⊢ ∃ y, y ∈ ↑q ∧ dist (Φ xX) y < diam univ + 1 + diam univ [PROOFSTEP] exact exists_dist_lt_of_hausdorffDist_lt this bound (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ this : ∃ y, y ∈ range Ψ ∧ dist (Φ xX) y < diam univ + 1 + diam univ ⊢ diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] rcases this with ⟨y, hy, dy⟩ [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ y : { x // x ∈ lp (fun n => ℝ) ⊤ } hy : y ∈ range Ψ dy : dist (Φ xX) y < diam univ + 1 + diam univ ⊢ diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] rcases mem_range.1 hy with ⟨z, hzy⟩ [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ y : { x // x ∈ lp (fun n => ℝ) ⊤ } hy : y ∈ range Ψ dy : dist (Φ xX) y < diam univ + 1 + diam univ z : Y hzy : Ψ z = y ⊢ diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] rw [← hzy] at dy [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ y : { x // x ∈ lp (fun n => ℝ) ⊤ } hy : y ∈ range Ψ z : Y dy : dist (Φ xX) (Ψ z) < diam univ + 1 + diam univ hzy : Ψ z = y ⊢ diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] have DΦ : diam (range Φ) = diam (univ : Set X) := Φisom.diam_range [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ y : { x // x ∈ lp (fun n => ℝ) ⊤ } hy : y ∈ range Ψ z : Y dy : dist (Φ xX) (Ψ z) < diam univ + 1 + diam univ hzy : Ψ z = y DΦ : diam (range Φ) = diam univ ⊢ diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] have DΨ : diam (range Ψ) = diam (univ : Set Y) := Ψisom.diam_range [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ y : { x // x ∈ lp (fun n => ℝ) ⊤ } hy : y ∈ range Ψ z : Y dy : dist (Φ xX) (Ψ z) < diam univ + 1 + diam univ hzy : Ψ z = y DΦ : diam (range Φ) = diam univ DΨ : diam (range Ψ) = diam univ ⊢ diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] calc diam (range Φ ∪ range Ψ) ≤ diam (range Φ) + dist (Φ xX) (Ψ z) + diam (range Ψ) := diam_union (mem_range_self _) (mem_range_self _) _ ≤ diam (univ : Set X) + (diam (univ : Set X) + 1 + diam (univ : Set Y)) + diam (univ : Set Y) := by rw [DΦ, DΨ] gcongr -- apply add_le_add (add_le_add le_rfl (le_of_lt dy)) le_rfl _ = 2 * diam (univ : Set X) + 1 + 2 * diam (univ : Set Y) := by ring [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ y : { x // x ∈ lp (fun n => ℝ) ⊤ } hy : y ∈ range Ψ z : Y dy : dist (Φ xX) (Ψ z) < diam univ + 1 + diam univ hzy : Ψ z = y DΦ : diam (range Φ) = diam univ DΨ : diam (range Ψ) = diam univ ⊢ diam (range Φ) + dist (Φ xX) (Ψ z) + diam (range Ψ) ≤ diam univ + (diam univ + 1 + diam univ) + diam univ [PROOFSTEP] rw [DΦ, DΨ] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ y : { x // x ∈ lp (fun n => ℝ) ⊤ } hy : y ∈ range Ψ z : Y dy : dist (Φ xX) (Ψ z) < diam univ + 1 + diam univ hzy : Ψ z = y DΦ : diam (range Φ) = diam univ DΨ : diam (range Ψ) = diam univ ⊢ diam univ + dist (Φ xX) (Ψ z) + diam univ ≤ diam univ + (diam univ + 1 + diam univ) + diam univ [PROOFSTEP] gcongr -- apply add_le_add (add_le_add le_rfl (le_of_lt dy)) le_rfl [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q xX : X h✝ : xX ∈ univ y : { x // x ∈ lp (fun n => ℝ) ⊤ } hy : y ∈ range Ψ z : Y dy : dist (Φ xX) (Ψ z) < diam univ + 1 + diam univ hzy : Ψ z = y DΦ : diam (range Φ) = diam univ DΨ : diam (range Ψ) = diam univ ⊢ diam univ + (diam univ + 1 + diam univ) + diam univ = 2 * diam univ + 1 + 2 * diam univ [PROOFSTEP] ring [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] let f : Sum X Y → ℓ_infty_ℝ := fun x => match x with | inl y => Φ y | inr z => Ψ z [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] let F : Sum X Y × Sum X Y → ℝ := fun p => dist (f p.1) (f p.2) -- check that the induced "distance" is a candidate [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] have Fgood : F ∈ candidates X Y := by simp only [candidates, forall_const, and_true_iff, add_comm, eq_self_iff_true, dist_eq_zero, and_self_iff, Set.mem_setOf_eq] repeat' constructor · exact fun x y => calc F (inl x, inl y) = dist (Φ x) (Φ y) := rfl _ = dist x y := Φisom.dist_eq x y · exact fun x y => calc F (inr x, inr y) = dist (Ψ x) (Ψ y) := rfl _ = dist x y := Ψisom.dist_eq x y · exact fun x y => dist_comm _ _ · exact fun x y z => dist_triangle _ _ _ · exact fun x y => calc F (x, y) ≤ diam (range Φ ∪ range Ψ) := by have A : ∀ z : Sum X Y, f z ∈ range Φ ∪ range Ψ := by intro z cases z · apply mem_union_left; apply mem_range_self · apply mem_union_right; apply mem_range_self refine' dist_le_diam_of_mem _ (A _) (A _) rw [Φrange, Ψrange] exact (p ⊔ q).isCompact.bounded _ ≤ 2 * diam (univ : Set X) + 1 + 2 * diam (univ : Set Y) := I [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ F ∈ candidates X Y [PROOFSTEP] simp only [candidates, forall_const, and_true_iff, add_comm, eq_self_iff_true, dist_eq_zero, and_self_iff, Set.mem_setOf_eq] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ((((∀ (x y : X), dist (Φ x) (Φ y) = dist x y) ∧ ∀ (x y : Y), dist (Ψ x) (Ψ y) = dist x y) ∧ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) = dist (match y with | inl y => Φ y | inr z => Ψ z) (match x with | inl y => Φ y | inr z => Ψ z)) ∧ ∀ (x y z : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z) ≤ dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) + dist (match y with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z)) ∧ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) ≤ ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] repeat' constructor [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ((((∀ (x y : X), dist (Φ x) (Φ y) = dist x y) ∧ ∀ (x y : Y), dist (Ψ x) (Ψ y) = dist x y) ∧ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) = dist (match y with | inl y => Φ y | inr z => Ψ z) (match x with | inl y => Φ y | inr z => Ψ z)) ∧ ∀ (x y z : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z) ≤ dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) + dist (match y with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z)) ∧ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) ≤ ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] constructor [GOAL] case left X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ (((∀ (x y : X), dist (Φ x) (Φ y) = dist x y) ∧ ∀ (x y : Y), dist (Ψ x) (Ψ y) = dist x y) ∧ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) = dist (match y with | inl y => Φ y | inr z => Ψ z) (match x with | inl y => Φ y | inr z => Ψ z)) ∧ ∀ (x y z : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z) ≤ dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) + dist (match y with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z) [PROOFSTEP] constructor [GOAL] case left.left X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ((∀ (x y : X), dist (Φ x) (Φ y) = dist x y) ∧ ∀ (x y : Y), dist (Ψ x) (Ψ y) = dist x y) ∧ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) = dist (match y with | inl y => Φ y | inr z => Ψ z) (match x with | inl y => Φ y | inr z => Ψ z) [PROOFSTEP] constructor [GOAL] case left.left.left X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ (∀ (x y : X), dist (Φ x) (Φ y) = dist x y) ∧ ∀ (x y : Y), dist (Ψ x) (Ψ y) = dist x y [PROOFSTEP] constructor [GOAL] case left.left.left.left X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y : X), dist (Φ x) (Φ y) = dist x y [PROOFSTEP] constructor [GOAL] case left.left.left.right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y : Y), dist (Ψ x) (Ψ y) = dist x y [PROOFSTEP] constructor [GOAL] case left.left.right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) = dist (match y with | inl y => Φ y | inr z => Ψ z) (match x with | inl y => Φ y | inr z => Ψ z) [PROOFSTEP] constructor [GOAL] case left.right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y z : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z) ≤ dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) + dist (match y with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z) [PROOFSTEP] constructor [GOAL] case right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) ≤ ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] constructor [GOAL] case left.left.left.left X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y : X), dist (Φ x) (Φ y) = dist x y [PROOFSTEP] exact fun x y => calc F (inl x, inl y) = dist (Φ x) (Φ y) := rfl _ = dist x y := Φisom.dist_eq x y [GOAL] case left.left.left.right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y : Y), dist (Ψ x) (Ψ y) = dist x y [PROOFSTEP] exact fun x y => calc F (inr x, inr y) = dist (Ψ x) (Ψ y) := rfl _ = dist x y := Ψisom.dist_eq x y [GOAL] case left.left.right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) = dist (match y with | inl y => Φ y | inr z => Ψ z) (match x with | inl y => Φ y | inr z => Ψ z) [PROOFSTEP] exact fun x y => dist_comm _ _ [GOAL] case left.right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y z : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z) ≤ dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) + dist (match y with | inl y => Φ y | inr z => Ψ z) (match z with | inl y => Φ y | inr z => Ψ z) [PROOFSTEP] exact fun x y z => dist_triangle _ _ _ [GOAL] case right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) ⊢ ∀ (x y : X ⊕ Y), dist (match x with | inl y => Φ y | inr z => Ψ z) (match y with | inl y => Φ y | inr z => Ψ z) ≤ ↑(GromovHausdorff.maxVar X Y) [PROOFSTEP] exact fun x y => calc F (x, y) ≤ diam (range Φ ∪ range Ψ) := by have A : ∀ z : Sum X Y, f z ∈ range Φ ∪ range Ψ := by intro z cases z · apply mem_union_left; apply mem_range_self · apply mem_union_right; apply mem_range_self refine' dist_le_diam_of_mem _ (A _) (A _) rw [Φrange, Ψrange] exact (p ⊔ q).isCompact.bounded _ ≤ 2 * diam (univ : Set X) + 1 + 2 * diam (univ : Set Y) := I [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y ⊢ F (x, y) ≤ diam (range Φ ∪ range Ψ) [PROOFSTEP] have A : ∀ z : Sum X Y, f z ∈ range Φ ∪ range Ψ := by intro z cases z · apply mem_union_left; apply mem_range_self · apply mem_union_right; apply mem_range_self [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y ⊢ ∀ (z : X ⊕ Y), f z ∈ range Φ ∪ range Ψ [PROOFSTEP] intro z [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y z : X ⊕ Y ⊢ f z ∈ range Φ ∪ range Ψ [PROOFSTEP] cases z [GOAL] case inl X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y val✝ : X ⊢ f (inl val✝) ∈ range Φ ∪ range Ψ [PROOFSTEP] apply mem_union_left [GOAL] case inl.a X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y val✝ : X ⊢ f (inl val✝) ∈ range Φ [PROOFSTEP] apply mem_range_self [GOAL] case inr X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y val✝ : Y ⊢ f (inr val✝) ∈ range Φ ∪ range Ψ [PROOFSTEP] apply mem_union_right [GOAL] case inr.a X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y val✝ : Y ⊢ f (inr val✝) ∈ range Ψ [PROOFSTEP] apply mem_range_self [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y A : ∀ (z : X ⊕ Y), f z ∈ range Φ ∪ range Ψ ⊢ F (x, y) ≤ diam (range Φ ∪ range Ψ) [PROOFSTEP] refine' dist_le_diam_of_mem _ (A _) (A _) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y A : ∀ (z : X ⊕ Y), f z ∈ range Φ ∪ range Ψ ⊢ Metric.Bounded (range Φ ∪ range Ψ) [PROOFSTEP] rw [Φrange, Ψrange] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) x y : X ⊕ Y A : ∀ (z : X ⊕ Y), f z ∈ range Φ ∪ range Ψ ⊢ Metric.Bounded (↑p ∪ ↑q) [PROOFSTEP] exact (p ⊔ q).isCompact.bounded [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] let Fb := candidatesBOfCandidates F Fgood [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] have : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb := hausdorffDist_optimal_le_HD _ _ (candidatesBOfCandidates_mem F Fgood) [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] refine' le_trans this (le_of_forall_le_of_dense fun r hr => _) [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r ⊢ HD Fb ≤ r [PROOFSTEP] have I1 : ∀ x : X, (⨅ y, Fb (inl x, inr y)) ≤ r := by intro x have : f (inl x) ∈ ↑p := Φrange.subst (mem_range_self _) rcases exists_dist_lt_of_hausdorffDist_lt this hr (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) with ⟨z, zq, hz⟩ have : z ∈ range Ψ := by rwa [← Ψrange] at zq rcases mem_range.1 this with ⟨y, hy⟩ calc (⨅ y, Fb (inl x, inr y)) ≤ Fb (inl x, inr y) := ciInf_le (by simpa only [add_zero] using HD_below_aux1 0) y _ = dist (Φ x) (Ψ y) := rfl _ = dist (f (inl x)) z := by rw [hy] _ ≤ r := le_of_lt hz [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r ⊢ ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] intro x [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r x : X ⊢ ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] have : f (inl x) ∈ ↑p := Φrange.subst (mem_range_self _) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r x : X this : f (inl x) ∈ ↑p ⊢ ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] rcases exists_dist_lt_of_hausdorffDist_lt this hr (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) with ⟨z, zq, hz⟩ [GOAL] case intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r x : X this : f (inl x) ∈ ↑p z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑q hz : dist (f (inl x)) z < r ⊢ ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] have : z ∈ range Ψ := by rwa [← Ψrange] at zq [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r x : X this : f (inl x) ∈ ↑p z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑q hz : dist (f (inl x)) z < r ⊢ z ∈ range Ψ [PROOFSTEP] rwa [← Ψrange] at zq [GOAL] case intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝¹ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r x : X this✝ : f (inl x) ∈ ↑p z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑q hz : dist (f (inl x)) z < r this : z ∈ range Ψ ⊢ ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] rcases mem_range.1 this with ⟨y, hy⟩ [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝¹ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r x : X this✝ : f (inl x) ∈ ↑p z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑q hz : dist (f (inl x)) z < r this : z ∈ range Ψ y : Y hy : Ψ y = z ⊢ ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] calc (⨅ y, Fb (inl x, inr y)) ≤ Fb (inl x, inr y) := ciInf_le (by simpa only [add_zero] using HD_below_aux1 0) y _ = dist (Φ x) (Ψ y) := rfl _ = dist (f (inl x)) z := by rw [hy] _ ≤ r := le_of_lt hz [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝¹ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r x : X this✝ : f (inl x) ∈ ↑p z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑q hz : dist (f (inl x)) z < r this : z ∈ range Ψ y : Y hy : Ψ y = z ⊢ BddBelow (range fun y => ↑Fb (inl x, inr y)) [PROOFSTEP] simpa only [add_zero] using HD_below_aux1 0 [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝¹ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r x : X this✝ : f (inl x) ∈ ↑p z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑q hz : dist (f (inl x)) z < r this : z ∈ range Ψ y : Y hy : Ψ y = z ⊢ dist (Φ x) (Ψ y) = dist (f (inl x)) z [PROOFSTEP] rw [hy] [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r ⊢ HD Fb ≤ r [PROOFSTEP] have I2 : ∀ y : Y, (⨅ x, Fb (inl x, inr y)) ≤ r := by intro y have : f (inr y) ∈ ↑q := Ψrange.subst (mem_range_self _) rcases exists_dist_lt_of_hausdorffDist_lt' this hr (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) with ⟨z, zq, hz⟩ have : z ∈ range Φ := by rwa [← Φrange] at zq rcases mem_range.1 this with ⟨x, hx⟩ calc (⨅ x, Fb (inl x, inr y)) ≤ Fb (inl x, inr y) := ciInf_le (by simpa only [add_zero] using HD_below_aux2 0) x _ = dist (Φ x) (Ψ y) := rfl _ = dist z (f (inr y)) := by rw [hx] _ ≤ r := le_of_lt hz [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r ⊢ ∀ (y : Y), ⨅ (x : X), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] intro y [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r y : Y ⊢ ⨅ (x : X), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] have : f (inr y) ∈ ↑q := Ψrange.subst (mem_range_self _) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r y : Y this : f (inr y) ∈ ↑q ⊢ ⨅ (x : X), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] rcases exists_dist_lt_of_hausdorffDist_lt' this hr (hausdorffEdist_ne_top_of_nonempty_of_bounded p.nonempty q.nonempty p.isCompact.bounded q.isCompact.bounded) with ⟨z, zq, hz⟩ [GOAL] case intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r y : Y this : f (inr y) ∈ ↑q z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑p hz : dist z (f (inr y)) < r ⊢ ⨅ (x : X), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] have : z ∈ range Φ := by rwa [← Φrange] at zq [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r y : Y this : f (inr y) ∈ ↑q z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑p hz : dist z (f (inr y)) < r ⊢ z ∈ range Φ [PROOFSTEP] rwa [← Φrange] at zq [GOAL] case intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝¹ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r y : Y this✝ : f (inr y) ∈ ↑q z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑p hz : dist z (f (inr y)) < r this : z ∈ range Φ ⊢ ⨅ (x : X), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] rcases mem_range.1 this with ⟨x, hx⟩ [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝¹ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r y : Y this✝ : f (inr y) ∈ ↑q z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑p hz : dist z (f (inr y)) < r this : z ∈ range Φ x : X hx : Φ x = z ⊢ ⨅ (x : X), ↑Fb (inl x, inr y) ≤ r [PROOFSTEP] calc (⨅ x, Fb (inl x, inr y)) ≤ Fb (inl x, inr y) := ciInf_le (by simpa only [add_zero] using HD_below_aux2 0) x _ = dist (Φ x) (Ψ y) := rfl _ = dist z (f (inr y)) := by rw [hx] _ ≤ r := le_of_lt hz [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝¹ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r y : Y this✝ : f (inr y) ∈ ↑q z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑p hz : dist z (f (inr y)) < r this : z ∈ range Φ x : X hx : Φ x = z ⊢ BddBelow (range fun x => ↑Fb (inl x, inr y)) [PROOFSTEP] simpa only [add_zero] using HD_below_aux2 0 [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this✝¹ : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r y : Y this✝ : f (inr y) ∈ ↑q z : { x // x ∈ lp (fun n => ℝ) ⊤ } zq : z ∈ ↑p hz : dist z (f (inr y)) < r this : z ∈ range Φ x : X hx : Φ x = z ⊢ dist (Φ x) (Ψ y) = dist z (f (inr y)) [PROOFSTEP] rw [hx] [GOAL] case intro.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y bound : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ Φ : X → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Φrange : range Φ = ↑p Ψ : Y → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψisom : Isometry Ψ Ψrange : range Ψ = ↑q I : diam (range Φ ∪ range Ψ) ≤ 2 * diam univ + 1 + 2 * diam univ f : X ⊕ Y → { x // x ∈ lp (fun n => ℝ) ⊤ } := fun x => match x with | inl y => Φ y | inr z => Ψ z F : (X ⊕ Y) × (X ⊕ Y) → ℝ := fun p => dist (f p.fst) (f p.snd) Fgood : F ∈ candidates X Y Fb : GromovHausdorff.Cb X Y := candidatesBOfCandidates F Fgood this : hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD Fb r : ℝ hr : hausdorffDist ↑p ↑q < r I1 : ∀ (x : X), ⨅ (y : Y), ↑Fb (inl x, inr y) ≤ r I2 : ∀ (y : Y), ⨅ (x : X), ↑Fb (inl x, inr y) ≤ r ⊢ HD Fb ≤ r [PROOFSTEP] simp only [HD, ciSup_le I1, ciSup_le I2, max_le_iff, and_self_iff] /- Get the same inequality for any coupling. If the coupling is quite good, the desired inequality has been proved above. If it is bad, then the inequality is obvious. -/ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) = ghDist X Y [PROOFSTEP] have B : ∀ p q : NonemptyCompacts ℓ_infty_ℝ, ⟦p⟧ = toGHSpace X → ⟦q⟧ = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist (p : Set ℓ_infty_ℝ) q := by intro p q hp hq by_cases h : hausdorffDist (p : Set ℓ_infty_ℝ) q < diam (univ : Set X) + 1 + diam (univ : Set Y) · exact A p q hp hq h · calc hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD (candidatesBDist X Y) := hausdorffDist_optimal_le_HD _ _ candidatesBDist_mem_candidatesB _ ≤ diam (univ : Set X) + 1 + diam (univ : Set Y) := HD_candidatesBDist_le _ ≤ hausdorffDist (p : Set ℓ_infty_ℝ) q := not_lt.1 h [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] intro p q hp hq [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] by_cases h : hausdorffDist (p : Set ℓ_infty_ℝ) q < diam (univ : Set X) + 1 + diam (univ : Set Y) [GOAL] case pos X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y h : hausdorffDist ↑p ↑q < diam univ + 1 + diam univ ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] exact A p q hp hq h [GOAL] case neg X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : Quotient.mk IsometryRel.setoid p = toGHSpace X hq : Quotient.mk IsometryRel.setoid q = toGHSpace Y h : ¬hausdorffDist ↑p ↑q < diam univ + 1 + diam univ ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q [PROOFSTEP] calc hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ HD (candidatesBDist X Y) := hausdorffDist_optimal_le_HD _ _ candidatesBDist_mem_candidatesB _ ≤ diam (univ : Set X) + 1 + diam (univ : Set Y) := HD_candidatesBDist_le _ ≤ hausdorffDist (p : Set ℓ_infty_ℝ) q := not_lt.1 h [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q B : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) = ghDist X Y [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q B : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ ghDist X Y [PROOFSTEP] apply le_csInf [GOAL] case refine'_1.h₁ X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q B : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ Set.Nonempty ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = toGHSpace X} ×ˢ {b | Quotient.mk IsometryRel.setoid b = toGHSpace Y}) [PROOFSTEP] refine' (Set.Nonempty.prod _ _).image _ [GOAL] case refine'_1.h₁.refine'_1 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q B : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ Set.Nonempty {a | Quotient.mk IsometryRel.setoid a = toGHSpace X} [PROOFSTEP] exact ⟨_, rfl⟩ [GOAL] case refine'_1.h₁.refine'_2 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q B : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ Set.Nonempty {b | Quotient.mk IsometryRel.setoid b = toGHSpace Y} [PROOFSTEP] exact ⟨_, rfl⟩ [GOAL] case refine'_1.h₂ X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q B : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ ∀ (b : ℝ), b ∈ (fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = toGHSpace X} ×ˢ {b | Quotient.mk IsometryRel.setoid b = toGHSpace Y} → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ b [PROOFSTEP] rintro b ⟨⟨p, q⟩, ⟨hp, hq⟩, rfl⟩ [GOAL] case refine'_1.h₂.intro.mk.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q B : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hp : (p, q).fst ∈ {a | Quotient.mk IsometryRel.setoid a = toGHSpace X} hq : (p, q).snd ∈ {b | Quotient.mk IsometryRel.setoid b = toGHSpace Y} ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ (fun p => hausdorffDist ↑p.fst ↑p.snd) (p, q) [PROOFSTEP] exact B p q hp hq [GOAL] case refine'_2 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y inhabited_h✝ : Inhabited X inhabited_h : Inhabited Y A : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist ↑p ↑q < diam univ + 1 + diam univ → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q B : ∀ (p q : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ }), Quotient.mk IsometryRel.setoid p = toGHSpace X → Quotient.mk IsometryRel.setoid q = toGHSpace Y → hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) ≤ hausdorffDist ↑p ↑q ⊢ ghDist X Y ≤ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) [PROOFSTEP] exact ghDist_le_hausdorffDist (isometry_optimalGHInjl X Y) (isometry_optimalGHInjr X Y) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y ⊢ ∃ Φ Ψ, Isometry Φ ∧ Isometry Ψ ∧ ghDist X Y = hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] let F := kuratowskiEmbedding (OptimalGHCoupling X Y) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y F : OptimalGHCoupling X Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (OptimalGHCoupling X Y) ⊢ ∃ Φ Ψ, Isometry Φ ∧ Isometry Ψ ∧ ghDist X Y = hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] let Φ := F ∘ optimalGHInjl X Y [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y F : OptimalGHCoupling X Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (OptimalGHCoupling X Y) Φ : X → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjl X Y ⊢ ∃ Φ Ψ, Isometry Φ ∧ Isometry Ψ ∧ ghDist X Y = hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] let Ψ := F ∘ optimalGHInjr X Y [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y F : OptimalGHCoupling X Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (OptimalGHCoupling X Y) Φ : X → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjl X Y Ψ : Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjr X Y ⊢ ∃ Φ Ψ, Isometry Φ ∧ Isometry Ψ ∧ ghDist X Y = hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] refine' ⟨Φ, Ψ, _, _, _⟩ [GOAL] case refine'_1 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y F : OptimalGHCoupling X Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (OptimalGHCoupling X Y) Φ : X → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjl X Y Ψ : Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjr X Y ⊢ Isometry Φ [PROOFSTEP] exact (kuratowskiEmbedding.isometry _).comp (isometry_optimalGHInjl X Y) [GOAL] case refine'_2 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y F : OptimalGHCoupling X Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (OptimalGHCoupling X Y) Φ : X → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjl X Y Ψ : Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjr X Y ⊢ Isometry Ψ [PROOFSTEP] exact (kuratowskiEmbedding.isometry _).comp (isometry_optimalGHInjr X Y) [GOAL] case refine'_3 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y F : OptimalGHCoupling X Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (OptimalGHCoupling X Y) Φ : X → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjl X Y Ψ : Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjr X Y ⊢ ghDist X Y = hausdorffDist (range Φ) (range Ψ) [PROOFSTEP] rw [← image_univ, ← image_univ, image_comp F, image_univ, image_comp F (optimalGHInjr X Y), image_univ, ← hausdorffDist_optimal] [GOAL] case refine'_3 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y F : OptimalGHCoupling X Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := kuratowskiEmbedding (OptimalGHCoupling X Y) Φ : X → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjl X Y Ψ : Y → { x // x ∈ lp (fun i => ℝ) ⊤ } := F ∘ optimalGHInjr X Y ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) = hausdorffDist (F '' range (optimalGHInjl X Y)) (F '' range (optimalGHInjr X Y)) [PROOFSTEP] exact (hausdorffDist_image (kuratowskiEmbedding.isometry _)).symm [GOAL] x : GHSpace ⊢ dist x x = 0 [PROOFSTEP] rcases exists_rep x with ⟨y, hy⟩ [GOAL] case intro x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ dist x x = 0 [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case intro.refine'_1 x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ dist x x ≤ 0 [PROOFSTEP] apply csInf_le [GOAL] case intro.refine'_1.h₁ x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ BddBelow ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = x}) [PROOFSTEP] exact ⟨0, by rintro b ⟨⟨u, v⟩, -, rfl⟩; exact hausdorffDist_nonneg⟩ [GOAL] x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ 0 ∈ lowerBounds ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = x}) [PROOFSTEP] rintro b ⟨⟨u, v⟩, -, rfl⟩ [GOAL] case intro.mk.intro x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x u v : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } ⊢ 0 ≤ (fun p => hausdorffDist ↑p.fst ↑p.snd) (u, v) [PROOFSTEP] exact hausdorffDist_nonneg [GOAL] case intro.refine'_1.h₂ x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ 0 ∈ (fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = x} [PROOFSTEP] simp only [mem_image, mem_prod, mem_setOf_eq, Prod.exists] [GOAL] case intro.refine'_1.h₂ x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ ∃ a b, (Quotient.mk IsometryRel.setoid a = x ∧ Quotient.mk IsometryRel.setoid b = x) ∧ hausdorffDist ↑a ↑b = 0 [PROOFSTEP] exists y, y [GOAL] case intro.refine'_1.h₂ x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ (Quotient.mk IsometryRel.setoid y = x ∧ Quotient.mk IsometryRel.setoid y = x) ∧ hausdorffDist ↑y ↑y = 0 [PROOFSTEP] simpa only [and_self_iff, hausdorffDist_self_zero, eq_self_iff_true, and_true_iff] [GOAL] case intro.refine'_2 x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ 0 ≤ dist x x [PROOFSTEP] apply le_csInf [GOAL] case intro.refine'_2.h₁ x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ Set.Nonempty ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = x}) [PROOFSTEP] exact Set.Nonempty.image _ <| Set.Nonempty.prod ⟨y, hy⟩ ⟨y, hy⟩ [GOAL] case intro.refine'_2.h₂ x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x ⊢ ∀ (b : ℝ), b ∈ (fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = x} → 0 ≤ b [PROOFSTEP] rintro b ⟨⟨u, v⟩, -, rfl⟩ [GOAL] case intro.refine'_2.h₂.intro.mk.intro x : GHSpace y : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } hy : Quotient.mk IsometryRel.setoid y = x u v : NonemptyCompacts { x // x ∈ lp (fun n => ℝ) ⊤ } ⊢ 0 ≤ (fun p => hausdorffDist ↑p.fst ↑p.snd) (u, v) [PROOFSTEP] exact hausdorffDist_nonneg [GOAL] x y : GHSpace ⊢ dist x y = dist y x [PROOFSTEP] have A : (fun p : NonemptyCompacts ℓ_infty_ℝ × NonemptyCompacts ℓ_infty_ℝ => hausdorffDist (p.1 : Set ℓ_infty_ℝ) p.2) '' {a | ⟦a⟧ = x} ×ˢ {b | ⟦b⟧ = y} = (fun p : NonemptyCompacts ℓ_infty_ℝ × NonemptyCompacts ℓ_infty_ℝ => hausdorffDist (p.1 : Set ℓ_infty_ℝ) p.2) ∘ Prod.swap '' {a | ⟦a⟧ = x} ×ˢ {b | ⟦b⟧ = y} := by congr funext simp only [comp_apply, Prod.fst_swap, Prod.snd_swap] congr simp (config := { singlePass := true }) only [hausdorffDist_comm] [GOAL] x y : GHSpace ⊢ (fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y} = (fun p => hausdorffDist ↑p.fst ↑p.snd) ∘ Prod.swap '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y} [PROOFSTEP] congr [GOAL] x y : GHSpace ⊢ (fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y} = (fun p => hausdorffDist ↑p.fst ↑p.snd) ∘ Prod.swap '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y} [PROOFSTEP] funext [GOAL] case h x y : GHSpace x✝ : ℝ ⊢ ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y}) x✝ = ((fun p => hausdorffDist ↑p.fst ↑p.snd) ∘ Prod.swap '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y}) x✝ [PROOFSTEP] simp only [comp_apply, Prod.fst_swap, Prod.snd_swap] [GOAL] case h x y : GHSpace x✝ : ℝ ⊢ ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y}) x✝ = ((fun a => hausdorffDist ↑a.snd ↑a.fst) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y}) x✝ [PROOFSTEP] congr [GOAL] case h.e_f x y : GHSpace x✝ : ℝ ⊢ (fun p => hausdorffDist ↑p.fst ↑p.snd) = fun a => hausdorffDist ↑a.snd ↑a.fst [PROOFSTEP] simp (config := { singlePass := true }) only [hausdorffDist_comm] [GOAL] x y : GHSpace A : (fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y} = (fun p => hausdorffDist ↑p.fst ↑p.snd) ∘ Prod.swap '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y} ⊢ dist x y = dist y x [PROOFSTEP] simp only [dist, A, image_comp, image_swap_prod] [GOAL] x y z : GHSpace ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] let X := x.Rep [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] let Y := y.Rep [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] let Z := z.Rep [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] let γ1 := OptimalGHCoupling X Y [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] let γ2 := OptimalGHCoupling Y Z [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] let Φ : Y → γ1 := optimalGHInjr X Y [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] have hΦ : Isometry Φ := isometry_optimalGHInjr X Y [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] let Ψ : Y → γ2 := optimalGHInjl Y Z [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] have hΨ : Isometry Ψ := isometry_optimalGHInjl Y Z [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] have Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z := toGlue_commute hΦ hΨ [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ dist x z ≤ dist x y + dist y z [PROOFSTEP] calc dist x z = dist (toGHSpace X) (toGHSpace Z) := by rw [x.toGHSpace_rep, z.toGHSpace_rep] _ ≤ hausdorffDist (range (toGlueL hΦ hΨ ∘ optimalGHInjl X Y)) (range (toGlueR hΦ hΨ ∘ optimalGHInjr Y Z)) := (ghDist_le_hausdorffDist ((toGlueL_isometry hΦ hΨ).comp (isometry_optimalGHInjl X Y)) ((toGlueR_isometry hΦ hΨ).comp (isometry_optimalGHInjr Y Z))) _ ≤ hausdorffDist (range (toGlueL hΦ hΨ ∘ optimalGHInjl X Y)) (range (toGlueL hΦ hΨ ∘ optimalGHInjr X Y)) + hausdorffDist (range (toGlueL hΦ hΨ ∘ optimalGHInjr X Y)) (range (toGlueR hΦ hΨ ∘ optimalGHInjr Y Z)) := by refine' hausdorffDist_triangle <| hausdorffEdist_ne_top_of_nonempty_of_bounded (range_nonempty _) (range_nonempty _) _ _ · exact (isCompact_range (Isometry.continuous ((toGlueL_isometry hΦ hΨ).comp (isometry_optimalGHInjl X Y)))).bounded · exact (isCompact_range (Isometry.continuous ((toGlueL_isometry hΦ hΨ).comp (isometry_optimalGHInjr X Y)))).bounded _ = hausdorffDist (toGlueL hΦ hΨ '' range (optimalGHInjl X Y)) (toGlueL hΦ hΨ '' range (optimalGHInjr X Y)) + hausdorffDist (toGlueR hΦ hΨ '' range (optimalGHInjl Y Z)) (toGlueR hΦ hΨ '' range (optimalGHInjr Y Z)) := by simp only [← range_comp, Comm, eq_self_iff_true, add_right_inj] _ = hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) + hausdorffDist (range (optimalGHInjl Y Z)) (range (optimalGHInjr Y Z)) := by rw [hausdorffDist_image (toGlueL_isometry hΦ hΨ), hausdorffDist_image (toGlueR_isometry hΦ hΨ)] _ = dist (toGHSpace X) (toGHSpace Y) + dist (toGHSpace Y) (toGHSpace Z) := by rw [hausdorffDist_optimal, hausdorffDist_optimal, ghDist, ghDist] _ = dist x y + dist y z := by rw [x.toGHSpace_rep, y.toGHSpace_rep, z.toGHSpace_rep] [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ dist x z = dist (toGHSpace X) (toGHSpace Z) [PROOFSTEP] rw [x.toGHSpace_rep, z.toGHSpace_rep] [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ hausdorffDist (range (toGlueL hΦ hΨ ∘ optimalGHInjl X Y)) (range (toGlueR hΦ hΨ ∘ optimalGHInjr Y Z)) ≤ hausdorffDist (range (toGlueL hΦ hΨ ∘ optimalGHInjl X Y)) (range (toGlueL hΦ hΨ ∘ optimalGHInjr X Y)) + hausdorffDist (range (toGlueL hΦ hΨ ∘ optimalGHInjr X Y)) (range (toGlueR hΦ hΨ ∘ optimalGHInjr Y Z)) [PROOFSTEP] refine' hausdorffDist_triangle <| hausdorffEdist_ne_top_of_nonempty_of_bounded (range_nonempty _) (range_nonempty _) _ _ [GOAL] case refine'_1 x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ Metric.Bounded (range (toGlueL hΦ hΨ ∘ optimalGHInjl X Y)) [PROOFSTEP] exact (isCompact_range (Isometry.continuous ((toGlueL_isometry hΦ hΨ).comp (isometry_optimalGHInjl X Y)))).bounded [GOAL] case refine'_2 x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ Metric.Bounded (range (toGlueL hΦ hΨ ∘ optimalGHInjr X Y)) [PROOFSTEP] exact (isCompact_range (Isometry.continuous ((toGlueL_isometry hΦ hΨ).comp (isometry_optimalGHInjr X Y)))).bounded [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ hausdorffDist (range (toGlueL hΦ hΨ ∘ optimalGHInjl X Y)) (range (toGlueL hΦ hΨ ∘ optimalGHInjr X Y)) + hausdorffDist (range (toGlueL hΦ hΨ ∘ optimalGHInjr X Y)) (range (toGlueR hΦ hΨ ∘ optimalGHInjr Y Z)) = hausdorffDist (toGlueL hΦ hΨ '' range (optimalGHInjl X Y)) (toGlueL hΦ hΨ '' range (optimalGHInjr X Y)) + hausdorffDist (toGlueR hΦ hΨ '' range (optimalGHInjl Y Z)) (toGlueR hΦ hΨ '' range (optimalGHInjr Y Z)) [PROOFSTEP] simp only [← range_comp, Comm, eq_self_iff_true, add_right_inj] [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ hausdorffDist (toGlueL hΦ hΨ '' range (optimalGHInjl X Y)) (toGlueL hΦ hΨ '' range (optimalGHInjr X Y)) + hausdorffDist (toGlueR hΦ hΨ '' range (optimalGHInjl Y Z)) (toGlueR hΦ hΨ '' range (optimalGHInjr Y Z)) = hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) + hausdorffDist (range (optimalGHInjl Y Z)) (range (optimalGHInjr Y Z)) [PROOFSTEP] rw [hausdorffDist_image (toGlueL_isometry hΦ hΨ), hausdorffDist_image (toGlueR_isometry hΦ hΨ)] [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ hausdorffDist (range (optimalGHInjl X Y)) (range (optimalGHInjr X Y)) + hausdorffDist (range (optimalGHInjl Y Z)) (range (optimalGHInjr Y Z)) = dist (toGHSpace X) (toGHSpace Y) + dist (toGHSpace Y) (toGHSpace Z) [PROOFSTEP] rw [hausdorffDist_optimal, hausdorffDist_optimal, ghDist, ghDist] [GOAL] x y z : GHSpace X : Type := GHSpace.Rep x Y : Type := GHSpace.Rep y Z : Type := GHSpace.Rep z γ1 : Type := OptimalGHCoupling X Y γ2 : Type := OptimalGHCoupling Y Z Φ : Y → γ1 := optimalGHInjr X Y hΦ : Isometry Φ Ψ : Y → γ2 := optimalGHInjl Y Z hΨ : Isometry Ψ Comm : toGlueL hΦ hΨ ∘ optimalGHInjr X Y = toGlueR hΦ hΨ ∘ optimalGHInjl Y Z ⊢ dist (toGHSpace X) (toGHSpace Y) + dist (toGHSpace Y) (toGHSpace Z) = dist x y + dist y z [PROOFSTEP] rw [x.toGHSpace_rep, y.toGHSpace_rep, z.toGHSpace_rep] [GOAL] x✝¹ x✝ : GHSpace ⊢ (fun x y => ↑{ val := sInf ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y}), property := (_ : 0 ≤ sInf ((fun p => hausdorffDist ↑p.fst ↑p.snd) '' {a | Quotient.mk IsometryRel.setoid a = x} ×ˢ {b | Quotient.mk IsometryRel.setoid b = y})) }) x✝¹ x✝ = ENNReal.ofReal (dist x✝¹ x✝) [PROOFSTEP] exact ENNReal.coe_nnreal_eq _ [GOAL] x y : GHSpace hxy : dist x y = 0 ⊢ x = y [PROOFSTEP] rcases ghDist_eq_hausdorffDist x.Rep y.Rep with ⟨Φ, Ψ, Φisom, Ψisom, DΦΨ⟩ [GOAL] case intro.intro.intro.intro x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : ghDist (GHSpace.Rep x) (GHSpace.Rep y) = hausdorffDist (range Φ) (range Ψ) ⊢ x = y [PROOFSTEP] rw [← dist_ghDist] at DΦΨ [GOAL] case intro.intro.intro.intro x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : dist x y = hausdorffDist (range Φ) (range Ψ) ⊢ x = y [PROOFSTEP] simp_rw [hxy] at DΦΨ [GOAL] case intro.intro.intro.intro x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) ⊢ x = y [PROOFSTEP] have : range Φ = range Ψ := by have hΦ : IsCompact (range Φ) := isCompact_range Φisom.continuous have hΨ : IsCompact (range Ψ) := isCompact_range Ψisom.continuous apply (IsClosed.hausdorffDist_zero_iff_eq _ _ _).1 DΦΨ.symm · exact hΦ.isClosed · exact hΨ.isClosed · exact hausdorffEdist_ne_top_of_nonempty_of_bounded (range_nonempty _) (range_nonempty _) hΦ.bounded hΨ.bounded [GOAL] x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) ⊢ range Φ = range Ψ [PROOFSTEP] have hΦ : IsCompact (range Φ) := isCompact_range Φisom.continuous [GOAL] x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) hΦ : IsCompact (range Φ) ⊢ range Φ = range Ψ [PROOFSTEP] have hΨ : IsCompact (range Ψ) := isCompact_range Ψisom.continuous [GOAL] x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) hΦ : IsCompact (range Φ) hΨ : IsCompact (range Ψ) ⊢ range Φ = range Ψ [PROOFSTEP] apply (IsClosed.hausdorffDist_zero_iff_eq _ _ _).1 DΦΨ.symm [GOAL] x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) hΦ : IsCompact (range Φ) hΨ : IsCompact (range Ψ) ⊢ IsClosed (range Φ) [PROOFSTEP] exact hΦ.isClosed [GOAL] x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) hΦ : IsCompact (range Φ) hΨ : IsCompact (range Ψ) ⊢ IsClosed (range Ψ) [PROOFSTEP] exact hΨ.isClosed [GOAL] x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) hΦ : IsCompact (range Φ) hΨ : IsCompact (range Ψ) ⊢ EMetric.hausdorffEdist (range Φ) (range Ψ) ≠ ⊤ [PROOFSTEP] exact hausdorffEdist_ne_top_of_nonempty_of_bounded (range_nonempty _) (range_nonempty _) hΦ.bounded hΨ.bounded [GOAL] case intro.intro.intro.intro x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) this : range Φ = range Ψ ⊢ x = y [PROOFSTEP] have T : (range Ψ ≃ᵢ y.Rep) = (range Φ ≃ᵢ y.Rep) := by rw [this] [GOAL] x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) this : range Φ = range Ψ ⊢ (↑(range Ψ) ≃ᵢ GHSpace.Rep y) = (↑(range Φ) ≃ᵢ GHSpace.Rep y) [PROOFSTEP] rw [this] [GOAL] case intro.intro.intro.intro x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) this : range Φ = range Ψ T : (↑(range Ψ) ≃ᵢ GHSpace.Rep y) = (↑(range Φ) ≃ᵢ GHSpace.Rep y) ⊢ x = y [PROOFSTEP] have eΨ := cast T Ψisom.isometryEquivOnRange.symm [GOAL] case intro.intro.intro.intro x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) this : range Φ = range Ψ T : (↑(range Ψ) ≃ᵢ GHSpace.Rep y) = (↑(range Φ) ≃ᵢ GHSpace.Rep y) eΨ : ↑(range Φ) ≃ᵢ GHSpace.Rep y ⊢ x = y [PROOFSTEP] have e := Φisom.isometryEquivOnRange.trans eΨ [GOAL] case intro.intro.intro.intro x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) this : range Φ = range Ψ T : (↑(range Ψ) ≃ᵢ GHSpace.Rep y) = (↑(range Φ) ≃ᵢ GHSpace.Rep y) eΨ : ↑(range Φ) ≃ᵢ GHSpace.Rep y e : GHSpace.Rep x ≃ᵢ GHSpace.Rep y ⊢ x = y [PROOFSTEP] rw [← x.toGHSpace_rep, ← y.toGHSpace_rep, toGHSpace_eq_toGHSpace_iff_isometryEquiv] [GOAL] case intro.intro.intro.intro x y : GHSpace hxy : dist x y = 0 Φ : GHSpace.Rep x → { x // x ∈ lp (fun n => ℝ) ⊤ } Ψ : GHSpace.Rep y → { x // x ∈ lp (fun n => ℝ) ⊤ } Φisom : Isometry Φ Ψisom : Isometry Ψ DΦΨ : 0 = hausdorffDist (range Φ) (range Ψ) this : range Φ = range Ψ T : (↑(range Ψ) ≃ᵢ GHSpace.Rep y) = (↑(range Φ) ≃ᵢ GHSpace.Rep y) eΨ : ↑(range Φ) ≃ᵢ GHSpace.Rep y e : GHSpace.Rep x ≃ᵢ GHSpace.Rep y ⊢ Nonempty (GHSpace.Rep x ≃ᵢ GHSpace.Rep y) [PROOFSTEP] exact ⟨e⟩ [GOAL] X : Type u inst✝ : MetricSpace X p q : NonemptyCompacts X ⊢ dist (NonemptyCompacts.toGHSpace p) (NonemptyCompacts.toGHSpace q) ≤ dist p q [PROOFSTEP] have ha : Isometry ((↑) : p → X) := isometry_subtype_coe [GOAL] X : Type u inst✝ : MetricSpace X p q : NonemptyCompacts X ha : Isometry Subtype.val ⊢ dist (NonemptyCompacts.toGHSpace p) (NonemptyCompacts.toGHSpace q) ≤ dist p q [PROOFSTEP] have hb : Isometry ((↑) : q → X) := isometry_subtype_coe [GOAL] X : Type u inst✝ : MetricSpace X p q : NonemptyCompacts X ha : Isometry Subtype.val hb : Isometry Subtype.val ⊢ dist (NonemptyCompacts.toGHSpace p) (NonemptyCompacts.toGHSpace q) ≤ dist p q [PROOFSTEP] have A : dist p q = hausdorffDist (p : Set X) q := rfl [GOAL] X : Type u inst✝ : MetricSpace X p q : NonemptyCompacts X ha : Isometry Subtype.val hb : Isometry Subtype.val A : dist p q = hausdorffDist ↑p ↑q ⊢ dist (NonemptyCompacts.toGHSpace p) (NonemptyCompacts.toGHSpace q) ≤ dist p q [PROOFSTEP] have I : ↑p = range ((↑) : p → X) := Subtype.range_coe_subtype.symm [GOAL] X : Type u inst✝ : MetricSpace X p q : NonemptyCompacts X ha : Isometry Subtype.val hb : Isometry Subtype.val A : dist p q = hausdorffDist ↑p ↑q I : ↑p = range Subtype.val ⊢ dist (NonemptyCompacts.toGHSpace p) (NonemptyCompacts.toGHSpace q) ≤ dist p q [PROOFSTEP] have J : ↑q = range ((↑) : q → X) := Subtype.range_coe_subtype.symm [GOAL] X : Type u inst✝ : MetricSpace X p q : NonemptyCompacts X ha : Isometry Subtype.val hb : Isometry Subtype.val A : dist p q = hausdorffDist ↑p ↑q I : ↑p = range Subtype.val J : ↑q = range Subtype.val ⊢ dist (NonemptyCompacts.toGHSpace p) (NonemptyCompacts.toGHSpace q) ≤ dist p q [PROOFSTEP] rw [A, I, J] [GOAL] X : Type u inst✝ : MetricSpace X p q : NonemptyCompacts X ha : Isometry Subtype.val hb : Isometry Subtype.val A : dist p q = hausdorffDist ↑p ↑q I : ↑p = range Subtype.val J : ↑q = range Subtype.val ⊢ dist (NonemptyCompacts.toGHSpace p) (NonemptyCompacts.toGHSpace q) ≤ hausdorffDist (range Subtype.val) (range Subtype.val) [PROOFSTEP] exact ghDist_le_hausdorffDist ha hb [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ [PROOFSTEP] refine' le_of_forall_pos_le_add fun δ δ0 => _ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] rcases exists_mem_of_nonempty X with ⟨xX, _⟩ [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] rcases hs xX with ⟨xs, hxs, Dxs⟩ [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have sne : s.Nonempty := ⟨xs, hxs⟩ [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] letI : Nonempty s := sne.to_subtype [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this : Nonempty ↑s := Nonempty.to_subtype sne ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have : 0 ≤ ε₂ := le_trans (abs_nonneg _) (H ⟨xs, hxs⟩ ⟨xs, hxs⟩) [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝ : Nonempty ↑s := Nonempty.to_subtype sne this : 0 ≤ ε₂ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have : ∀ p q : s, |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) := fun p q => calc |dist p q - dist (Φ p) (Φ q)| ≤ ε₂ := H p q _ ≤ 2 * (ε₂ / 2 + δ) := by linarith -- glue `X` and `Y` along the almost matching subsets [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝ : Nonempty ↑s := Nonempty.to_subtype sne this : 0 ≤ ε₂ p q : ↑s ⊢ ε₂ ≤ 2 * (ε₂ / 2 + δ) [PROOFSTEP] linarith -- glue `X` and `Y` along the almost matching subsets [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝¹ : Nonempty ↑s := Nonempty.to_subtype sne this✝ : 0 ≤ ε₂ this : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] letI : MetricSpace (Sum X Y) := glueMetricApprox (fun x : s => (x : X)) (fun x => Φ x) (ε₂ / 2 + δ) (by linarith) this [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝¹ : Nonempty ↑s := Nonempty.to_subtype sne this✝ : 0 ≤ ε₂ this : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) ⊢ 0 < ε₂ / 2 + δ [PROOFSTEP] linarith [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝² : Nonempty ↑s := Nonempty.to_subtype sne this✝¹ : 0 ≤ ε₂ this✝ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] let Fl := @Sum.inl X Y [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝² : Nonempty ↑s := Nonempty.to_subtype sne this✝¹ : 0 ≤ ε₂ this✝ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝ Fl : X → X ⊕ Y := inl ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] let Fr := @Sum.inr X Y [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝² : Nonempty ↑s := Nonempty.to_subtype sne this✝¹ : 0 ≤ ε₂ this✝ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have Il : Isometry Fl := Isometry.of_dist_eq fun x y => rfl [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝² : Nonempty ↑s := Nonempty.to_subtype sne this✝¹ : 0 ≤ ε₂ this✝ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have Ir : Isometry Fr := Isometry.of_dist_eq fun x y => rfl [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝² : Nonempty ↑s := Nonempty.to_subtype sne this✝¹ : 0 ≤ ε₂ this✝ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) := ghDist_le_hausdorffDist Il Ir [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝³ : Nonempty ↑s := Nonempty.to_subtype sne this✝² : 0 ≤ ε₂ this✝¹ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝¹ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) := haveI B : Bounded (range Fl) := (isCompact_range Il.continuous).bounded hausdorffDist_triangle (hausdorffEdist_ne_top_of_nonempty_of_bounded (range_nonempty _) (sne.image _) B (B.mono (image_subset_range _ _))) [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁴ : Nonempty ↑s := Nonempty.to_subtype sne this✝³ : 0 ≤ ε₂ this✝² : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝¹ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝² Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) := haveI B : Bounded (range Fr) := (isCompact_range Ir.continuous).bounded hausdorffDist_triangle' (hausdorffEdist_ne_top_of_nonempty_of_bounded ((range_nonempty _).image _) (range_nonempty _) (Bounded.mono (image_subset_range _ _) B) B) [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁵ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁴ : 0 ≤ ε₂ this✝³ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝² : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝³ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝¹ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ := by rw [← image_univ, hausdorffDist_image Il] have : 0 ≤ ε₁ := le_trans dist_nonneg Dxs refine' hausdorffDist_le_of_mem_dist this (fun x _ => hs x) fun x _ => ⟨x, mem_univ _, by simpa only [dist_self]⟩ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁵ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁴ : 0 ≤ ε₂ this✝³ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝² : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝³ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝¹ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) ⊢ hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ [PROOFSTEP] rw [← image_univ, hausdorffDist_image Il] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁵ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁴ : 0 ≤ ε₂ this✝³ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝² : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝³ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝¹ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) ⊢ hausdorffDist univ s ≤ ε₁ [PROOFSTEP] have : 0 ≤ ε₁ := le_trans dist_nonneg Dxs [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : 0 ≤ ε₁ ⊢ hausdorffDist univ s ≤ ε₁ [PROOFSTEP] refine' hausdorffDist_le_of_mem_dist this (fun x _ => hs x) fun x _ => ⟨x, mem_univ _, by simpa only [dist_self]⟩ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : 0 ≤ ε₁ x : X x✝ : x ∈ s ⊢ dist x x ≤ ε₁ [PROOFSTEP] simpa only [dist_self] [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ := by refine' hausdorffDist_le_of_mem_dist (by linarith) _ _ · intro x' hx' rcases(Set.mem_image _ _ _).1 hx' with ⟨x, ⟨x_in_s, xx'⟩⟩ rw [← xx'] use Fr (Φ ⟨x, x_in_s⟩), mem_image_of_mem Fr (mem_range_self _) exact le_of_eq (glueDist_glued_points (fun x : s => (x : X)) Φ (ε₂ / 2 + δ) ⟨x, x_in_s⟩) · intro x' hx' rcases(Set.mem_image _ _ _).1 hx' with ⟨y, ⟨y_in_s', yx'⟩⟩ rcases mem_range.1 y_in_s' with ⟨x, xy⟩ use Fl x, mem_image_of_mem _ x.2 rw [← yx', ← xy, dist_comm] exact le_of_eq (glueDist_glued_points (Z := s) (@Subtype.val X s) Φ (ε₂ / 2 + δ) x) [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ ⊢ hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ [PROOFSTEP] refine' hausdorffDist_le_of_mem_dist (by linarith) _ _ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ ⊢ 0 ≤ ε₂ / 2 + δ [PROOFSTEP] linarith [GOAL] case refine'_1 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ ⊢ ∀ (x : X ⊕ Y), x ∈ Fl '' s → ∃ y, y ∈ Fr '' range Φ ∧ dist x y ≤ ε₂ / 2 + δ [PROOFSTEP] intro x' hx' [GOAL] case refine'_1 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fl '' s ⊢ ∃ y, y ∈ Fr '' range Φ ∧ dist x' y ≤ ε₂ / 2 + δ [PROOFSTEP] rcases(Set.mem_image _ _ _).1 hx' with ⟨x, ⟨x_in_s, xx'⟩⟩ [GOAL] case refine'_1.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fl '' s x : X x_in_s : x ∈ s xx' : Fl x = x' ⊢ ∃ y, y ∈ Fr '' range Φ ∧ dist x' y ≤ ε₂ / 2 + δ [PROOFSTEP] rw [← xx'] [GOAL] case refine'_1.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fl '' s x : X x_in_s : x ∈ s xx' : Fl x = x' ⊢ ∃ y, y ∈ Fr '' range Φ ∧ dist (Fl x) y ≤ ε₂ / 2 + δ [PROOFSTEP] use Fr (Φ ⟨x, x_in_s⟩), mem_image_of_mem Fr (mem_range_self _) [GOAL] case right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fl '' s x : X x_in_s : x ∈ s xx' : Fl x = x' ⊢ dist (Fl x) (Fr (Φ { val := x, property := x_in_s })) ≤ ε₂ / 2 + δ [PROOFSTEP] exact le_of_eq (glueDist_glued_points (fun x : s => (x : X)) Φ (ε₂ / 2 + δ) ⟨x, x_in_s⟩) [GOAL] case refine'_2 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ ⊢ ∀ (x : X ⊕ Y), x ∈ Fr '' range Φ → ∃ y, y ∈ Fl '' s ∧ dist x y ≤ ε₂ / 2 + δ [PROOFSTEP] intro x' hx' [GOAL] case refine'_2 X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fr '' range Φ ⊢ ∃ y, y ∈ Fl '' s ∧ dist x' y ≤ ε₂ / 2 + δ [PROOFSTEP] rcases(Set.mem_image _ _ _).1 hx' with ⟨y, ⟨y_in_s', yx'⟩⟩ [GOAL] case refine'_2.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fr '' range Φ y : Y y_in_s' : y ∈ range Φ yx' : Fr y = x' ⊢ ∃ y, y ∈ Fl '' s ∧ dist x' y ≤ ε₂ / 2 + δ [PROOFSTEP] rcases mem_range.1 y_in_s' with ⟨x, xy⟩ [GOAL] case refine'_2.intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fr '' range Φ y : Y y_in_s' : y ∈ range Φ yx' : Fr y = x' x : ↑s xy : Φ x = y ⊢ ∃ y, y ∈ Fl '' s ∧ dist x' y ≤ ε₂ / 2 + δ [PROOFSTEP] use Fl x, mem_image_of_mem _ x.2 [GOAL] case right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fr '' range Φ y : Y y_in_s' : y ∈ range Φ yx' : Fr y = x' x : ↑s xy : Φ x = y ⊢ dist x' (Fl ↑x) ≤ ε₂ / 2 + δ [PROOFSTEP] rw [← yx', ← xy, dist_comm] [GOAL] case right X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁶ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁵ : 0 ≤ ε₂ this✝⁴ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝³ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁴ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝² : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝¹ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ x' : X ⊕ Y hx' : x' ∈ Fr '' range Φ y : Y y_in_s' : y ∈ range Φ yx' : Fr y = x' x : ↑s xy : Φ x = y ⊢ dist (Fl ↑x) (Fr (Φ x)) ≤ ε₂ / 2 + δ [PROOFSTEP] exact le_of_eq (glueDist_glued_points (Z := s) (@Subtype.val X s) Φ (ε₂ / 2 + δ) x) [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁷ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁶ : 0 ≤ ε₂ this✝⁵ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁴ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁵ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝³ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝² : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝¹ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] have : hausdorffDist (Fr '' range Φ) (range Fr) ≤ ε₃ := by rw [← @image_univ _ _ Fr, hausdorffDist_image Ir] rcases exists_mem_of_nonempty Y with ⟨xY, _⟩ rcases hs' xY with ⟨xs', Dxs'⟩ have : 0 ≤ ε₃ := le_trans dist_nonneg Dxs' refine hausdorffDist_le_of_mem_dist this (fun x _ => ⟨x, mem_univ _, by simpa only [dist_self]⟩) fun x _ => ?_ rcases hs' x with ⟨y, Dy⟩ exact ⟨Φ y, mem_range_self _, Dy⟩ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁷ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁶ : 0 ≤ ε₂ this✝⁵ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁴ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁵ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝³ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝² : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝¹ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ ⊢ hausdorffDist (Fr '' range Φ) (range Fr) ≤ ε₃ [PROOFSTEP] rw [← @image_univ _ _ Fr, hausdorffDist_image Ir] [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁷ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁶ : 0 ≤ ε₂ this✝⁵ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁴ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁵ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝³ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝² : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝¹ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ ⊢ hausdorffDist (range Φ) univ ≤ ε₃ [PROOFSTEP] rcases exists_mem_of_nonempty Y with ⟨xY, _⟩ [GOAL] case intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝¹ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁷ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁶ : 0 ≤ ε₂ this✝⁵ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁴ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁵ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝³ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝² : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝¹ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ xY : Y h✝ : xY ∈ univ ⊢ hausdorffDist (range Φ) univ ≤ ε₃ [PROOFSTEP] rcases hs' xY with ⟨xs', Dxs'⟩ [GOAL] case intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝¹ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁷ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁶ : 0 ≤ ε₂ this✝⁵ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁴ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁵ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝³ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝² : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝¹ : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ xY : Y h✝ : xY ∈ univ xs' : ↑s Dxs' : dist xY (Φ xs') ≤ ε₃ ⊢ hausdorffDist (range Φ) univ ≤ ε₃ [PROOFSTEP] have : 0 ≤ ε₃ := le_trans dist_nonneg Dxs' [GOAL] case intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝¹ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁸ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁷ : 0 ≤ ε₂ this✝⁶ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁵ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁶ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝⁴ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝³ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝² : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝¹ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this✝ : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ xY : Y h✝ : xY ∈ univ xs' : ↑s Dxs' : dist xY (Φ xs') ≤ ε₃ this : 0 ≤ ε₃ ⊢ hausdorffDist (range Φ) univ ≤ ε₃ [PROOFSTEP] refine hausdorffDist_le_of_mem_dist this (fun x _ => ⟨x, mem_univ _, by simpa only [dist_self]⟩) fun x _ => ?_ [GOAL] X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝¹ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁸ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁷ : 0 ≤ ε₂ this✝⁶ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁵ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁶ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝⁴ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝³ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝² : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝¹ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this✝ : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ xY : Y h✝ : xY ∈ univ xs' : ↑s Dxs' : dist xY (Φ xs') ≤ ε₃ this : 0 ≤ ε₃ x : Y x✝ : x ∈ range Φ ⊢ dist x x ≤ ε₃ [PROOFSTEP] simpa only [dist_self] [GOAL] case intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝¹ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁸ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁷ : 0 ≤ ε₂ this✝⁶ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁵ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁶ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝⁴ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝³ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝² : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝¹ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this✝ : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ xY : Y h✝ : xY ∈ univ xs' : ↑s Dxs' : dist xY (Φ xs') ≤ ε₃ this : 0 ≤ ε₃ x : Y x✝ : x ∈ univ ⊢ ∃ y, y ∈ range Φ ∧ dist x y ≤ ε₃ [PROOFSTEP] rcases hs' x with ⟨y, Dy⟩ [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝¹ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁸ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁷ : 0 ≤ ε₂ this✝⁶ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁵ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁶ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝⁴ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝³ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝² : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝¹ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this✝ : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ xY : Y h✝ : xY ∈ univ xs' : ↑s Dxs' : dist xY (Φ xs') ≤ ε₃ this : 0 ≤ ε₃ x : Y x✝ : x ∈ univ y : ↑s Dy : dist x (Φ y) ≤ ε₃ ⊢ ∃ y, y ∈ range Φ ∧ dist x y ≤ ε₃ [PROOFSTEP] exact ⟨Φ y, mem_range_self _, Dy⟩ [GOAL] case intro.intro.intro X : Type u inst✝⁵ : MetricSpace X inst✝⁴ : CompactSpace X inst✝³ : Nonempty X Y : Type v inst✝² : MetricSpace Y inst✝¹ : CompactSpace Y inst✝ : Nonempty Y s : Set X Φ : ↑s → Y ε₁ ε₂ ε₃ : ℝ hs : ∀ (x : X), ∃ y, y ∈ s ∧ dist x y ≤ ε₁ hs' : ∀ (x : Y), ∃ y, dist x (Φ y) ≤ ε₃ H : ∀ (x y : ↑s), |dist x y - dist (Φ x) (Φ y)| ≤ ε₂ δ : ℝ δ0 : 0 < δ xX : X h✝ : xX ∈ univ xs : X hxs : xs ∈ s Dxs : dist xX xs ≤ ε₁ sne : Set.Nonempty s this✝⁸ : Nonempty ↑s := Nonempty.to_subtype sne this✝⁷ : 0 ≤ ε₂ this✝⁶ : ∀ (p q : ↑s), |dist p q - dist (Φ p) (Φ q)| ≤ 2 * (ε₂ / 2 + δ) this✝⁵ : MetricSpace (X ⊕ Y) := glueMetricApprox (fun x => ↑x) (fun x => Φ x) (ε₂ / 2 + δ) (_ : 0 < ε₂ / 2 + δ) this✝⁶ Fl : X → X ⊕ Y := inl Fr : Y → X ⊕ Y := inr Il : Isometry Fl Ir : Isometry Fr this✝⁴ : ghDist X Y ≤ hausdorffDist (range Fl) (range Fr) this✝³ : hausdorffDist (range Fl) (range Fr) ≤ hausdorffDist (range Fl) (Fl '' s) + hausdorffDist (Fl '' s) (range Fr) this✝² : hausdorffDist (Fl '' s) (range Fr) ≤ hausdorffDist (Fl '' s) (Fr '' range Φ) + hausdorffDist (Fr '' range Φ) (range Fr) this✝¹ : hausdorffDist (range Fl) (Fl '' s) ≤ ε₁ this✝ : hausdorffDist (Fl '' s) (Fr '' range Φ) ≤ ε₂ / 2 + δ this : hausdorffDist (Fr '' range Φ) (range Fr) ≤ ε₃ ⊢ ghDist X Y ≤ ε₁ + ε₂ / 2 + ε₃ + δ [PROOFSTEP] linarith [GOAL] ⊢ SecondCountableTopology GHSpace [PROOFSTEP] refine' secondCountable_of_countable_discretization fun δ δpos => _ [GOAL] δ : ℝ δpos : δ > 0 ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] let ε := 2 / 5 * δ [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] have εpos : 0 < ε := mul_pos (by norm_num) δpos [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ ⊢ 0 < 2 / 5 [PROOFSTEP] norm_num [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] have : ∀ p : GHSpace, ∃ s : Set p.Rep, s.Finite ∧ univ ⊆ ⋃ x ∈ s, ball x ε := fun p => by simpa only [subset_univ, true_and] using finite_cover_balls_of_compact (α := p.Rep) isCompact_univ εpos [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε p : GHSpace ⊢ ∃ s, Set.Finite s ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x ε [PROOFSTEP] simpa only [subset_univ, true_and] using finite_cover_balls_of_compact (α := p.Rep) isCompact_univ εpos [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε this : ∀ (p : GHSpace), ∃ s, Set.Finite s ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x ε ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] choose s hs using this [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] have : ∀ p : GHSpace, ∀ t : Set p.Rep, t.Finite → ∃ n : ℕ, ∃ _ : Equiv t (Fin n), True := by intro p t ht letI : Fintype t := Finite.fintype ht exact ⟨Fintype.card t, Fintype.equivFin t, trivial⟩ [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε ⊢ ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → ∃ n x, True [PROOFSTEP] intro p t ht [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε p : GHSpace t : Set (GHSpace.Rep p) ht : Set.Finite t ⊢ ∃ n x, True [PROOFSTEP] letI : Fintype t := Finite.fintype ht [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε p : GHSpace t : Set (GHSpace.Rep p) ht : Set.Finite t this : Fintype ↑t := Finite.fintype ht ⊢ ∃ n x, True [PROOFSTEP] exact ⟨Fintype.card t, Fintype.equivFin t, trivial⟩ [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε this : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → ∃ n x, True ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] choose N e _ using this [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] let N := fun p : GHSpace => N p (s p) (hs p).1 -- equiv from `s p`, a nice finite subset of `p.rep`, to `fin (N p)`, called `E p` [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] let E := fun p : GHSpace => e p (s p) (hs p).1 -- A function `F` associating to `p : GHSpace` the data of all distances between points -- in the `ε`-dense set `s p`. [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] let F : GHSpace → Σ n : ℕ, Fin n → Fin n → ℤ := fun p => ⟨N p, fun a b => ⌊ε⁻¹ * dist ((E p).symm a) ((E p).symm b)⌋⟩ [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } ⊢ ∃ β x F, ∀ (x y : GHSpace), F x = F y → dist x y ≤ δ [PROOFSTEP] refine' ⟨Σ n, Fin n → Fin n → ℤ, by infer_instance, F, fun p q hpq => _⟩ /- As the target space of F is countable, it suffices to show that two points `p` and `q` with `F p = F q` are at distance `≤ δ`. For this, we construct a map `Φ` from `s p ⊆ p.rep` (representing `p`) to `q.rep` (representing `q`) which is almost an isometry on `s p`, and with image `s q`. For this, we compose the identification of `s p` with `fin (N p)` and the inverse of the identification of `s q` with `fin (N q)`. Together with the fact that `N p = N q`, this constructs `Ψ` between `s p` and `s q`, and then composing with the canonical inclusion we get `Φ`. -/ [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } ⊢ Encodable ((n : ℕ) × (Fin n → Fin n → ℤ)) [PROOFSTEP] infer_instance [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q ⊢ dist p q ≤ δ [PROOFSTEP] have Npq : N p = N q := (Sigma.mk.inj_iff.1 hpq).1 [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q ⊢ dist p q ≤ δ [PROOFSTEP] let Ψ : s p → s q := fun x => (E q).symm (Fin.castIso Npq ((E p) x)) [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) ⊢ dist p q ≤ δ [PROOFSTEP] let Φ : s p → q.Rep := fun x => Ψ x [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ dist p q ≤ δ [PROOFSTEP] have main : ghDist p.Rep q.Rep ≤ ε + ε / 2 + ε := by refine' ghDist_le_of_approx_subsets Φ _ _ _ show ∀ x : p.Rep, ∃ y ∈ s p, dist x y ≤ ε · -- by construction, `s p` is `ε`-dense intro x have : x ∈ ⋃ y ∈ s p, ball y ε := (hs p).2 (mem_univ _) rcases mem_iUnion₂.1 this with ⟨y, ys, hy⟩ exact ⟨y, ys, le_of_lt hy⟩ show ∀ x : q.Rep, ∃ z : s p, dist x (Φ z) ≤ ε · -- by construction, `s q` is `ε`-dense, and it is the range of `Φ` intro x have : x ∈ ⋃ y ∈ s q, ball y ε := (hs q).2 (mem_univ _) rcases mem_iUnion₂.1 this with ⟨y, ys, hy⟩ let i : ℕ := E q ⟨y, ys⟩ let hi := ((E q) ⟨y, ys⟩).is_lt have ihi_eq : (⟨i, hi⟩ : Fin (N q)) = (E q) ⟨y, ys⟩ := by rw [Fin.ext_iff, Fin.val_mk] have hiq : i < N q := hi have hip : i < N p := by rwa [Npq.symm] at hiq let z := (E p).symm ⟨i, hip⟩ use z have C1 : (E p) z = ⟨i, hip⟩ := (E p).apply_symm_apply ⟨i, hip⟩ have C2 : Fin.castIso Npq ⟨i, hip⟩ = ⟨i, hi⟩ := rfl have C3 : (E q).symm ⟨i, hi⟩ = ⟨y, ys⟩ := by rw [ihi_eq]; exact (E q).symm_apply_apply ⟨y, ys⟩ have : Φ z = y := by simp only; rw [C1, C2, C3] rw [this] exact le_of_lt hy show ∀ x y : s p, |dist x y - dist (Φ x) (Φ y)| ≤ ε · /- the distance between `x` and `y` is encoded in `F p`, and the distance between `Φ x` and `Φ y` (two points of `s q`) is encoded in `F q`, all this up to `ε`. As `F p = F q`, the distances are almost equal. -/ -- porting note : we have to circumvent the absence of `change … with … ` intro x y rw [show dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) from rfl] -- introduce `i`, that codes both `x` and `Φ x` in `fin (N p) = fin (N q)` let i : ℕ := E p x have hip : i < N p := ((E p) x).2 have hiq : i < N q := by rwa [Npq] at hip have i' : i = (E q) (Ψ x) := by simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- introduce `j`, that codes both `y` and `Φ y` in `fin (N p) = fin (N q)` let j : ℕ := E p y have hjp : j < N p := ((E p) y).2 have hjq : j < N q := by rwa [Npq] at hjp have j' : j = ((E q) (Ψ y)).1 := by simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- Express `dist x y` in terms of `F p` have : (F p).2 ((E p) x) ((E p) y) = ⌊ε⁻¹ * dist x y⌋ := by simp only [(E p).symm_apply_apply] have Ap : (F p).2 ⟨i, hip⟩ ⟨j, hjp⟩ = ⌊ε⁻¹ * dist x y⌋ := by rw [← this] -- Express `dist (Φ x) (Φ y)` in terms of `F q` have : (F q).2 ((E q) (Ψ x)) ((E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := by simp only [(E q).symm_apply_apply] have Aq : (F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := by rw [← this] -- porting note: `congr` fails to make progress refine congr_arg₂ (F q).2 ?_ ?_ <;> ext1 exacts [i', j'] -- use the equality between `F p` and `F q` to deduce that the distances have equal -- integer parts have : (F p).2 ⟨i, hip⟩ ⟨j, hjp⟩ = (F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩ := by have hpq' : HEq (F p).snd (F q).snd := (Sigma.mk.inj_iff.1 hpq).2 rw [Fin.heq_fun₂_iff Npq Npq] at hpq' rw [← hpq'] -- porting note : new version above, because `change … with…` is not implemented -- we want to `subst hpq` where `hpq : F p = F q`, except that `subst` only works -- with a constant, so replace `F q` (and everything that depends on it) by a constant `f` -- then `subst` -- revert hiq hjq -- change N q with (F q).1 -- generalize F q = f at hpq ⊢ -- subst hpq -- rfl rw [Ap, Aq] at this have I := calc |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| = |ε⁻¹ * (dist x y - dist (Ψ x) (Ψ y))| := (abs_mul _ _).symm _ = |ε⁻¹ * dist x y - ε⁻¹ * dist (Ψ x) (Ψ y)| := by congr; ring _ ≤ 1 := le_of_lt (abs_sub_lt_one_of_floor_eq_floor this) calc |dist x y - dist (Ψ x) (Ψ y)| = ε * ε⁻¹ * |dist x y - dist (Ψ x) (Ψ y)| := by rw [mul_inv_cancel (ne_of_gt εpos), one_mul] _ = ε * (|ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)|) := by rw [abs_of_nonneg (le_of_lt (inv_pos.2 εpos)), mul_assoc] _ ≤ ε * 1 := (mul_le_mul_of_nonneg_left I (le_of_lt εpos)) _ = ε := mul_one _ [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ghDist (GHSpace.Rep p) (GHSpace.Rep q) ≤ ε + ε / 2 + ε [PROOFSTEP] refine' ghDist_le_of_approx_subsets Φ _ _ _ [GOAL] case refine'_1 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep p), ∃ y, y ∈ s p ∧ dist x y ≤ ε case refine'_2 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep q), ∃ y, dist x (Φ y) ≤ ε case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x y : ↑(s p)), |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] show ∀ x : p.Rep, ∃ y ∈ s p, dist x y ≤ ε [GOAL] case refine'_1 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep p), ∃ y, y ∈ s p ∧ dist x y ≤ ε [PROOFSTEP] intro x [GOAL] case refine'_1 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep p ⊢ ∃ y, y ∈ s p ∧ dist x y ≤ ε [PROOFSTEP] have : x ∈ ⋃ y ∈ s p, ball y ε := (hs p).2 (mem_univ _) [GOAL] case refine'_1 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep p this : x ∈ ⋃ (y : GHSpace.Rep p) (_ : y ∈ s p), ball y ε ⊢ ∃ y, y ∈ s p ∧ dist x y ≤ ε [PROOFSTEP] rcases mem_iUnion₂.1 this with ⟨y, ys, hy⟩ [GOAL] case refine'_1.intro.intro δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep p this : x ∈ ⋃ (y : GHSpace.Rep p) (_ : y ∈ s p), ball y ε y : GHSpace.Rep p ys : y ∈ s p hy : x ∈ ball y ε ⊢ ∃ y, y ∈ s p ∧ dist x y ≤ ε [PROOFSTEP] exact ⟨y, ys, le_of_lt hy⟩ [GOAL] case refine'_2 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep q), ∃ y, dist x (Φ y) ≤ ε case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x y : ↑(s p)), |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] show ∀ x : q.Rep, ∃ z : s p, dist x (Φ z) ≤ ε [GOAL] case refine'_2 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep q), ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] intro x [GOAL] case refine'_2 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] have : x ∈ ⋃ y ∈ s q, ball y ε := (hs q).2 (mem_univ _) [GOAL] case refine'_2 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] rcases mem_iUnion₂.1 this with ⟨y, ys, hy⟩ [GOAL] case refine'_2.intro.intro δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] let i : ℕ := E q ⟨y, ys⟩ [GOAL] case refine'_2.intro.intro δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] let hi := ((E q) ⟨y, ys⟩).is_lt [GOAL] case refine'_2.intro.intro δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] have ihi_eq : (⟨i, hi⟩ : Fin (N q)) = (E q) ⟨y, ys⟩ := by rw [Fin.ext_iff, Fin.val_mk] [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ⊢ { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } [PROOFSTEP] rw [Fin.ext_iff, Fin.val_mk] [GOAL] case refine'_2.intro.intro δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] have hiq : i < N q := hi [GOAL] case refine'_2.intro.intro δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] have hip : i < N p := by rwa [Npq.symm] at hiq [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q ⊢ i < N p [PROOFSTEP] rwa [Npq.symm] at hiq [GOAL] case refine'_2.intro.intro δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] let z := (E p).symm ⟨i, hip⟩ [GOAL] case refine'_2.intro.intro δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] use z [GOAL] case h δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] have C1 : (E p) z = ⟨i, hip⟩ := (E p).apply_symm_apply ⟨i, hip⟩ [GOAL] case h δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] have C2 : Fin.castIso Npq ⟨i, hip⟩ = ⟨i, hi⟩ := rfl [GOAL] case h δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] have C3 : (E q).symm ⟨i, hi⟩ = ⟨y, ys⟩ := by rw [ihi_eq]; exact (E q).symm_apply_apply ⟨y, ys⟩ [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } ⊢ ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } [PROOFSTEP] rw [ihi_eq] [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } ⊢ ↑(E q).symm (↑(E q) { val := y, property := ys }) = { val := y, property := ys } [PROOFSTEP] exact (E q).symm_apply_apply ⟨y, ys⟩ [GOAL] case h δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] have : Φ z = y := by simp only; rw [C1, C2, C3] [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } ⊢ Φ z = y [PROOFSTEP] simp only [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } ⊢ ↑(↑(e q (s q) (_ : Set.Finite (s q))).symm (↑(Fin.castIso Npq) (↑(e p (s p) (_ : Set.Finite (s p))) (↑(e p (s p) (_ : Set.Finite (s p))).symm { val := ↑(↑(e q (s q) (_ : Set.Finite (s q))) { val := y, property := ys }), isLt := hip })))) = y [PROOFSTEP] rw [C1, C2, C3] [GOAL] case h δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this✝ : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } this : Φ z = y ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] rw [this] [GOAL] case h δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this✝ : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y ε y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y ε i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N✝ q (s q) (_ : Set.Finite (s q)) := Fin.is_lt (↑(E q) { val := y, property := ys }) ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } this : Φ z = y ⊢ dist x y ≤ ε [PROOFSTEP] exact le_of_lt hy [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x y : ↑(s p)), |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] show ∀ x y : s p, |dist x y - dist (Φ x) (Φ y)| ≤ ε [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x y : ↑(s p)), |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] intro x y [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) ⊢ |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] rw [show dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) from rfl] -- introduce `i`, that codes both `x` and `Φ x` in `fin (N p) = fin (N q)` [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] let i : ℕ := E p x [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have hip : i < N p := ((E p) x).2 [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have hiq : i < N q := by rwa [Npq] at hip [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p ⊢ i < N q [PROOFSTEP] rwa [Npq] at hip [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have i' : i = (E q) (Ψ x) := by simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- introduce `j`, that codes both `y` and `Φ y` in `fin (N p) = fin (N q)` [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q ⊢ i = ↑(↑(E q) (Ψ x)) [PROOFSTEP] simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- introduce `j`, that codes both `y` and `Φ y` in `fin (N p) = fin (N q)` [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] let j : ℕ := E p y [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have hjp : j < N p := ((E p) y).2 [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have hjq : j < N q := by rwa [Npq] at hjp [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p ⊢ j < N q [PROOFSTEP] rwa [Npq] at hjp [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have j' : j = ((E q) (Ψ y)).1 := by simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- Express `dist x y` in terms of `F p` [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q ⊢ j = ↑(↑(E q) (Ψ y)) [PROOFSTEP] simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- Express `dist x y` in terms of `F p` [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have : (F p).2 ((E p) x) ((E p) y) = ⌊ε⁻¹ * dist x y⌋ := by simp only [(E p).symm_apply_apply] [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ [PROOFSTEP] simp only [(E p).symm_apply_apply] [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have Ap : (F p).2 ⟨i, hip⟩ ⟨j, hjp⟩ = ⌊ε⁻¹ * dist x y⌋ := by rw [← this] -- Express `dist (Φ x) (Φ y)` in terms of `F q` [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ ⊢ Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ [PROOFSTEP] rw [← this] -- Express `dist (Φ x) (Φ y)` in terms of `F q` [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have : (F q).2 ((E q) (Ψ x)) ((E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := by simp only [(E q).symm_apply_apply] [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ ⊢ Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ [PROOFSTEP] simp only [(E q).symm_apply_apply] [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have Aq : (F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := by rw [← this] -- porting note: `congr` fails to make progress refine congr_arg₂ (F q).2 ?_ ?_ <;> ext1 exacts [i', j'] -- use the equality between `F p` and `F q` to deduce that the distances have equal -- integer parts [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ [PROOFSTEP] rw [← this] -- porting note: `congr` fails to make progress [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) [PROOFSTEP] refine congr_arg₂ (F q).2 ?_ ?_ [GOAL] case refine_1 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ { val := i, isLt := hiq } = ↑(E q) (Ψ x) [PROOFSTEP] ext1 [GOAL] case refine_2 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ { val := j, isLt := hjq } = ↑(E q) (Ψ y) [PROOFSTEP] ext1 [GOAL] case refine_1.h δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ ↑{ val := i, isLt := hiq } = ↑(↑(E q) (Ψ x)) case refine_2.h δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ ↑{ val := j, isLt := hjq } = ↑(↑(E q) (Ψ y)) [PROOFSTEP] exacts [i', j'] -- use the equality between `F p` and `F q` to deduce that the distances have equal -- integer parts [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have : (F p).2 ⟨i, hip⟩ ⟨j, hjp⟩ = (F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩ := by have hpq' : HEq (F p).snd (F q).snd := (Sigma.mk.inj_iff.1 hpq).2 rw [Fin.heq_fun₂_iff Npq Npq] at hpq' rw [← hpq'] -- porting note : new version above, because `change … with…` is not implemented -- we want to `subst hpq` where `hpq : F p = F q`, except that `subst` only works -- with a constant, so replace `F q` (and everything that depends on it) by a constant `f` -- then `subst` -- revert hiq hjq -- change N q with (F q).1 -- generalize F q = f at hpq ⊢ -- subst hpq -- rfl [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } [PROOFSTEP] have hpq' : HEq (F p).snd (F q).snd := (Sigma.mk.inj_iff.1 hpq).2 [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ hpq' : HEq (F p).snd (F q).snd ⊢ Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } [PROOFSTEP] rw [Fin.heq_fun₂_iff Npq Npq] at hpq' [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ hpq' : ∀ (i j : Fin (N p)), Sigma.snd (F p) i j = Sigma.snd (F q) { val := ↑i, isLt := (_ : ↑i < N q) } { val := ↑j, isLt := (_ : ↑j < N q) } ⊢ Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } [PROOFSTEP] rw [← hpq'] -- porting note : new version above, because `change … with…` is not implemented -- we want to `subst hpq` where `hpq : F p = F q`, except that `subst` only works -- with a constant, so replace `F q` (and everything that depends on it) by a constant `f` -- then `subst` -- revert hiq hjq -- change N q with (F q).1 -- generalize F q = f at hpq ⊢ -- subst hpq -- rfl [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝¹ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this✝ : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ this : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] rw [Ap, Aq] at this [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝¹ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this✝ : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have I := calc |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| = |ε⁻¹ * (dist x y - dist (Ψ x) (Ψ y))| := (abs_mul _ _).symm _ = |ε⁻¹ * dist x y - ε⁻¹ * dist (Ψ x) (Ψ y)| := by congr; ring _ ≤ 1 := le_of_lt (abs_sub_lt_one_of_floor_eq_floor this) [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝¹ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this✝ : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ |ε⁻¹ * (dist x y - dist (Ψ x) (Ψ y))| = |ε⁻¹ * dist x y - ε⁻¹ * dist (Ψ x) (Ψ y)| [PROOFSTEP] congr [GOAL] case e_a δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝¹ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this✝ : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ ε⁻¹ * (dist x y - dist (Ψ x) (Ψ y)) = ε⁻¹ * dist x y - ε⁻¹ * dist (Ψ x) (Ψ y) [PROOFSTEP] ring [GOAL] case refine'_3 δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝¹ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this✝ : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ I : |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| ≤ 1 ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] calc |dist x y - dist (Ψ x) (Ψ y)| = ε * ε⁻¹ * |dist x y - dist (Ψ x) (Ψ y)| := by rw [mul_inv_cancel (ne_of_gt εpos), one_mul] _ = ε * (|ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)|) := by rw [abs_of_nonneg (le_of_lt (inv_pos.2 εpos)), mul_assoc] _ ≤ ε * 1 := (mul_le_mul_of_nonneg_left I (le_of_lt εpos)) _ = ε := mul_one _ [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝¹ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this✝ : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ I : |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| ≤ 1 ⊢ |dist x y - dist (Ψ x) (Ψ y)| = ε * ε⁻¹ * |dist x y - dist (Ψ x) (Ψ y)| [PROOFSTEP] rw [mul_inv_cancel (ne_of_gt εpos), one_mul] [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) this✝¹ : Sigma.snd (F p) (↑(E p) x) (↑(E p) y) = ⌊ε⁻¹ * dist x y⌋ Ap : Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp } = ⌊ε⁻¹ * dist x y⌋ this✝ : Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y)) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ Aq : Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq } = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ I : |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| ≤ 1 ⊢ ε * ε⁻¹ * |dist x y - dist (Ψ x) (Ψ y)| = ε * (|ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)|) [PROOFSTEP] rw [abs_of_nonneg (le_of_lt (inv_pos.2 εpos)), mul_assoc] [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) main : ghDist (GHSpace.Rep p) (GHSpace.Rep q) ≤ ε + ε / 2 + ε ⊢ dist p q ≤ δ [PROOFSTEP] calc dist p q = ghDist p.Rep q.Rep := dist_ghDist p q _ ≤ ε + ε / 2 + ε := main _ = δ := by ring [GOAL] δ : ℝ δpos : δ > 0 ε : ℝ := 2 / 5 * δ εpos : 0 < ε s : (p : GHSpace) → Set (GHSpace.Rep p) hs : ∀ (p : GHSpace), Set.Finite (s p) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x ε N✝ : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → Set.Finite t → ℕ e : (p : GHSpace) → (t : Set (GHSpace.Rep p)) → (a : Set.Finite t) → ↑t ≃ Fin (N✝ p t a) x✝ : ∀ (p : GHSpace) (t : Set (GHSpace.Rep p)), Set.Finite t → True N : GHSpace → ℕ := fun p => N✝ p (s p) (_ : Set.Finite (s p)) E : (p : GHSpace) → ↑(s p) ≃ Fin (N✝ p (s p) (_ : Set.Finite (s p))) := fun p => e p (s p) (_ : Set.Finite (s p)) F : GHSpace → (n : ℕ) × (Fin n → Fin n → ℤ) := fun p => { fst := N p, snd := fun a b => ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋ } p q : GHSpace hpq : F p = F q Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) main : ghDist (GHSpace.Rep p) (GHSpace.Rep q) ≤ ε + ε / 2 + ε ⊢ ε + ε / 2 + ε = δ [PROOFSTEP] ring [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) ⊢ TotallyBounded t [PROOFSTEP] refine' Metric.totallyBounded_of_finite_discretization fun δ δpos => _ [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] let ε := 1 / 5 * δ [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] have εpos : 0 < ε := mul_pos (by norm_num) δpos [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ ⊢ 0 < 1 / 5 [PROOFSTEP] norm_num [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] rcases Metric.tendsto_atTop.1 ulim ε εpos with ⟨n, hn⟩ [GOAL] case intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] have u_le_ε : u n ≤ ε := by have := hn n le_rfl simp only [Real.dist_eq, add_zero, sub_eq_add_neg, neg_zero] at this exact le_of_lt (lt_of_le_of_lt (le_abs_self _) this) -- construct a finite subset `s p` of `p` which is `ε`-dense and has cardinal `≤ K n` [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε ⊢ u n ≤ ε [PROOFSTEP] have := hn n le_rfl [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε this : dist (u n) 0 < ε ⊢ u n ≤ ε [PROOFSTEP] simp only [Real.dist_eq, add_zero, sub_eq_add_neg, neg_zero] at this [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε this : |u n| < 1 / 5 * δ ⊢ u n ≤ ε [PROOFSTEP] exact le_of_lt (lt_of_le_of_lt (le_abs_self _) this) -- construct a finite subset `s p` of `p` which is `ε`-dense and has cardinal `≤ K n` [GOAL] case intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] have : ∀ p : GHSpace, ∃ s : Set p.Rep, ∃ N ≤ K n, ∃ _ : Equiv s (Fin N), p ∈ t → univ ⊆ ⋃ x ∈ s, ball x (u n) := by intro p by_cases hp : p ∉ t · have : Nonempty (Equiv (∅ : Set p.Rep) (Fin 0)) := by rw [← Fintype.card_eq]; simp only [empty_card', Fintype.card_fin] use∅, 0, bot_le, choice this exact fun hp' => (hp hp').elim · rcases hcov _ (Set.not_not_mem.1 hp) n with ⟨s, ⟨scard, scover⟩⟩ rcases Cardinal.lt_aleph0.1 (lt_of_le_of_lt scard (Cardinal.nat_lt_aleph0 _)) with ⟨N, hN⟩ rw [hN, Cardinal.natCast_le] at scard have : #s = #(Fin N) := by rw [hN, Cardinal.mk_fin] cases' Quotient.exact this with E use s, N, scard, E simp only [scover, imp_true_iff] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε ⊢ ∀ (p : GHSpace), ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] intro p [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] by_cases hp : p ∉ t [GOAL] case pos t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬p ∈ t ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] have : Nonempty (Equiv (∅ : Set p.Rep) (Fin 0)) := by rw [← Fintype.card_eq]; simp only [empty_card', Fintype.card_fin] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬p ∈ t ⊢ Nonempty (↑∅ ≃ Fin 0) [PROOFSTEP] rw [← Fintype.card_eq] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬p ∈ t ⊢ Fintype.card ↑∅ = Fintype.card (Fin 0) [PROOFSTEP] simp only [empty_card', Fintype.card_fin] [GOAL] case pos t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬p ∈ t this : Nonempty (↑∅ ≃ Fin 0) ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] use∅, 0, bot_le, choice this [GOAL] case h t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬p ∈ t this : Nonempty (↑∅ ≃ Fin 0) ⊢ p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ ∅), ball x (u n) [PROOFSTEP] exact fun hp' => (hp hp').elim [GOAL] case neg t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬¬p ∈ t ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] rcases hcov _ (Set.not_not_mem.1 hp) n with ⟨s, ⟨scard, scover⟩⟩ [GOAL] case neg.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬¬p ∈ t s : Set (GHSpace.Rep p) scard : #↑s ≤ ↑(K n) scover : univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] rcases Cardinal.lt_aleph0.1 (lt_of_le_of_lt scard (Cardinal.nat_lt_aleph0 _)) with ⟨N, hN⟩ [GOAL] case neg.intro.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬¬p ∈ t s : Set (GHSpace.Rep p) scard : #↑s ≤ ↑(K n) scover : univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) N : ℕ hN : #↑s = ↑N ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] rw [hN, Cardinal.natCast_le] at scard [GOAL] case neg.intro.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬¬p ∈ t s : Set (GHSpace.Rep p) scover : univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) N : ℕ scard : N ≤ K n hN : #↑s = ↑N ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] have : #s = #(Fin N) := by rw [hN, Cardinal.mk_fin] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬¬p ∈ t s : Set (GHSpace.Rep p) scover : univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) N : ℕ scard : N ≤ K n hN : #↑s = ↑N ⊢ #↑s = #(Fin N) [PROOFSTEP] rw [hN, Cardinal.mk_fin] [GOAL] case neg.intro.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬¬p ∈ t s : Set (GHSpace.Rep p) scover : univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) N : ℕ scard : N ≤ K n hN : #↑s = ↑N this : #↑s = #(Fin N) ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] cases' Quotient.exact this with E [GOAL] case neg.intro.intro.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬¬p ∈ t s : Set (GHSpace.Rep p) scover : univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) N : ℕ scard : N ≤ K n hN : #↑s = ↑N this : #↑s = #(Fin N) E : ↑s ≃ Fin N ⊢ ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] use s, N, scard, E [GOAL] case h t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε p : GHSpace hp : ¬¬p ∈ t s : Set (GHSpace.Rep p) scover : univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) N : ℕ scard : N ≤ K n hN : #↑s = ↑N this : #↑s = #(Fin N) E : ↑s ≃ Fin N ⊢ p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) [PROOFSTEP] simp only [scover, imp_true_iff] [GOAL] case intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε this : ∀ (p : GHSpace), ∃ s N, N ≤ K n ∧ ∃ x, p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] choose s N hN E hs using this [GOAL] case intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] let M := ⌊ε⁻¹ * max C 0⌋₊ [GOAL] case intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] let F : GHSpace → Σ k : Fin (K n).succ, Fin k → Fin k → Fin M.succ := fun p => ⟨⟨N p, lt_of_le_of_lt (hN p) (Nat.lt_succ_self _)⟩, fun a b => ⟨min M ⌊ε⁻¹ * dist ((E p).symm a) ((E p).symm b)⌋₊, (min_le_left _ _).trans_lt (Nat.lt_succ_self _)⟩⟩ [GOAL] case intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } ⊢ ∃ β x F, ∀ (x y : ↑t), F x = F y → dist ↑x ↑y < δ [PROOFSTEP] refine' ⟨_, _, fun p => F p, _⟩ [GOAL] case intro.refine'_1 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } ⊢ Fintype ((k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M))) case intro.refine'_2 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } ⊢ ∀ (x y : ↑t), (fun p => F ↑p) x = (fun p => F ↑p) y → dist ↑x ↑y < δ [PROOFSTEP] infer_instance -- It remains to show that if `F p = F q`, then `p` and `q` are `ε`-close [GOAL] case intro.refine'_2 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } ⊢ ∀ (x y : ↑t), (fun p => F ↑p) x = (fun p => F ↑p) y → dist ↑x ↑y < δ [PROOFSTEP] rintro ⟨p, pt⟩ ⟨q, qt⟩ hpq [GOAL] case intro.refine'_2.mk.mk t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } ⊢ dist ↑{ val := p, property := pt } ↑{ val := q, property := qt } < δ [PROOFSTEP] have Npq : N p = N q := Fin.ext_iff.1 (Sigma.mk.inj_iff.1 hpq).1 [GOAL] case intro.refine'_2.mk.mk t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q ⊢ dist ↑{ val := p, property := pt } ↑{ val := q, property := qt } < δ [PROOFSTEP] let Ψ : s p → s q := fun x => (E q).symm (Fin.castIso Npq ((E p) x)) [GOAL] case intro.refine'_2.mk.mk t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) ⊢ dist ↑{ val := p, property := pt } ↑{ val := q, property := qt } < δ [PROOFSTEP] let Φ : s p → q.Rep := fun x => Ψ x [GOAL] case intro.refine'_2.mk.mk t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ dist ↑{ val := p, property := pt } ↑{ val := q, property := qt } < δ [PROOFSTEP] have main : ghDist p.Rep q.Rep ≤ ε + ε / 2 + ε := by -- to prove the main inequality, argue that `s p` is `ε`-dense in `p`, and `s q` is `ε`-dense -- in `q`, and `s p` and `s q` are almost isometric. Then closeness follows -- from `ghDist_le_of_approx_subsets` refine' ghDist_le_of_approx_subsets Φ _ _ _ show ∀ x : p.Rep, ∃ y ∈ s p, dist x y ≤ ε · -- by construction, `s p` is `ε`-dense intro x have : x ∈ ⋃ y ∈ s p, ball y (u n) := (hs p pt) (mem_univ _) rcases mem_iUnion₂.1 this with ⟨y, ys, hy⟩ exact ⟨y, ys, le_trans (le_of_lt hy) u_le_ε⟩ show ∀ x : q.Rep, ∃ z : s p, dist x (Φ z) ≤ ε · -- by construction, `s q` is `ε`-dense, and it is the range of `Φ` intro x have : x ∈ ⋃ y ∈ s q, ball y (u n) := (hs q qt) (mem_univ _) rcases mem_iUnion₂.1 this with ⟨y, ys, hy⟩ let i : ℕ := E q ⟨y, ys⟩ let hi := ((E q) ⟨y, ys⟩).2 have ihi_eq : (⟨i, hi⟩ : Fin (N q)) = (E q) ⟨y, ys⟩ := by rw [Fin.ext_iff, Fin.val_mk] have hiq : i < N q := hi have hip : i < N p := by rwa [Npq.symm] at hiq let z := (E p).symm ⟨i, hip⟩ use z have C1 : (E p) z = ⟨i, hip⟩ := (E p).apply_symm_apply ⟨i, hip⟩ have C2 : Fin.castIso Npq ⟨i, hip⟩ = ⟨i, hi⟩ := rfl have C3 : (E q).symm ⟨i, hi⟩ = ⟨y, ys⟩ := by rw [ihi_eq]; exact (E q).symm_apply_apply ⟨y, ys⟩ have : Φ z = y := by simp only; rw [C1, C2, C3] rw [this] exact le_trans (le_of_lt hy) u_le_ε show ∀ x y : s p, |dist x y - dist (Φ x) (Φ y)| ≤ ε · /- the distance between `x` and `y` is encoded in `F p`, and the distance between `Φ x` and `Φ y` (two points of `s q`) is encoded in `F q`, all this up to `ε`. As `F p = F q`, the distances are almost equal. -/ intro x y have : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) := rfl rw [this] -- introduce `i`, that codes both `x` and `Φ x` in `fin (N p) = fin (N q)` let i : ℕ := E p x have hip : i < N p := ((E p) x).2 have hiq : i < N q := by rwa [Npq] at hip have i' : i = (E q) (Ψ x) := by simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- introduce `j`, that codes both `y` and `Φ y` in `fin (N p) = fin (N q)` let j : ℕ := E p y have hjp : j < N p := ((E p) y).2 have hjq : j < N q := by rwa [Npq] at hjp have j' : j = (E q) (Ψ y) := by simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- Express `dist x y` in terms of `F p` have Ap : ((F p).2 ⟨i, hip⟩ ⟨j, hjp⟩).1 = ⌊ε⁻¹ * dist x y⌋₊ := calc ((F p).2 ⟨i, hip⟩ ⟨j, hjp⟩).1 = ((F p).2 ((E p) x) ((E p) y)).1 := by congr _ = min M ⌊ε⁻¹ * dist x y⌋₊ := by simp only [(E p).symm_apply_apply] _ = ⌊ε⁻¹ * dist x y⌋₊ := by refine' min_eq_right (Nat.floor_mono _) refine' mul_le_mul_of_nonneg_left (le_trans _ (le_max_left _ _)) (inv_pos.2 εpos).le change dist (x : p.Rep) y ≤ C refine' (dist_le_diam_of_mem isCompact_univ.bounded (mem_univ _) (mem_univ _)).trans _ exact hdiam p pt have Aq : ((F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩).1 = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ := calc ((F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩).1 = ((F q).2 ((E q) (Ψ x)) ((E q) (Ψ y))).1 := by -- Porting note: `congr` drops `Fin.val` but fails to make further progressexact congr_arg₂ (Fin.val <| (F q).2 · ·) (Fin.ext i') (Fin.ext j') _ = min M ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ := by simp only [(E q).symm_apply_apply] _ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ := by refine' min_eq_right (Nat.floor_mono _) refine' mul_le_mul_of_nonneg_left (le_trans _ (le_max_left _ _)) (inv_pos.2 εpos).le change dist (Ψ x : q.Rep) (Ψ y) ≤ C refine (dist_le_diam_of_mem isCompact_univ.bounded (mem_univ _) (mem_univ _)).trans ?_ exact hdiam q qt have : ((F p).2 ⟨i, hip⟩ ⟨j, hjp⟩).1 = ((F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩).1 := by have hpq' : HEq (F p).snd (F q).snd := (Sigma.mk.inj_iff.1 hpq).2 rw [Fin.heq_fun₂_iff Npq Npq] at hpq' rw [← hpq'] -- porting note: new version above because `subst…` does not work -- we want to `subst hpq` where `hpq : F p = F q`, except that `subst` only works -- with a constant, so replace `F q` (and everything that depends on it) by a constant `f` -- then `subst` -- dsimp only [show N q = (F q).1 from rfl] at hiq hjq ⊢ -- generalize F q = f at hpq ⊢ -- subst hpq -- intros -- rfl have : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := by rw [Ap, Aq] at this have D : 0 ≤ ⌊ε⁻¹ * dist x y⌋ := floor_nonneg.2 (mul_nonneg (le_of_lt (inv_pos.2 εpos)) dist_nonneg) have D' : 0 ≤ ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := floor_nonneg.2 (mul_nonneg (le_of_lt (inv_pos.2 εpos)) dist_nonneg) rw [← Int.toNat_of_nonneg D, ← Int.toNat_of_nonneg D', Int.floor_toNat, Int.floor_toNat, this] -- deduce that the distances coincide up to `ε`, by a straightforward computation -- that should be automated have I := calc |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| = |ε⁻¹ * (dist x y - dist (Ψ x) (Ψ y))| := (abs_mul _ _).symm _ = |ε⁻¹ * dist x y - ε⁻¹ * dist (Ψ x) (Ψ y)| := by congr; ring _ ≤ 1 := le_of_lt (abs_sub_lt_one_of_floor_eq_floor this) calc |dist x y - dist (Ψ x) (Ψ y)| = ε * ε⁻¹ * |dist x y - dist (Ψ x) (Ψ y)| := by rw [mul_inv_cancel (ne_of_gt εpos), one_mul] _ = ε * (|ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)|) := by rw [abs_of_nonneg (le_of_lt (inv_pos.2 εpos)), mul_assoc] _ ≤ ε * 1 := (mul_le_mul_of_nonneg_left I (le_of_lt εpos)) _ = ε := mul_one _ [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ghDist (GHSpace.Rep p) (GHSpace.Rep q) ≤ ε + ε / 2 + ε [PROOFSTEP] refine' ghDist_le_of_approx_subsets Φ _ _ _ [GOAL] case refine'_1 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep p), ∃ y, y ∈ s p ∧ dist x y ≤ ε case refine'_2 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep q), ∃ y, dist x (Φ y) ≤ ε case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x y : ↑(s p)), |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] show ∀ x : p.Rep, ∃ y ∈ s p, dist x y ≤ ε [GOAL] case refine'_1 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep p), ∃ y, y ∈ s p ∧ dist x y ≤ ε [PROOFSTEP] intro x [GOAL] case refine'_1 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep p ⊢ ∃ y, y ∈ s p ∧ dist x y ≤ ε [PROOFSTEP] have : x ∈ ⋃ y ∈ s p, ball y (u n) := (hs p pt) (mem_univ _) [GOAL] case refine'_1 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep p this : x ∈ ⋃ (y : GHSpace.Rep p) (_ : y ∈ s p), ball y (u n) ⊢ ∃ y, y ∈ s p ∧ dist x y ≤ ε [PROOFSTEP] rcases mem_iUnion₂.1 this with ⟨y, ys, hy⟩ [GOAL] case refine'_1.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep p this : x ∈ ⋃ (y : GHSpace.Rep p) (_ : y ∈ s p), ball y (u n) y : GHSpace.Rep p ys : y ∈ s p hy : x ∈ ball y (u n) ⊢ ∃ y, y ∈ s p ∧ dist x y ≤ ε [PROOFSTEP] exact ⟨y, ys, le_trans (le_of_lt hy) u_le_ε⟩ [GOAL] case refine'_2 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep q), ∃ y, dist x (Φ y) ≤ ε case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x y : ↑(s p)), |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] show ∀ x : q.Rep, ∃ z : s p, dist x (Φ z) ≤ ε [GOAL] case refine'_2 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x : GHSpace.Rep q), ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] intro x [GOAL] case refine'_2 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] have : x ∈ ⋃ y ∈ s q, ball y (u n) := (hs q qt) (mem_univ _) [GOAL] case refine'_2 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] rcases mem_iUnion₂.1 this with ⟨y, ys, hy⟩ [GOAL] case refine'_2.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] let i : ℕ := E q ⟨y, ys⟩ [GOAL] case refine'_2.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] let hi := ((E q) ⟨y, ys⟩).2 [GOAL] case refine'_2.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] have ihi_eq : (⟨i, hi⟩ : Fin (N q)) = (E q) ⟨y, ys⟩ := by rw [Fin.ext_iff, Fin.val_mk] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ⊢ { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } [PROOFSTEP] rw [Fin.ext_iff, Fin.val_mk] [GOAL] case refine'_2.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] have hiq : i < N q := hi [GOAL] case refine'_2.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] have hip : i < N p := by rwa [Npq.symm] at hiq [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q ⊢ i < N p [PROOFSTEP] rwa [Npq.symm] at hiq [GOAL] case refine'_2.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] let z := (E p).symm ⟨i, hip⟩ [GOAL] case refine'_2.intro.intro t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } ⊢ ∃ z, dist x (Φ z) ≤ ε [PROOFSTEP] use z [GOAL] case h t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] have C1 : (E p) z = ⟨i, hip⟩ := (E p).apply_symm_apply ⟨i, hip⟩ [GOAL] case h t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] have C2 : Fin.castIso Npq ⟨i, hip⟩ = ⟨i, hi⟩ := rfl [GOAL] case h t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] have C3 : (E q).symm ⟨i, hi⟩ = ⟨y, ys⟩ := by rw [ihi_eq]; exact (E q).symm_apply_apply ⟨y, ys⟩ [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } ⊢ ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } [PROOFSTEP] rw [ihi_eq] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } ⊢ ↑(E q).symm (↑(E q) { val := y, property := ys }) = { val := y, property := ys } [PROOFSTEP] exact (E q).symm_apply_apply ⟨y, ys⟩ [GOAL] case h t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] have : Φ z = y := by simp only; rw [C1, C2, C3] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } ⊢ Φ z = y [PROOFSTEP] simp only [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } ⊢ ↑(↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) (↑(E p).symm { val := ↑(↑(E q) { val := y, property := ys }), isLt := hip })))) = y [PROOFSTEP] rw [C1, C2, C3] [GOAL] case h t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this✝ : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } this : Φ z = y ⊢ dist x (Φ z) ≤ ε [PROOFSTEP] rw [this] [GOAL] case h t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x : GHSpace.Rep q this✝ : x ∈ ⋃ (y : GHSpace.Rep q) (_ : y ∈ s q), ball y (u n) y : GHSpace.Rep q ys : y ∈ s q hy : x ∈ ball y (u n) i : ℕ := ↑(↑(E q) { val := y, property := ys }) hi : ↑(↑(E q) { val := y, property := ys }) < N q := (↑(E q) { val := y, property := ys }).isLt ihi_eq : { val := i, isLt := hi } = ↑(E q) { val := y, property := ys } hiq : i < N q hip : i < N p z : (fun x => ↑(s p)) { val := i, isLt := hip } := ↑(E p).symm { val := i, isLt := hip } C1 : ↑(E p) z = { val := i, isLt := hip } C2 : ↑(Fin.castIso Npq) { val := i, isLt := hip } = { val := i, isLt := hi } C3 : ↑(E q).symm { val := i, isLt := hi } = { val := y, property := ys } this : Φ z = y ⊢ dist x y ≤ ε [PROOFSTEP] exact le_trans (le_of_lt hy) u_le_ε [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x y : ↑(s p)), |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] show ∀ x y : s p, |dist x y - dist (Φ x) (Φ y)| ≤ ε [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) ⊢ ∀ (x y : ↑(s p)), |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] intro x y [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) ⊢ |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] have : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) := rfl [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) ⊢ |dist x y - dist (Φ x) (Φ y)| ≤ ε [PROOFSTEP] rw [this] -- introduce `i`, that codes both `x` and `Φ x` in `fin (N p) = fin (N q)` [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] let i : ℕ := E p x [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have hip : i < N p := ((E p) x).2 [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have hiq : i < N q := by rwa [Npq] at hip [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p ⊢ i < N q [PROOFSTEP] rwa [Npq] at hip [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have i' : i = (E q) (Ψ x) := by simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- introduce `j`, that codes both `y` and `Φ y` in `fin (N p) = fin (N q)` [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q ⊢ i = ↑(↑(E q) (Ψ x)) [PROOFSTEP] simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- introduce `j`, that codes both `y` and `Φ y` in `fin (N p) = fin (N q)` [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] let j : ℕ := E p y [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have hjp : j < N p := ((E p) y).2 [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have hjq : j < N q := by rwa [Npq] at hjp [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p ⊢ j < N q [PROOFSTEP] rwa [Npq] at hjp [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have j' : j = (E q) (Ψ y) := by simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- Express `dist x y` in terms of `F p` [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q ⊢ j = ↑(↑(E q) (Ψ y)) [PROOFSTEP] simp only [Equiv.apply_symm_apply, Fin.coe_castIso] -- Express `dist x y` in terms of `F p` [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have Ap : ((F p).2 ⟨i, hip⟩ ⟨j, hjp⟩).1 = ⌊ε⁻¹ * dist x y⌋₊ := calc ((F p).2 ⟨i, hip⟩ ⟨j, hjp⟩).1 = ((F p).2 ((E p) x) ((E p) y)).1 := by congr _ = min M ⌊ε⁻¹ * dist x y⌋₊ := by simp only [(E p).symm_apply_apply] _ = ⌊ε⁻¹ * dist x y⌋₊ := by refine' min_eq_right (Nat.floor_mono _) refine' mul_le_mul_of_nonneg_left (le_trans _ (le_max_left _ _)) (inv_pos.2 εpos).le change dist (x : p.Rep) y ≤ C refine' (dist_le_diam_of_mem isCompact_univ.bounded (mem_univ _) (mem_univ _)).trans _ exact hdiam p pt [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F p) (↑(E p) x) (↑(E p) y)) [PROOFSTEP] congr [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ ↑(Sigma.snd (F p) (↑(E p) x) (↑(E p) y)) = min M ⌊ε⁻¹ * dist x y⌋₊ [PROOFSTEP] simp only [(E p).symm_apply_apply] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ min M ⌊ε⁻¹ * dist x y⌋₊ = ⌊ε⁻¹ * dist x y⌋₊ [PROOFSTEP] refine' min_eq_right (Nat.floor_mono _) [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ ε⁻¹ * dist x y ≤ ε⁻¹ * max C 0 [PROOFSTEP] refine' mul_le_mul_of_nonneg_left (le_trans _ (le_max_left _ _)) (inv_pos.2 εpos).le [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ dist x y ≤ C [PROOFSTEP] change dist (x : p.Rep) y ≤ C [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ dist ↑x ↑y ≤ C [PROOFSTEP] refine' (dist_le_diam_of_mem isCompact_univ.bounded (mem_univ _) (mem_univ _)).trans _ [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) ⊢ diam univ ≤ C [PROOFSTEP] exact hdiam p pt [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have Aq : ((F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩).1 = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ := calc ((F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩).1 = ((F q).2 ((E q) (Ψ x)) ((E q) (Ψ y))).1 := by -- Porting note: `congr` drops `Fin.val` but fails to make further progressexact congr_arg₂ (Fin.val <| (F q).2 · ·) (Fin.ext i') (Fin.ext j') _ = min M ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ := by simp only [(E q).symm_apply_apply] _ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ := by refine' min_eq_right (Nat.floor_mono _) refine' mul_le_mul_of_nonneg_left (le_trans _ (le_max_left _ _)) (inv_pos.2 εpos).le change dist (Ψ x : q.Rep) (Ψ y) ≤ C refine (dist_le_diam_of_mem isCompact_univ.bounded (mem_univ _) (mem_univ _)).trans ?_ exact hdiam q qt [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ↑(Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y))) [PROOFSTEP] exact congr_arg₂ (Fin.val <| (F q).2 · ·) (Fin.ext i') (Fin.ext j') [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ ↑(Sigma.snd (F q) (↑(E q) (Ψ x)) (↑(E q) (Ψ y))) = min M ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ [PROOFSTEP] simp only [(E q).symm_apply_apply] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ min M ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ [PROOFSTEP] refine' min_eq_right (Nat.floor_mono _) [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ ε⁻¹ * dist (Ψ x) (Ψ y) ≤ ε⁻¹ * max C 0 [PROOFSTEP] refine' mul_le_mul_of_nonneg_left (le_trans _ (le_max_left _ _)) (inv_pos.2 εpos).le [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ dist (Ψ x) (Ψ y) ≤ C [PROOFSTEP] change dist (Ψ x : q.Rep) (Ψ y) ≤ C [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ dist ↑(Ψ x) ↑(Ψ y) ≤ C [PROOFSTEP] refine (dist_le_diam_of_mem isCompact_univ.bounded (mem_univ _) (mem_univ _)).trans ?_ [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ ⊢ diam univ ≤ C [PROOFSTEP] exact hdiam q qt [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have : ((F p).2 ⟨i, hip⟩ ⟨j, hjp⟩).1 = ((F q).2 ⟨i, hiq⟩ ⟨j, hjq⟩).1 := by have hpq' : HEq (F p).snd (F q).snd := (Sigma.mk.inj_iff.1 hpq).2 rw [Fin.heq_fun₂_iff Npq Npq] at hpq' rw [← hpq'] -- porting note: new version above because `subst…` does not work -- we want to `subst hpq` where `hpq : F p = F q`, except that `subst` only works -- with a constant, so replace `F q` (and everything that depends on it) by a constant `f` -- then `subst` -- dsimp only [show N q = (F q).1 from rfl] at hiq hjq ⊢ -- generalize F q = f at hpq ⊢ -- subst hpq -- intros -- rfl [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ ⊢ ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) [PROOFSTEP] have hpq' : HEq (F p).snd (F q).snd := (Sigma.mk.inj_iff.1 hpq).2 [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ hpq' : HEq (F p).snd (F q).snd ⊢ ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) [PROOFSTEP] rw [Fin.heq_fun₂_iff Npq Npq] at hpq' [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ hpq' : ∀ (i j : Fin (N p)), Sigma.snd (F p) i j = Sigma.snd (F q) { val := ↑i, isLt := (_ : ↑i < N q) } { val := ↑j, isLt := (_ : ↑j < N q) } ⊢ ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) [PROOFSTEP] rw [← hpq'] -- porting note: new version above because `subst…` does not work -- we want to `subst hpq` where `hpq : F p = F q`, except that `subst` only works -- with a constant, so replace `F q` (and everything that depends on it) by a constant `f` -- then `subst` -- dsimp only [show N q = (F q).1 from rfl] at hiq hjq ⊢ -- generalize F q = f at hpq ⊢ -- subst hpq -- intros -- rfl [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := by rw [Ap, Aq] at this have D : 0 ≤ ⌊ε⁻¹ * dist x y⌋ := floor_nonneg.2 (mul_nonneg (le_of_lt (inv_pos.2 εpos)) dist_nonneg) have D' : 0 ≤ ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := floor_nonneg.2 (mul_nonneg (le_of_lt (inv_pos.2 εpos)) dist_nonneg) rw [← Int.toNat_of_nonneg D, ← Int.toNat_of_nonneg D', Int.floor_toNat, Int.floor_toNat, this] -- deduce that the distances coincide up to `ε`, by a straightforward computation -- that should be automated [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) ⊢ ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ [PROOFSTEP] rw [Ap, Aq] at this [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this : ⌊ε⁻¹ * dist x y⌋₊ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ ⊢ ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ [PROOFSTEP] have D : 0 ≤ ⌊ε⁻¹ * dist x y⌋ := floor_nonneg.2 (mul_nonneg (le_of_lt (inv_pos.2 εpos)) dist_nonneg) [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this : ⌊ε⁻¹ * dist x y⌋₊ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ D : 0 ≤ ⌊ε⁻¹ * dist x y⌋ ⊢ ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ [PROOFSTEP] have D' : 0 ≤ ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ := floor_nonneg.2 (mul_nonneg (le_of_lt (inv_pos.2 εpos)) dist_nonneg) [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this : ⌊ε⁻¹ * dist x y⌋₊ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ D : 0 ≤ ⌊ε⁻¹ * dist x y⌋ D' : 0 ≤ ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ [PROOFSTEP] rw [← Int.toNat_of_nonneg D, ← Int.toNat_of_nonneg D', Int.floor_toNat, Int.floor_toNat, this] -- deduce that the distances coincide up to `ε`, by a straightforward computation -- that should be automated [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝¹ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this✝ : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] have I := calc |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| = |ε⁻¹ * (dist x y - dist (Ψ x) (Ψ y))| := (abs_mul _ _).symm _ = |ε⁻¹ * dist x y - ε⁻¹ * dist (Ψ x) (Ψ y)| := by congr; ring _ ≤ 1 := le_of_lt (abs_sub_lt_one_of_floor_eq_floor this) [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝¹ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this✝ : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ |ε⁻¹ * (dist x y - dist (Ψ x) (Ψ y))| = |ε⁻¹ * dist x y - ε⁻¹ * dist (Ψ x) (Ψ y)| [PROOFSTEP] congr [GOAL] case e_a t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝¹ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this✝ : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ ⊢ ε⁻¹ * (dist x y - dist (Ψ x) (Ψ y)) = ε⁻¹ * dist x y - ε⁻¹ * dist (Ψ x) (Ψ y) [PROOFSTEP] ring [GOAL] case refine'_3 t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝¹ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this✝ : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ I : |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| ≤ 1 ⊢ |dist x y - dist (Ψ x) (Ψ y)| ≤ ε [PROOFSTEP] calc |dist x y - dist (Ψ x) (Ψ y)| = ε * ε⁻¹ * |dist x y - dist (Ψ x) (Ψ y)| := by rw [mul_inv_cancel (ne_of_gt εpos), one_mul] _ = ε * (|ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)|) := by rw [abs_of_nonneg (le_of_lt (inv_pos.2 εpos)), mul_assoc] _ ≤ ε * 1 := (mul_le_mul_of_nonneg_left I (le_of_lt εpos)) _ = ε := mul_one _ [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝¹ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this✝ : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ I : |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| ≤ 1 ⊢ |dist x y - dist (Ψ x) (Ψ y)| = ε * ε⁻¹ * |dist x y - dist (Ψ x) (Ψ y)| [PROOFSTEP] rw [mul_inv_cancel (ne_of_gt εpos), one_mul] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) x y : ↑(s p) this✝¹ : dist (Φ x) (Φ y) = dist (Ψ x) (Ψ y) i : ℕ := ↑(↑(E p) x) hip : i < N p hiq : i < N q i' : i = ↑(↑(E q) (Ψ x)) j : ℕ := ↑(↑(E p) y) hjp : j < N p hjq : j < N q j' : j = ↑(↑(E q) (Ψ y)) Ap : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ⌊ε⁻¹ * dist x y⌋₊ Aq : ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋₊ this✝ : ↑(Sigma.snd (F p) { val := i, isLt := hip } { val := j, isLt := hjp }) = ↑(Sigma.snd (F q) { val := i, isLt := hiq } { val := j, isLt := hjq }) this : ⌊ε⁻¹ * dist x y⌋ = ⌊ε⁻¹ * dist (Ψ x) (Ψ y)⌋ I : |ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)| ≤ 1 ⊢ ε * ε⁻¹ * |dist x y - dist (Ψ x) (Ψ y)| = ε * (|ε⁻¹| * |dist x y - dist (Ψ x) (Ψ y)|) [PROOFSTEP] rw [abs_of_nonneg (le_of_lt (inv_pos.2 εpos)), mul_assoc] [GOAL] case intro.refine'_2.mk.mk t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) main : ghDist (GHSpace.Rep p) (GHSpace.Rep q) ≤ ε + ε / 2 + ε ⊢ dist ↑{ val := p, property := pt } ↑{ val := q, property := qt } < δ [PROOFSTEP] calc dist p q = ghDist p.Rep q.Rep := dist_ghDist p q _ ≤ ε + ε / 2 + ε := main _ = δ / 2 := by simp only [one_div]; ring _ < δ := half_lt_self δpos [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) main : ghDist (GHSpace.Rep p) (GHSpace.Rep q) ≤ ε + ε / 2 + ε ⊢ ε + ε / 2 + ε = δ / 2 [PROOFSTEP] simp only [one_div] [GOAL] t : Set GHSpace C : ℝ u : ℕ → ℝ K : ℕ → ℕ ulim : Tendsto u atTop (𝓝 0) hdiam : ∀ (p : GHSpace), p ∈ t → diam univ ≤ C hcov : ∀ (p : GHSpace), p ∈ t → ∀ (n : ℕ), ∃ s, #↑s ≤ ↑(K n) ∧ univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s), ball x (u n) δ : ℝ δpos : δ > 0 ε : ℝ := 1 / 5 * δ εpos : 0 < ε n : ℕ hn : ∀ (n_1 : ℕ), n_1 ≥ n → dist (u n_1) 0 < ε u_le_ε : u n ≤ ε s : (p : GHSpace) → Set (GHSpace.Rep p) N : GHSpace → ℕ hN : ∀ (p : GHSpace), N p ≤ K n E : (p : GHSpace) → ↑(s p) ≃ Fin (N p) hs : ∀ (p : GHSpace), p ∈ t → univ ⊆ ⋃ (x : GHSpace.Rep p) (_ : x ∈ s p), ball x (u n) M : ℕ := ⌊ε⁻¹ * max C 0⌋₊ F : GHSpace → (k : Fin (Nat.succ (K n))) × (Fin ↑k → Fin ↑k → Fin (Nat.succ M)) := fun p => { fst := { val := N p, isLt := (_ : N p < Nat.succ (K n)) }, snd := fun a b => { val := min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊, isLt := (_ : min M ⌊ε⁻¹ * dist (↑(E p).symm a) (↑(E p).symm b)⌋₊ < Nat.succ M) } } p : GHSpace pt : p ∈ t q : GHSpace qt : q ∈ t hpq : (fun p => F ↑p) { val := p, property := pt } = (fun p => F ↑p) { val := q, property := qt } Npq : N p = N q Ψ : ↑(s p) → ↑(s q) := fun x => ↑(E q).symm (↑(Fin.castIso Npq) (↑(E p) x)) Φ : ↑(s p) → GHSpace.Rep q := fun x => ↑(Ψ x) main : ghDist (GHSpace.Rep p) (GHSpace.Rep q) ≤ ε + ε / 2 + ε ⊢ 5⁻¹ * δ + 5⁻¹ * δ / 2 + 5⁻¹ * δ = δ / 2 [PROOFSTEP] ring [GOAL] X : ℕ → Type inst✝³ : (n : ℕ) → MetricSpace (X n) inst✝² : ∀ (n : ℕ), CompactSpace (X n) inst✝¹ : ∀ (n : ℕ), Nonempty (X n) A : Type inst✝ : MetricSpace A ⊢ MetricSpace A [PROOFSTEP] infer_instance [GOAL] X : ℕ → Type inst✝³ : (n : ℕ) → MetricSpace (X n) inst✝² : ∀ (n : ℕ), CompactSpace (X n) inst✝¹ : ∀ (n : ℕ), Nonempty (X n) A : Type inst✝ : MetricSpace A x y : A ⊢ edist (id x) (id y) = edist x y [PROOFSTEP] exact rfl [GOAL] X : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X n) inst✝ : ∀ (n : ℕ), Nonempty (X n) n✝ n : ℕ Y : AuxGluingStruct (X n) ⊢ MetricSpace (GlueSpace (_ : Isometry Y.embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1))))) [PROOFSTEP] infer_instance [GOAL] X : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X n) inst✝ : ∀ (n : ℕ), Nonempty (X n) ⊢ CompleteSpace GHSpace [PROOFSTEP] set d := fun n : ℕ ↦ ((1 : ℝ) / 2) ^ n [GOAL] X : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X n) inst✝ : ∀ (n : ℕ), Nonempty (X n) d : ℕ → ℝ := fun n => (1 / 2) ^ n ⊢ CompleteSpace GHSpace [PROOFSTEP] have : ∀ n : ℕ, 0 < d n := fun _ ↦ by positivity -- start from a sequence of nonempty compact metric spaces within distance `1/2^n` of each other [GOAL] X : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X n) inst✝ : ∀ (n : ℕ), Nonempty (X n) d : ℕ → ℝ := fun n => (1 / 2) ^ n x✝ : ℕ ⊢ 0 < d x✝ [PROOFSTEP] positivity -- start from a sequence of nonempty compact metric spaces within distance `1/2^n` of each other [GOAL] X : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X n) inst✝ : ∀ (n : ℕ), Nonempty (X n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n ⊢ CompleteSpace GHSpace [PROOFSTEP] refine' Metric.complete_of_convergent_controlled_sequences d this fun u hu => _ -- `X n` is a representative of `u n` [GOAL] X : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X n) inst✝ : ∀ (n : ℕ), Nonempty (X n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let X n := (u n).Rep [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let Y := auxGluing X [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have E : ∀ n : ℕ, GlueSpace (Y n).isom (isometry_optimalGHInjl (X n) (X (n + 1))) = (Y (n + 1)).Space := fun n => by dsimp only [auxGluing]; rfl [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X n : ℕ ⊢ GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space [PROOFSTEP] dsimp only [auxGluing] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X n : ℕ ⊢ GlueSpace (_ : Isometry (Nat.rec default (fun n Y => { Space := GlueSpace (_ : Isometry Y.embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))), metric := inferInstance, embed := toGlueR (_ : Isometry Y.embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))) ∘ optimalGHInjr (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))), isom := (_ : Isometry (toGlueR (_ : Isometry Y.embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))) ∘ optimalGHInjr (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))) }) n).embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))) = (Nat.rec default (fun n Y => { Space := GlueSpace (_ : Isometry Y.embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))), metric := inferInstance, embed := toGlueR (_ : Isometry Y.embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))) ∘ optimalGHInjr (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))), isom := (_ : Isometry (toGlueR (_ : Isometry Y.embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))) ∘ optimalGHInjr (GHSpace.Rep (u n)) (GHSpace.Rep (u (n + 1))))) }) (n + 1)).Space [PROOFSTEP] rfl [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let c n := cast (E n) [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have ic : ∀ n, Isometry (c n) := fun n x y => by dsimp only [auxGluing]; exact rfl [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) n : ℕ x y : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) ⊢ edist (c n x) (c n y) = edist x y [PROOFSTEP] dsimp only [auxGluing] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) n : ℕ x y : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) ⊢ edist (cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) x) (cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) y) = edist x y [PROOFSTEP] exact rfl [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let f : ∀ n, (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (Y n).isom (isometry_optimalGHInjl (X n) (X n.succ)) [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have I : ∀ n, Isometry (f n) := fun n => (ic n).comp (toGlueL_isometry _ _) -- consider the inductive limit `Z0` of the `Y n`, and then its completion `Z` [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let Z0 := Metric.InductiveLimit I [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let Z := UniformSpace.Completion Z0 [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let Φ := toInductiveLimit I [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let coeZ := ((↑) : Z0 → Z) -- let `X2 n` be the image of `X n` in the space `Z` [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let X2 n := range (coeZ ∘ Φ n ∘ (Y n).embed) [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have isom : ∀ n, Isometry (coeZ ∘ Φ n ∘ (Y n).embed) := by intro n refine' UniformSpace.Completion.coe_isometry.comp _ exact (toInductiveLimit_isometry _ _).comp (Y n).isom [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) ⊢ ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) [PROOFSTEP] intro n [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) n : ℕ ⊢ Isometry (coeZ ∘ Φ n ∘ (Y n).embed) [PROOFSTEP] refine' UniformSpace.Completion.coe_isometry.comp _ [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) n : ℕ ⊢ Isometry (Φ n ∘ (Y n).embed) [PROOFSTEP] exact (toInductiveLimit_isometry _ _).comp (Y n).isom [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have X2n : ∀ n, X2 n = range ((coeZ ∘ Φ n.succ ∘ c n ∘ toGlueR (Y n).isom (isometry_optimalGHInjl (X n) (X n.succ))) ∘ optimalGHInjl (X n) (X n.succ)) := by intro n change X2 n = range (coeZ ∘ Φ n.succ ∘ c n ∘ toGlueR (Y n).isom (isometry_optimalGHInjl (X n) (X n.succ)) ∘ optimalGHInjl (X n) (X n.succ)) simp only --[X2, Φ] rw [← toInductiveLimit_commute I] simp only --[f] rw [← toGlue_commute] rfl -- simp_rw [range_comp] at X2n [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) ⊢ ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) [PROOFSTEP] intro n [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) n : ℕ ⊢ X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) [PROOFSTEP] change X2 n = range (coeZ ∘ Φ n.succ ∘ c n ∘ toGlueR (Y n).isom (isometry_optimalGHInjl (X n) (X n.succ)) ∘ optimalGHInjl (X n) (X n.succ)) [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) n : ℕ ⊢ X2 n = range (coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) [PROOFSTEP] simp only --[X2, Φ] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) n : ℕ ⊢ range (↑(InductiveLimit I) ∘ toInductiveLimit I n ∘ (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) = range (↑(InductiveLimit I) ∘ toInductiveLimit I (Nat.succ n) ∘ cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ∘ toGlueR (_ : Isometry (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n))))) ∘ optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n)))) [PROOFSTEP] rw [← toInductiveLimit_commute I] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) n : ℕ ⊢ range (↑(InductiveLimit I) ∘ (toInductiveLimit I (Nat.succ n) ∘ f n) ∘ (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) = range (↑(InductiveLimit I) ∘ toInductiveLimit I (Nat.succ n) ∘ cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ∘ toGlueR (_ : Isometry (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n))))) ∘ optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n)))) [PROOFSTEP] simp only --[f] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) n : ℕ ⊢ range (↑(InductiveLimit I) ∘ (toInductiveLimit I (Nat.succ n) ∘ cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ∘ toGlueL (_ : Isometry (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n)))))) ∘ (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) = range (↑(InductiveLimit I) ∘ toInductiveLimit I (Nat.succ n) ∘ cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ∘ toGlueR (_ : Isometry (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n))))) ∘ optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n)))) [PROOFSTEP] rw [← toGlue_commute] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) n : ℕ ⊢ range (↑(InductiveLimit I) ∘ (toInductiveLimit I (Nat.succ n) ∘ cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ∘ toGlueL (_ : Isometry (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n)))))) ∘ (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) = range (↑(InductiveLimit I) ∘ toInductiveLimit I (Nat.succ n) ∘ cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ∘ toGlueL (_ : Isometry (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) (_ : Isometry (optimalGHInjl (GHSpace.Rep (u n)) (GHSpace.Rep (u (Nat.succ n))))) ∘ (auxGluing (fun n => GHSpace.Rep (u n)) n).embed) [PROOFSTEP] rfl -- simp_rw [range_comp] at X2n [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have X2nsucc : ∀ n, X2 n.succ = range ((coeZ ∘ Φ n.succ ∘ c n ∘ toGlueR (Y n).isom (isometry_optimalGHInjl (X n) (X n.succ))) ∘ optimalGHInjr (X n) (X n.succ)) := by intro n rfl -- simp_rw [range_comp] at X2nsucc [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) ⊢ ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) [PROOFSTEP] intro n [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) n : ℕ ⊢ X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) [PROOFSTEP] rfl -- simp_rw [range_comp] at X2nsucc [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have D2 : ∀ n, hausdorffDist (X2 n) (X2 n.succ) < d n := fun n ↦ by rw [X2n n, X2nsucc n, range_comp, range_comp, hausdorffDist_image, hausdorffDist_optimal, ← dist_ghDist] · exact hu n n n.succ (le_refl n) (le_succ n) · apply UniformSpace.Completion.coe_isometry.comp _ exact (toInductiveLimit_isometry _ _).comp ((ic n).comp (toGlueR_isometry _ _)) -- consider `X2 n` as a member `X3 n` of the type of nonempty compact subsets of `Z`, which -- is a metric space [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) n : ℕ ⊢ hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n [PROOFSTEP] rw [X2n n, X2nsucc n, range_comp, range_comp, hausdorffDist_image, hausdorffDist_optimal, ← dist_ghDist] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) n : ℕ ⊢ dist (u n) (u (Nat.succ n)) < d n [PROOFSTEP] exact hu n n n.succ (le_refl n) (le_succ n) [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) n : ℕ ⊢ Isometry (coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) [PROOFSTEP] apply UniformSpace.Completion.coe_isometry.comp _ [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) n : ℕ ⊢ Isometry (Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) [PROOFSTEP] exact (toInductiveLimit_isometry _ _).comp ((ic n).comp (toGlueR_isometry _ _)) -- consider `X2 n` as a member `X3 n` of the type of nonempty compact subsets of `Z`, which -- is a metric space [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] let X3 : ℕ → NonemptyCompacts Z := fun n => ⟨⟨X2 n, isCompact_range (isom n).continuous⟩, range_nonempty _⟩ -- `X3 n` is a Cauchy sequence by construction, as the successive distances are -- bounded by `(1/2)^n` [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have : CauchySeq X3 := by refine' cauchySeq_of_le_geometric (1 / 2) 1 (by norm_num) fun n => _ rw [one_mul] exact le_of_lt (D2 n) -- therefore, it converges to a limit `L` [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } ⊢ CauchySeq X3 [PROOFSTEP] refine' cauchySeq_of_le_geometric (1 / 2) 1 (by norm_num) fun n => _ [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } ⊢ 1 / 2 < 1 [PROOFSTEP] norm_num [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } n : ℕ ⊢ dist (X3 n) (X3 (n + 1)) ≤ 1 * (1 / 2) ^ n [PROOFSTEP] rw [one_mul] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } n : ℕ ⊢ dist (X3 n) (X3 (n + 1)) ≤ (1 / 2) ^ n [PROOFSTEP] exact le_of_lt (D2 n) -- therefore, it converges to a limit `L` [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this : CauchySeq X3 ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] rcases cauchySeq_tendsto_of_complete this with ⟨L, hL⟩ -- By construction, the image of `X3 n` in the Gromov-Hausdorff space is `u n`. [GOAL] case intro X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] have : ∀ n, (NonemptyCompacts.toGHSpace ∘ X3) n = u n := by intro n rw [Function.comp_apply, NonemptyCompacts.toGHSpace, ← (u n).toGHSpace_rep, toGHSpace_eq_toGHSpace_iff_isometryEquiv] constructor convert (isom n).isometryEquivOnRange.symm [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) ⊢ ∀ (n : ℕ), (NonemptyCompacts.toGHSpace ∘ X3) n = u n [PROOFSTEP] intro n [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) n : ℕ ⊢ (NonemptyCompacts.toGHSpace ∘ X3) n = u n [PROOFSTEP] rw [Function.comp_apply, NonemptyCompacts.toGHSpace, ← (u n).toGHSpace_rep, toGHSpace_eq_toGHSpace_iff_isometryEquiv] [GOAL] X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) n : ℕ ⊢ Nonempty ({ x // x ∈ X3 n } ≃ᵢ GHSpace.Rep (u n)) [PROOFSTEP] constructor [GOAL] case val X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) n : ℕ ⊢ { x // x ∈ X3 n } ≃ᵢ GHSpace.Rep (u n) [PROOFSTEP] convert (isom n).isometryEquivOnRange.symm [GOAL] case intro X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝¹ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this✝ : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) this : ∀ (n : ℕ), (NonemptyCompacts.toGHSpace ∘ X3) n = u n ⊢ ∃ x, Tendsto u atTop (𝓝 x) [PROOFSTEP] use L.toGHSpace [GOAL] case h X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝¹ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this✝ : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) this : ∀ (n : ℕ), (NonemptyCompacts.toGHSpace ∘ X3) n = u n ⊢ Tendsto u atTop (𝓝 (NonemptyCompacts.toGHSpace L)) [PROOFSTEP] apply Filter.Tendsto.congr this [GOAL] case h X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝¹ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this✝ : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) this : ∀ (n : ℕ), (NonemptyCompacts.toGHSpace ∘ X3) n = u n ⊢ Tendsto (fun x => (NonemptyCompacts.toGHSpace ∘ X3) x) atTop (𝓝 (NonemptyCompacts.toGHSpace L)) [PROOFSTEP] refine' Tendsto.comp _ hL [GOAL] case h X✝ : ℕ → Type inst✝² : (n : ℕ) → MetricSpace (X✝ n) inst✝¹ : ∀ (n : ℕ), CompactSpace (X✝ n) inst✝ : ∀ (n : ℕ), Nonempty (X✝ n) d : ℕ → ℝ := fun n => (1 / 2) ^ n this✝¹ : ∀ (n : ℕ), 0 < d n u : ℕ → GHSpace hu : ∀ (N n m : ℕ), N ≤ n → N ≤ m → dist (u n) (u m) < d N X : ℕ → Type := fun n => GHSpace.Rep (u n) Y : (n : ℕ) → AuxGluingStruct (X n) := auxGluing X E : ∀ (n : ℕ), GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space c : (n : ℕ) → GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) → (Y (n + 1)).Space := fun n => cast (_ : GlueSpace (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (n + 1)))) = (Y (n + 1)).Space) ic : ∀ (n : ℕ), Isometry (c n) f : (n : ℕ) → (Y n).Space → (Y (n + 1)).Space := fun n => c n ∘ toGlueL (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n)))) I : ∀ (n : ℕ), Isometry (f n) Z0 : Type := InductiveLimit I Z : Type := UniformSpace.Completion Z0 Φ : (n : ℕ) → (Y n).Space → InductiveLimit I := toInductiveLimit I coeZ : Z0 → UniformSpace.Completion Z0 := ↑Z0 X2 : ℕ → Set (UniformSpace.Completion Z0) := fun n => range (coeZ ∘ Φ n ∘ (Y n).embed) isom : ∀ (n : ℕ), Isometry (coeZ ∘ Φ n ∘ (Y n).embed) X2n : ∀ (n : ℕ), X2 n = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjl (X n) (X (Nat.succ n))) X2nsucc : ∀ (n : ℕ), X2 (Nat.succ n) = range ((coeZ ∘ Φ (Nat.succ n) ∘ c n ∘ toGlueR (_ : Isometry (Y n).embed) (_ : Isometry (optimalGHInjl (X n) (X (Nat.succ n))))) ∘ optimalGHInjr (X n) (X (Nat.succ n))) D2 : ∀ (n : ℕ), hausdorffDist (X2 n) (X2 (Nat.succ n)) < d n X3 : ℕ → NonemptyCompacts Z := fun n => { toCompacts := { carrier := X2 n, isCompact' := (_ : IsCompact (range (coeZ ∘ Φ n ∘ (Y n).embed))) }, nonempty' := (_ : Set.Nonempty (range fun y => (coeZ ∘ Φ n ∘ (Y n).embed) y)) } this✝ : CauchySeq X3 L : NonemptyCompacts Z hL : Tendsto X3 atTop (𝓝 L) this : ∀ (n : ℕ), (NonemptyCompacts.toGHSpace ∘ X3) n = u n ⊢ Tendsto NonemptyCompacts.toGHSpace (𝓝 L) (𝓝 (NonemptyCompacts.toGHSpace L)) [PROOFSTEP] apply toGHSpace_continuous.tendsto
{"mathlib_filename": "Mathlib.Topology.MetricSpace.GromovHausdorff", "llama_tokens": 317325}
[GOAL] α : Type u inst✝ : Monoid α a b : α x✝ : Invertible a ⊢ ⅟a * (a * b) = b [PROOFSTEP] rw [← mul_assoc, invOf_mul_self, one_mul] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible a ⊢ ⅟a * (a * b) = b [PROOFSTEP] rw [← mul_assoc, invOf_mul_self, one_mul] [GOAL] α : Type u inst✝ : Monoid α a b : α x✝ : Invertible a ⊢ a * (⅟a * b) = b [PROOFSTEP] rw [← mul_assoc, mul_invOf_self, one_mul] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible a ⊢ a * (⅟a * b) = b [PROOFSTEP] rw [← mul_assoc, mul_invOf_self, one_mul] [GOAL] α : Type u inst✝ : Monoid α a b : α x✝ : Invertible b ⊢ a * ⅟b * b = a [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible b ⊢ a * ⅟b * b = a [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u inst✝ : Monoid α a b : α x✝ : Invertible b ⊢ a * b * ⅟b = a [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible b ⊢ a * b * ⅟b = a [PROOFSTEP] simp [mul_assoc] [GOAL] α✝ α : Type u inst✝² : Monoid α a b : α inst✝¹ : Invertible a inst✝ : Invertible b h : a = b ⊢ ⅟a = ⅟b [PROOFSTEP] apply invOf_eq_right_inv [GOAL] case hac α✝ α : Type u inst✝² : Monoid α a b : α inst✝¹ : Invertible a inst✝ : Invertible b h : a = b ⊢ a * ⅟b = 1 [PROOFSTEP] rw [h, mul_invOf_self] [GOAL] α : Type u inst✝ : Monoid α a : α x✝¹ x✝ : Invertible a b : α hba : b * a = 1 hab : a * b = 1 c : α invOf_mul_self✝ : c * a = 1 hac : a * c = 1 ⊢ { invOf := b, invOf_mul_self := hba, mul_invOf_self := hab } = { invOf := c, invOf_mul_self := invOf_mul_self✝, mul_invOf_self := hac } [PROOFSTEP] congr [GOAL] case e_invOf α : Type u inst✝ : Monoid α a : α x✝¹ x✝ : Invertible a b : α hba : b * a = 1 hab : a * b = 1 c : α invOf_mul_self✝ : c * a = 1 hac : a * c = 1 ⊢ b = c [PROOFSTEP] exact left_inv_eq_right_inv hba hac [GOAL] α : Type u inst✝ : MulOneClass α r : α hr : Invertible r s si : α hs : s = r hsi : si = ⅟r ⊢ si * s = 1 [PROOFSTEP] rw [hs, hsi, invOf_mul_self] [GOAL] α : Type u inst✝ : MulOneClass α r : α hr : Invertible r s si : α hs : s = r hsi : si = ⅟r ⊢ s * si = 1 [PROOFSTEP] rw [hs, hsi, mul_invOf_self] [GOAL] α : Type u inst✝² : Ring α a b : α inst✝¹ : Invertible a inst✝ : Invertible b h : a = b ⊢ ⅟a = ⅟b [PROOFSTEP] subst h [GOAL] α : Type u inst✝² : Ring α a : α inst✝¹ inst✝ : Invertible a ⊢ ⅟a = ⅟a [PROOFSTEP] congr [GOAL] case h.e_5.h α : Type u inst✝² : Ring α a : α inst✝¹ inst✝ : Invertible a ⊢ inst✝¹ = inst✝ [PROOFSTEP] apply Subsingleton.allEq [GOAL] α : Type u inst✝¹ : Monoid α a : α inst✝ : Invertible a ⊢ a * ⅟a = 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝¹ : Monoid α a : α inst✝ : Invertible a ⊢ ⅟a * a = 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝³ : Mul α inst✝² : One α inst✝¹ : HasDistribNeg α a : α inst✝ : Invertible a ⊢ -⅟a * -a = 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝³ : Mul α inst✝² : One α inst✝¹ : HasDistribNeg α a : α inst✝ : Invertible a ⊢ -a * -⅟a = 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝³ : Monoid α inst✝² : HasDistribNeg α a : α inst✝¹ : Invertible a inst✝ : Invertible (-a) ⊢ -a * -⅟a = 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝¹ : Ring α inst✝ : Invertible 2 ⊢ 2 * (1 - ⅟2) = 2 * ⅟2 [PROOFSTEP] rw [mul_sub, mul_invOf_self, mul_one, ← one_add_one_eq_two, add_sub_cancel] [GOAL] α : Type u inst✝¹ : NonAssocSemiring α inst✝ : Invertible 2 ⊢ ⅟2 + ⅟2 = 1 [PROOFSTEP] rw [← two_mul, mul_invOf_self] [GOAL] α : Type u inst✝² : Monoid α a b : α inst✝¹ : Invertible a inst✝ : Invertible b ⊢ ⅟b * ⅟a * (a * b) = 1 [PROOFSTEP] simp [← mul_assoc] [GOAL] α : Type u inst✝² : Monoid α a b : α inst✝¹ : Invertible a inst✝ : Invertible b ⊢ a * b * (⅟b * ⅟a) = 1 [PROOFSTEP] simp [← mul_assoc] [GOAL] α : Type u inst✝³ : Monoid α a b : α inst✝² : Invertible a inst✝¹ : Invertible b inst✝ : Invertible (a * b) ⊢ a * b * (⅟b * ⅟a) = 1 [PROOFSTEP] simp [← mul_assoc] [GOAL] α : Type u a b : α inst✝¹ : Monoid α c : α inst✝ : Invertible c h : a * c = b * c ⊢ a = b [PROOFSTEP] simpa using congr_arg (· * ⅟c) h [GOAL] α : Type u a b : α inst✝¹ : Monoid α c : α inst✝ : Invertible c h : c * a = c * b ⊢ a = b [PROOFSTEP] simpa using congr_arg (⅟c * ·) h [GOAL] α : Type u c a b : α inst✝¹ : Monoid α inst✝ : Invertible c ⊢ ⅟c * a = b ↔ a = c * b [PROOFSTEP] rw [← mul_left_inj_of_invertible (c := c), mul_invOf_self_assoc] [GOAL] α : Type u c a b : α inst✝¹ : Monoid α inst✝ : Invertible c ⊢ c * a = b ↔ a = ⅟c * b [PROOFSTEP] rw [← mul_left_inj_of_invertible (c := ⅟c), invOf_mul_self_assoc] [GOAL] α : Type u c a b : α inst✝¹ : Monoid α inst✝ : Invertible c ⊢ a * ⅟c = b ↔ a = b * c [PROOFSTEP] rw [← mul_right_inj_of_invertible (c := c), mul_invOf_mul_self_cancel] [GOAL] α : Type u c a b : α inst✝¹ : Monoid α inst✝ : Invertible c ⊢ a * c = b ↔ a = b * ⅟c [PROOFSTEP] rw [← mul_right_inj_of_invertible (c := ⅟c), mul_mul_invOf_self_cancel] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible b h : Commute a b ⊢ a * ⅟b = ⅟b * (b * a * ⅟b) [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible b h : Commute a b ⊢ ⅟b * (b * a * ⅟b) = ⅟b * (a * b * ⅟b) [PROOFSTEP] rw [h.eq] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible b h : Commute a b ⊢ ⅟b * (a * b * ⅟b) = ⅟b * a [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible b h : Commute b a ⊢ ⅟b * a = ⅟b * (a * b * ⅟b) [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible b h : Commute b a ⊢ ⅟b * (a * b * ⅟b) = ⅟b * (b * a * ⅟b) [PROOFSTEP] rw [h.eq] [GOAL] α : Type u inst✝¹ : Monoid α a b : α inst✝ : Invertible b h : Commute b a ⊢ ⅟b * (b * a * ⅟b) = a * ⅟b [PROOFSTEP] simp [mul_assoc] [GOAL] α : Type u inst✝² : MulZeroOneClass α a : α inst✝¹ : Nontrivial α inst✝ : Invertible a ha : a = 0 ⊢ 0 = ⅟a * a [PROOFSTEP] simp [ha] [GOAL] α : Type u inst✝² : Monoid α a b : α inst✝¹ : Invertible a inst✝ : Invertible (a * b) ⊢ ⅟(a * b) * a * b = 1 [PROOFSTEP] rw [mul_assoc, invOf_mul_self] [GOAL] α : Type u inst✝² : Monoid α a b : α inst✝¹ : Invertible a inst✝ : Invertible (a * b) ⊢ b * (⅟(a * b) * a) = 1 [PROOFSTEP] rw [← (isUnit_of_invertible a).mul_right_inj, ← mul_assoc, ← mul_assoc, mul_invOf_self, mul_one, one_mul] [GOAL] α : Type u inst✝² : Monoid α a b : α inst✝¹ : Invertible (a * b) inst✝ : Invertible b ⊢ b * ⅟(a * b) * a = 1 [PROOFSTEP] rw [← (isUnit_of_invertible b).mul_left_inj, mul_assoc, mul_assoc, invOf_mul_self, mul_one, one_mul] [GOAL] α : Type u inst✝² : Monoid α a b : α inst✝¹ : Invertible (a * b) inst✝ : Invertible b ⊢ a * (b * ⅟(a * b)) = 1 [PROOFSTEP] rw [← mul_assoc, mul_invOf_self] [GOAL] α : Type u inst✝² : GroupWithZero α a b : α inst✝¹ : Invertible a inst✝ : Invertible b ⊢ b / a * (a / b) = 1 [PROOFSTEP] simp [← mul_div_assoc] [GOAL] α : Type u inst✝² : GroupWithZero α a b : α inst✝¹ : Invertible a inst✝ : Invertible b ⊢ a / b * (b / a) = 1 [PROOFSTEP] simp [← mul_div_assoc] [GOAL] α : Type u inst✝³ : GroupWithZero α a b : α inst✝² : Invertible a inst✝¹ : Invertible b inst✝ : Invertible (a / b) ⊢ a / b * (b / a) = 1 [PROOFSTEP] simp [← mul_div_assoc] [GOAL] α : Type u inst✝¹ : GroupWithZero α a : α inst✝ : Invertible a ⊢ a * a⁻¹ = 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝¹ : GroupWithZero α a : α inst✝ : Invertible a ⊢ a⁻¹ * a = 1 [PROOFSTEP] simp [GOAL] α : Type u R : Type u_1 S : Type u_2 F : Type u_3 inst✝³ : MulOneClass R inst✝² : MulOneClass S inst✝¹ : MonoidHomClass F R S f : F r : R inst✝ : Invertible r ⊢ ↑f ⅟r * ↑f r = 1 [PROOFSTEP] rw [← map_mul, invOf_mul_self, map_one] [GOAL] α : Type u R : Type u_1 S : Type u_2 F : Type u_3 inst✝³ : MulOneClass R inst✝² : MulOneClass S inst✝¹ : MonoidHomClass F R S f : F r : R inst✝ : Invertible r ⊢ ↑f r * ↑f ⅟r = 1 [PROOFSTEP] rw [← map_mul, mul_invOf_self, map_one] [GOAL] α : Type u R : Type u_1 S : Type u_2 F : Type u_3 inst✝³ : MulOneClass R inst✝² : Monoid S inst✝¹ : MonoidHomClass F R S f : F r : R inst✝ : Invertible r ifr : Invertible (↑f r) h : ifr = Invertible.map f r ⊢ ↑f ⅟r = ⅟(↑f r) [PROOFSTEP] subst h [GOAL] α : Type u R : Type u_1 S : Type u_2 F : Type u_3 inst✝³ : MulOneClass R inst✝² : Monoid S inst✝¹ : MonoidHomClass F R S f : F r : R inst✝ : Invertible r ⊢ ↑f ⅟r = ⅟(↑f r) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Invertible", "llama_tokens": 4587}
[GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U A B : StructuredArrow V (pairwiseToOpensLeCover U) ⊢ ∃ l, List.Chain Zag A l ∧ List.getLast (A :: l) (_ : A :: l ≠ []) = B [PROOFSTEP] rcases A with ⟨⟨⟨⟩⟩, ⟨i⟩ | ⟨i, j⟩, a⟩ [GOAL] case mk.mk.unit.single C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U B : StructuredArrow V (pairwiseToOpensLeCover U) i : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i) ⊢ ∃ l, List.Chain Zag { left := { as := PUnit.unit }, right := single i, hom := a } l ∧ List.getLast ({ left := { as := PUnit.unit }, right := single i, hom := a } :: l) (_ : { left := { as := PUnit.unit }, right := single i, hom := a } :: l ≠ []) = B [PROOFSTEP] rcases B with ⟨⟨⟨⟩⟩, ⟨i'⟩ | ⟨i', j'⟩, b⟩ [GOAL] case mk.mk.unit.pair C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U B : StructuredArrow V (pairwiseToOpensLeCover U) i j : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i j) ⊢ ∃ l, List.Chain Zag { left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } l ∧ List.getLast ({ left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } :: l) (_ : { left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } :: l ≠ []) = B [PROOFSTEP] rcases B with ⟨⟨⟨⟩⟩, ⟨i'⟩ | ⟨i', j'⟩, b⟩ [GOAL] case mk.mk.unit.single.mk.mk.unit.single C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U i : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i) i' : ι b : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i') ⊢ ∃ l, List.Chain Zag { left := { as := PUnit.unit }, right := single i, hom := a } l ∧ List.getLast ({ left := { as := PUnit.unit }, right := single i, hom := a } :: l) (_ : { left := { as := PUnit.unit }, right := single i, hom := a } :: l ≠ []) = { left := { as := PUnit.unit }, right := single i', hom := b } [PROOFSTEP] refine' ⟨[{ left := ⟨⟨⟩⟩ right := pair i i' hom := (le_inf a.le b.le).hom }, _], _, rfl⟩ [GOAL] case mk.mk.unit.single.mk.mk.unit.single C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U i : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i) i' : ι b : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i') ⊢ List.Chain Zag { left := { as := PUnit.unit }, right := single i, hom := a } [{ left := { as := PUnit.unit }, right := Pairwise.pair i i', hom := LE.le.hom (_ : ((Functor.fromPUnit V).obj { as := PUnit.unit }).obj ≤ ((pairwiseToOpensLeCover U).obj (single i)).obj ⊓ ((pairwiseToOpensLeCover U).obj (single i')).obj) }, { left := { as := PUnit.unit }, right := single i', hom := b }] [PROOFSTEP] exact List.Chain.cons (Or.inr ⟨{ left := 𝟙 _ right := left i i' }⟩) (List.Chain.cons (Or.inl ⟨{ left := 𝟙 _ right := right i i' }⟩) List.Chain.nil) [GOAL] case mk.mk.unit.single.mk.mk.unit.pair C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U i : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i) i' j' : ι b : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i' j') ⊢ ∃ l, List.Chain Zag { left := { as := PUnit.unit }, right := single i, hom := a } l ∧ List.getLast ({ left := { as := PUnit.unit }, right := single i, hom := a } :: l) (_ : { left := { as := PUnit.unit }, right := single i, hom := a } :: l ≠ []) = { left := { as := PUnit.unit }, right := Pairwise.pair i' j', hom := b } [PROOFSTEP] refine' ⟨[{ left := ⟨⟨⟩⟩ right := pair i' i hom := (le_inf (b.le.trans inf_le_left) a.le).hom }, { left := ⟨⟨⟩⟩ right := single i' hom := (b.le.trans inf_le_left).hom }, _], _, rfl⟩ [GOAL] case mk.mk.unit.single.mk.mk.unit.pair C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U i : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i) i' j' : ι b : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i' j') ⊢ List.Chain Zag { left := { as := PUnit.unit }, right := single i, hom := a } [{ left := { as := PUnit.unit }, right := Pairwise.pair i' i, hom := LE.le.hom (_ : ((Functor.fromPUnit V).obj { as := PUnit.unit }).obj ≤ U i' ⊓ ((pairwiseToOpensLeCover U).obj (single i)).obj) }, { left := { as := PUnit.unit }, right := single i', hom := LE.le.hom (_ : ((Functor.fromPUnit V).obj { as := PUnit.unit }).obj ≤ U i') }, { left := { as := PUnit.unit }, right := Pairwise.pair i' j', hom := b }] [PROOFSTEP] exact List.Chain.cons (Or.inr ⟨{ left := 𝟙 _ right := right i' i }⟩) (List.Chain.cons (Or.inl ⟨{ left := 𝟙 _ right := left i' i }⟩) (List.Chain.cons (Or.inr ⟨{ left := 𝟙 _ right := left i' j' }⟩) List.Chain.nil)) [GOAL] case mk.mk.unit.pair.mk.mk.unit.single C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U i j : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i j) i' : ι b : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i') ⊢ ∃ l, List.Chain Zag { left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } l ∧ List.getLast ({ left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } :: l) (_ : { left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } :: l ≠ []) = { left := { as := PUnit.unit }, right := single i', hom := b } [PROOFSTEP] refine' ⟨[{ left := ⟨⟨⟩⟩ right := single i hom := (a.le.trans inf_le_left).hom }, { left := ⟨⟨⟩⟩ right := pair i i' hom := (le_inf (a.le.trans inf_le_left) b.le).hom }, _], _, rfl⟩ [GOAL] case mk.mk.unit.pair.mk.mk.unit.single C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U i j : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i j) i' : ι b : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (single i') ⊢ List.Chain Zag { left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } [{ left := { as := PUnit.unit }, right := single i, hom := LE.le.hom (_ : ((Functor.fromPUnit V).obj { as := PUnit.unit }).obj ≤ U i) }, { left := { as := PUnit.unit }, right := Pairwise.pair i i', hom := LE.le.hom (_ : ((Functor.fromPUnit V).obj { as := PUnit.unit }).obj ≤ U i ⊓ ((pairwiseToOpensLeCover U).obj (single i')).obj) }, { left := { as := PUnit.unit }, right := single i', hom := b }] [PROOFSTEP] exact List.Chain.cons (Or.inl ⟨{ left := 𝟙 _ right := left i j }⟩) (List.Chain.cons (Or.inr ⟨{ left := 𝟙 _ right := left i i' }⟩) (List.Chain.cons (Or.inl ⟨{ left := 𝟙 _ right := right i i' }⟩) List.Chain.nil)) [GOAL] case mk.mk.unit.pair.mk.mk.unit.pair C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U i j : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i j) i' j' : ι b : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i' j') ⊢ ∃ l, List.Chain Zag { left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } l ∧ List.getLast ({ left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } :: l) (_ : { left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } :: l ≠ []) = { left := { as := PUnit.unit }, right := Pairwise.pair i' j', hom := b } [PROOFSTEP] refine' ⟨[{ left := ⟨⟨⟩⟩ right := single i hom := (a.le.trans inf_le_left).hom }, { left := ⟨⟨⟩⟩ right := pair i i' hom := (le_inf (a.le.trans inf_le_left) (b.le.trans inf_le_left)).hom }, { left := ⟨⟨⟩⟩ right := single i' hom := (b.le.trans inf_le_left).hom }, _], _, rfl⟩ [GOAL] case mk.mk.unit.pair.mk.mk.unit.pair C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X V : OpensLeCover U i j : ι a : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i j) i' j' : ι b : (Functor.fromPUnit V).obj { as := PUnit.unit } ⟶ (pairwiseToOpensLeCover U).obj (Pairwise.pair i' j') ⊢ List.Chain Zag { left := { as := PUnit.unit }, right := Pairwise.pair i j, hom := a } [{ left := { as := PUnit.unit }, right := single i, hom := LE.le.hom (_ : ((Functor.fromPUnit V).obj { as := PUnit.unit }).obj ≤ U i) }, { left := { as := PUnit.unit }, right := Pairwise.pair i i', hom := LE.le.hom (_ : ((Functor.fromPUnit V).obj { as := PUnit.unit }).obj ≤ U i ⊓ U i') }, { left := { as := PUnit.unit }, right := single i', hom := LE.le.hom (_ : ((Functor.fromPUnit V).obj { as := PUnit.unit }).obj ≤ U i') }, { left := { as := PUnit.unit }, right := Pairwise.pair i' j', hom := b }] [PROOFSTEP] exact List.Chain.cons (Or.inl ⟨{ left := 𝟙 _ right := left i j }⟩) (List.Chain.cons (Or.inr ⟨{ left := 𝟙 _ right := left i i' }⟩) (List.Chain.cons (Or.inl ⟨{ left := 𝟙 _ right := right i i' }⟩) (List.Chain.cons (Or.inr ⟨{ left := 𝟙 _ right := left i' j' }⟩) List.Chain.nil))) [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X ⊢ (X_1 : CategoryTheory.Pairwise ι) → (diagram U).obj X_1 ⟶ (pairwiseToOpensLeCover U ⋙ fullSubcategoryInclusion fun V => ∃ i, V ≤ U i).obj X_1 [PROOFSTEP] rintro (i | ⟨i, j⟩) [GOAL] case single C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X i : ι ⊢ (diagram U).obj (single i) ⟶ (pairwiseToOpensLeCover U ⋙ fullSubcategoryInclusion fun V => ∃ i, V ≤ U i).obj (single i) [PROOFSTEP] exact 𝟙 _ [GOAL] case pair C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X i j : ι ⊢ (diagram U).obj (Pairwise.pair i j) ⟶ (pairwiseToOpensLeCover U ⋙ fullSubcategoryInclusion fun V => ∃ i, V ≤ U i).obj (Pairwise.pair i j) [PROOFSTEP] exact 𝟙 _ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X ⊢ (X_1 : CategoryTheory.Pairwise ι) → (pairwiseToOpensLeCover U ⋙ fullSubcategoryInclusion fun V => ∃ i, V ≤ U i).obj X_1 ⟶ (diagram U).obj X_1 [PROOFSTEP] rintro (i | ⟨i, j⟩) [GOAL] case single C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X i : ι ⊢ (pairwiseToOpensLeCover U ⋙ fullSubcategoryInclusion fun V => ∃ i, V ≤ U i).obj (single i) ⟶ (diagram U).obj (single i) [PROOFSTEP] exact 𝟙 _ [GOAL] case pair C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X i j : ι ⊢ (pairwiseToOpensLeCover U ⋙ fullSubcategoryInclusion fun V => ∃ i, V ≤ U i).obj (Pairwise.pair i j) ⟶ (diagram U).obj (Pairwise.pair i j) [PROOFSTEP] exact 𝟙 _ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat ι : Type w U : ι → Opens ↑X ⊢ ∀ (j : (CategoryTheory.Pairwise ι)ᵒᵖ), NatTrans.app (Cocone.op (cocone U)).π j = (Iso.refl (Cocone.op (cocone U)).pt).hom ≫ NatTrans.app ((Cones.postcomposeEquivalence (NatIso.op (pairwiseDiagramIso U))).functor.obj (Cone.whisker (pairwiseToOpensLeCover U).op (Cocone.op (opensLeCoverCocone U)))).π j [PROOFSTEP] aesop_cat [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ⊢ IsSheaf F ↔ IsSheafPairwiseIntersections F [PROOFSTEP] rw [isSheaf_iff_isSheafOpensLeCover, isSheafOpensLeCover_iff_isSheafPairwiseIntersections] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ⊢ IsSheaf F ↔ IsSheafPreservesLimitPairwiseIntersections F [PROOFSTEP] rw [isSheaf_iff_isSheafPairwiseIntersections] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ⊢ IsSheafPairwiseIntersections F ↔ IsSheafPreservesLimitPairwiseIntersections F [PROOFSTEP] constructor [GOAL] case mp C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ⊢ IsSheafPairwiseIntersections F → IsSheafPreservesLimitPairwiseIntersections F [PROOFSTEP] intro h ι U [GOAL] case mp C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X h : IsSheafPairwiseIntersections F ι : Type w U : ι → Opens ↑X ⊢ Nonempty (PreservesLimit (Pairwise.diagram U).op F) [PROOFSTEP] exact ⟨preservesLimitOfPreservesLimitCone (Pairwise.coconeIsColimit U).op (h U).some⟩ [GOAL] case mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X ⊢ IsSheafPreservesLimitPairwiseIntersections F → IsSheafPairwiseIntersections F [PROOFSTEP] intro h ι U [GOAL] case mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X h : IsSheafPreservesLimitPairwiseIntersections F ι : Type w U : ι → Opens ↑X ⊢ Nonempty (IsLimit (F.mapCone (Cocone.op (Pairwise.cocone U)))) [PROOFSTEP] haveI := (h U).some [GOAL] case mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Presheaf C X h : IsSheafPreservesLimitPairwiseIntersections F ι : Type w U : ι → Opens ↑X this : PreservesLimit (Pairwise.diagram U).op F ⊢ Nonempty (IsLimit (F.mapCone (Cocone.op (Pairwise.cocone U)))) [PROOFSTEP] exact ⟨PreservesLimit.preserves (Pairwise.coconeIsColimit U).op⟩ [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X ⊢ F.val.map (homOfLE (_ : U ≤ U ⊔ V)).op ≫ F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op = F.val.map (homOfLE (_ : V ≤ U ⊔ V)).op ≫ F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op [PROOFSTEP] rw [← F.1.map_comp, ← F.1.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X ⊢ F.val.map ((homOfLE (_ : U ≤ U ⊔ V)).op ≫ (homOfLE (_ : U ⊓ V ≤ U)).op) = F.val.map ((homOfLE (_ : V ≤ U ⊔ V)).op ≫ (homOfLE (_ : U ⊓ V ≤ V)).op) [PROOFSTEP] congr 1 [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ s.pt ⟶ F.val.obj (op (U ⊔ V)) [PROOFSTEP] let ι : ULift.{w} WalkingPair → Opens X := fun j => WalkingPair.casesOn j.down U V [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V ⊢ s.pt ⟶ F.val.obj (op (U ⊔ V)) [PROOFSTEP] have hι : U ⊔ V = iSup ι := by ext rw [Opens.coe_iSup, Set.mem_iUnion] constructor · rintro (h | h) exacts [⟨⟨WalkingPair.left⟩, h⟩, ⟨⟨WalkingPair.right⟩, h⟩] · rintro ⟨⟨_ | _⟩, h⟩ exacts [Or.inl h, Or.inr h] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V ⊢ U ⊔ V = iSup ι [PROOFSTEP] ext [GOAL] case h.h C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V x✝ : ↑X ⊢ x✝ ∈ ↑(U ⊔ V) ↔ x✝ ∈ ↑(iSup ι) [PROOFSTEP] rw [Opens.coe_iSup, Set.mem_iUnion] [GOAL] case h.h C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V x✝ : ↑X ⊢ x✝ ∈ ↑(U ⊔ V) ↔ ∃ i, x✝ ∈ ↑(WalkingPair.casesOn i.down U V) [PROOFSTEP] constructor [GOAL] case h.h.mp C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V x✝ : ↑X ⊢ x✝ ∈ ↑(U ⊔ V) → ∃ i, x✝ ∈ ↑(WalkingPair.casesOn i.down U V) [PROOFSTEP] rintro (h | h) [GOAL] case h.h.mp.inl C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V x✝ : ↑X h : x✝ ∈ ↑U ⊢ ∃ i, x✝ ∈ ↑(WalkingPair.casesOn i.down U V) case h.h.mp.inr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V x✝ : ↑X h : x✝ ∈ ↑V ⊢ ∃ i, x✝ ∈ ↑(WalkingPair.casesOn i.down U V) [PROOFSTEP] exacts [⟨⟨WalkingPair.left⟩, h⟩, ⟨⟨WalkingPair.right⟩, h⟩] [GOAL] case h.h.mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V x✝ : ↑X ⊢ (∃ i, x✝ ∈ ↑(WalkingPair.casesOn i.down U V)) → x✝ ∈ ↑(U ⊔ V) [PROOFSTEP] rintro ⟨⟨_ | _⟩, h⟩ [GOAL] case h.h.mpr.intro.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V x✝ : ↑X h : x✝ ∈ ↑(WalkingPair.casesOn { down := WalkingPair.left }.down U V) ⊢ x✝ ∈ ↑(U ⊔ V) case h.h.mpr.intro.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V x✝ : ↑X h : x✝ ∈ ↑(WalkingPair.casesOn { down := WalkingPair.right }.down U V) ⊢ x✝ ∈ ↑(U ⊔ V) [PROOFSTEP] exacts [Or.inl h, Or.inr h] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ s.pt ⟶ F.val.obj (op (U ⊔ V)) [PROOFSTEP] refine' (F.presheaf.isSheaf_iff_isSheafPairwiseIntersections.mp F.2 ι).some.lift ⟨s.pt, { app := _ naturality := _ }⟩ ≫ F.1.map (eqToHom hι).op [GOAL] case refine'_1 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ (X_1 : (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ) → ((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).obj X_1 ⟶ ((Pairwise.diagram ι).op ⋙ presheaf F).obj X_1 [PROOFSTEP] rintro ((_ | _) | (_ | _)) [GOAL] case refine'_1.mk.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ ((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).obj { unop := Pairwise.single { down := WalkingPair.left } } ⟶ ((Pairwise.diagram ι).op ⋙ presheaf F).obj { unop := Pairwise.single { down := WalkingPair.left } } case refine'_1.mk.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ ((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).obj { unop := Pairwise.single { down := WalkingPair.right } } ⟶ ((Pairwise.diagram ι).op ⋙ presheaf F).obj { unop := Pairwise.single { down := WalkingPair.right } } case refine'_1.mk.pair.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι a✝ : ULift WalkingPair ⊢ ((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).obj { unop := Pairwise.pair { down := WalkingPair.left } a✝ } ⟶ ((Pairwise.diagram ι).op ⋙ presheaf F).obj { unop := Pairwise.pair { down := WalkingPair.left } a✝ } case refine'_1.mk.pair.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι a✝ : ULift WalkingPair ⊢ ((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).obj { unop := Pairwise.pair { down := WalkingPair.right } a✝ } ⟶ ((Pairwise.diagram ι).op ⋙ presheaf F).obj { unop := Pairwise.pair { down := WalkingPair.right } a✝ } [PROOFSTEP] exacts [s.fst, s.snd, s.fst ≫ F.1.map (homOfLE inf_le_left).op, s.snd ≫ F.1.map (homOfLE inf_le_left).op] [GOAL] case refine'_2 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ ∀ ⦃X_1 Y : (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ⦄ (f : X_1 ⟶ Y), (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map f ≫ Opposite.casesOn Y fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn X_1 fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map f [PROOFSTEP] rintro ⟨i⟩ ⟨j⟩ f [GOAL] case refine'_2.mk.mk C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι i j : CategoryTheory.Pairwise (ULift WalkingPair) f : { unop := i } ⟶ { unop := j } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map f ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := i } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map f [PROOFSTEP] let g : j ⟶ i := f.unop [GOAL] case refine'_2.mk.mk C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι i j : CategoryTheory.Pairwise (ULift WalkingPair) f : { unop := i } ⟶ { unop := j } g : j ⟶ i := f.unop ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map f ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := i } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map f [PROOFSTEP] have : f = g.op := rfl [GOAL] case refine'_2.mk.mk C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι i j : CategoryTheory.Pairwise (ULift WalkingPair) f : { unop := i } ⟶ { unop := j } g : j ⟶ i := f.unop this : f = g.op ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map f ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := i } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map f [PROOFSTEP] clear_value g [GOAL] case refine'_2.mk.mk C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι i j : CategoryTheory.Pairwise (ULift WalkingPair) f : { unop := i } ⟶ { unop := j } g : j ⟶ i this : f = g.op ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map f ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := i } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map f [PROOFSTEP] subst this [GOAL] case refine'_2.mk.mk C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι i j : CategoryTheory.Pairwise (ULift WalkingPair) g : j ⟶ i ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := i } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases i with (⟨⟨_ | _⟩⟩ | ⟨⟨_ | _⟩, ⟨_⟩⟩) [GOAL] case refine'_2.mk.mk.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι j : CategoryTheory.Pairwise (ULift WalkingPair) g : j ⟶ Pairwise.single { down := WalkingPair.left } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases j with (⟨⟨_ | _⟩⟩ | ⟨⟨_ | _⟩, ⟨_⟩⟩) [GOAL] case refine'_2.mk.mk.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι j : CategoryTheory.Pairwise (ULift WalkingPair) g : j ⟶ Pairwise.single { down := WalkingPair.right } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases j with (⟨⟨_ | _⟩⟩ | ⟨⟨_ | _⟩, ⟨_⟩⟩) [GOAL] case refine'_2.mk.mk.pair.up.left.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι j : CategoryTheory.Pairwise (ULift WalkingPair) down✝ : WalkingPair g : j ⟶ Pairwise.pair { down := WalkingPair.left } { down := down✝ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases j with (⟨⟨_ | _⟩⟩ | ⟨⟨_ | _⟩, ⟨_⟩⟩) [GOAL] case refine'_2.mk.mk.pair.up.right.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι j : CategoryTheory.Pairwise (ULift WalkingPair) down✝ : WalkingPair g : j ⟶ Pairwise.pair { down := WalkingPair.right } { down := down✝ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := j } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases j with (⟨⟨_ | _⟩⟩ | ⟨⟨_ | _⟩, ⟨_⟩⟩) [GOAL] case refine'_2.mk.mk.single.up.left.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι g : Pairwise.single { down := WalkingPair.left } ⟶ Pairwise.single { down := WalkingPair.left } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.single.up.left.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι g : Pairwise.single { down := WalkingPair.right } ⟶ Pairwise.single { down := WalkingPair.left } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.left.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair g : Pairwise.pair { down := WalkingPair.left } { down := down✝ } ⟶ Pairwise.single { down := WalkingPair.left } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.right.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair g : Pairwise.pair { down := WalkingPair.right } { down := down✝ } ⟶ Pairwise.single { down := WalkingPair.left } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.single.up.right.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι g : Pairwise.single { down := WalkingPair.left } ⟶ Pairwise.single { down := WalkingPair.right } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.single.up.right.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι g : Pairwise.single { down := WalkingPair.right } ⟶ Pairwise.single { down := WalkingPair.right } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.single.up.right.pair.up.left.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair g : Pairwise.pair { down := WalkingPair.left } { down := down✝ } ⟶ Pairwise.single { down := WalkingPair.right } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.single.up.right.pair.up.right.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair g : Pairwise.pair { down := WalkingPair.right } { down := down✝ } ⟶ Pairwise.single { down := WalkingPair.right } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.pair.up.left.up.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair g : Pairwise.single { down := WalkingPair.left } ⟶ Pairwise.pair { down := WalkingPair.left } { down := down✝ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.pair.up.left.up.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair g : Pairwise.single { down := WalkingPair.right } ⟶ Pairwise.pair { down := WalkingPair.left } { down := down✝ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.pair.up.left.up.pair.up.left.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝¹ down✝ : WalkingPair g : Pairwise.pair { down := WalkingPair.left } { down := down✝ } ⟶ Pairwise.pair { down := WalkingPair.left } { down := down✝¹ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝¹ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.pair.up.left.up.pair.up.right.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝¹ down✝ : WalkingPair g : Pairwise.pair { down := WalkingPair.right } { down := down✝ } ⟶ Pairwise.pair { down := WalkingPair.left } { down := down✝¹ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝¹ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.pair.up.right.up.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair g : Pairwise.single { down := WalkingPair.left } ⟶ Pairwise.pair { down := WalkingPair.right } { down := down✝ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.pair.up.right.up.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair g : Pairwise.single { down := WalkingPair.right } ⟶ Pairwise.pair { down := WalkingPair.right } { down := down✝ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.pair.up.right.up.pair.up.left.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝¹ down✝ : WalkingPair g : Pairwise.pair { down := WalkingPair.left } { down := down✝ } ⟶ Pairwise.pair { down := WalkingPair.right } { down := down✝¹ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝¹ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.pair.up.right.up.pair.up.right.up C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝¹ down✝ : WalkingPair g : Pairwise.pair { down := WalkingPair.right } { down := down✝ } ⟶ Pairwise.pair { down := WalkingPair.right } { down := down✝¹ } ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map g.op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝¹ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map g.op [PROOFSTEP] rcases g with ⟨⟩ [GOAL] case refine'_2.mk.mk.single.up.left.single.up.left.id_single C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.id_single { down := WalkingPair.left }).op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.id_single { down := WalkingPair.left }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.left.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.left { down := WalkingPair.left } { down := down✝ }).op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.left { down := WalkingPair.left } { down := down✝ }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.left.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.right { down := WalkingPair.left } { down := WalkingPair.left }).op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.right { down := WalkingPair.left } { down := WalkingPair.left }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.right.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.right { down := WalkingPair.right } { down := WalkingPair.left }).op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.left } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.right { down := WalkingPair.right } { down := WalkingPair.left }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.single.up.right.single.up.right.id_single C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.id_single { down := WalkingPair.right }).op ≫ Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.id_single { down := WalkingPair.right }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.single.up.right.pair.up.left.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.right { down := WalkingPair.left } { down := WalkingPair.right }).op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.right { down := WalkingPair.left } { down := WalkingPair.right }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.single.up.right.pair.up.right.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.left { down := WalkingPair.right } { down := down✝ }).op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.left { down := WalkingPair.right } { down := down✝ }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.single.up.right.pair.up.right.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.right { down := WalkingPair.right } { down := WalkingPair.right }).op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.single { down := WalkingPair.right } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.right { down := WalkingPair.right } { down := WalkingPair.right }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.pair.up.left.up.pair.up.left.up.id_pair C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.id_pair { down := WalkingPair.left } { down := down✝ }).op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.left } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.id_pair { down := WalkingPair.left } { down := down✝ }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.pair.up.right.up.pair.up.right.up.id_pair C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair ⊢ (((Functor.const (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ).obj s.pt).map (Pairwise.Hom.id_pair { down := WalkingPair.right } { down := down✝ }).op ≫ Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) = (Opposite.casesOn { unop := Pairwise.pair { down := WalkingPair.right } { down := down✝ } } fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ ι a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ ι a_1 ≤ V)).op)) ≫ ((Pairwise.diagram ι).op ⋙ presheaf F).map (Pairwise.Hom.id_pair { down := WalkingPair.right } { down := down✝ }).op [PROOFSTEP] dsimp [Pairwise.diagram] [GOAL] case refine'_2.mk.mk.single.up.left.single.up.left.id_single C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ 𝟙 s.pt ≫ PullbackCone.fst s = PullbackCone.fst s ≫ (presheaf F).map (𝟙 (op U)) [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.left.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair ⊢ 𝟙 s.pt ≫ PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ WalkingPair.rec U V down✝ ≤ U)).op = PullbackCone.fst s ≫ (presheaf F).map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ⊓ WalkingPair.rec U V { down := down✝ }.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.left.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ 𝟙 s.pt ≫ PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ U ≤ U)).op = PullbackCone.fst s ≫ (presheaf F).map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ⊓ WalkingPair.rec U V { down := WalkingPair.left }.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.right.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ 𝟙 s.pt ≫ PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ U ≤ V)).op = PullbackCone.fst s ≫ (presheaf F).map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V { down := WalkingPair.left }.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.single.up.right.single.up.right.id_single C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ 𝟙 s.pt ≫ PullbackCone.snd s = PullbackCone.snd s ≫ (presheaf F).map (𝟙 (op V)) [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.single.up.right.pair.up.left.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ 𝟙 s.pt ≫ PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op = PullbackCone.snd s ≫ (presheaf F).map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ⊓ WalkingPair.rec U V { down := WalkingPair.right }.down ≤ WalkingPair.rec U V { down := WalkingPair.right }.down)).op [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.single.up.right.pair.up.right.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair ⊢ 𝟙 s.pt ≫ PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ WalkingPair.rec U V down✝ ≤ V)).op = PullbackCone.snd s ≫ (presheaf F).map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V { down := down✝ }.down ≤ WalkingPair.rec U V { down := WalkingPair.right }.down)).op [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.single.up.right.pair.up.right.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ 𝟙 s.pt ≫ PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ V ≤ V)).op = PullbackCone.snd s ≫ (presheaf F).map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V { down := WalkingPair.right }.down ≤ WalkingPair.rec U V { down := WalkingPair.right }.down)).op [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.pair.up.left.up.pair.up.left.up.id_pair C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair ⊢ 𝟙 s.pt ≫ PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ WalkingPair.rec U V down✝ ≤ U)).op = (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ WalkingPair.rec U V down✝ ≤ U)).op) ≫ (presheaf F).map (𝟙 (op (U ⊓ WalkingPair.rec U V down✝))) [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.pair.up.right.up.pair.up.right.up.id_pair C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι down✝ : WalkingPair ⊢ 𝟙 s.pt ≫ PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ WalkingPair.rec U V down✝ ≤ V)).op = (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ WalkingPair.rec U V down✝ ≤ V)).op) ≫ (presheaf F).map (𝟙 (op (V ⊓ WalkingPair.rec U V down✝))) [PROOFSTEP] simp only [Category.id_comp, s.condition, CategoryTheory.Functor.map_id, Category.comp_id] [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.right.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ U ≤ V)).op = PullbackCone.fst s ≫ (presheaf F).map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V { down := WalkingPair.left }.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op [PROOFSTEP] rw [← cancel_mono (F.1.map (eqToHom <| inf_comm : U ⊓ V ⟶ _).op), Category.assoc, Category.assoc, ← F.1.map_comp, ← F.1.map_comp] [GOAL] case refine'_2.mk.mk.single.up.left.pair.up.right.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun j => WalkingPair.casesOn j.down U V hι : U ⊔ V = iSup ι ⊢ PullbackCone.snd s ≫ F.val.map ((homOfLE (_ : V ⊓ U ≤ V)).op ≫ (eqToHom (_ : U ⊓ V = V ⊓ U)).op) = PullbackCone.fst s ≫ F.val.map ((homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V { down := WalkingPair.left }.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op ≫ (eqToHom (_ : U ⊓ V = V ⊓ U)).op) [PROOFSTEP] exact s.condition.symm [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ interUnionPullbackConeLift F U V s ≫ F.val.map (homOfLE (_ : U ≤ U ⊔ V)).op = PullbackCone.fst s [PROOFSTEP] erw [Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ IsLimit.lift (Nonempty.some (_ : Nonempty (IsLimit ((presheaf F).mapCone (Cocone.op (Pairwise.cocone fun j => WalkingPair.casesOn j.down U V)))))) { pt := s.pt, π := NatTrans.mk fun X_1 => Opposite.casesOn X_1 fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ (fun j => WalkingPair.casesOn j.down U V) a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ (fun j => WalkingPair.casesOn j.down U V) a_1 ≤ V)).op) } ≫ F.val.map (eqToHom (_ : U ⊔ V = ⨆ (j : ULift WalkingPair), WalkingPair.casesOn j.down U V)).op ≫ F.val.map (homOfLE (_ : U ≤ U ⊔ V)).op = PullbackCone.fst s [PROOFSTEP] simp_rw [← F.1.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ IsLimit.lift (Nonempty.some (_ : Nonempty (IsLimit ((presheaf F).mapCone (Cocone.op (Pairwise.cocone fun j => WalkingPair.casesOn j.down U V)))))) { pt := s.pt, π := NatTrans.mk fun X_1 => Pairwise.rec (fun a => WalkingPair.rec (PullbackCone.fst s) (PullbackCone.snd s) a.down) (fun a a_1 => WalkingPair.rec (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ WalkingPair.rec U V a_1.down ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ WalkingPair.rec U V a_1.down ≤ V)).op) a.down) X_1.unop } ≫ F.val.map ((eqToHom (_ : U ⊔ V = ⨆ (j : ULift WalkingPair), WalkingPair.casesOn j.down U V)).op ≫ (homOfLE (_ : U ≤ U ⊔ V)).op) = PullbackCone.fst s [PROOFSTEP] exact (F.presheaf.isSheaf_iff_isSheafPairwiseIntersections.mp F.2 _).some.fac _ <| op <| Pairwise.single <| ULift.up WalkingPair.left [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ interUnionPullbackConeLift F U V s ≫ F.val.map (homOfLE (_ : V ≤ U ⊔ V)).op = PullbackCone.snd s [PROOFSTEP] erw [Category.assoc] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ IsLimit.lift (Nonempty.some (_ : Nonempty (IsLimit ((presheaf F).mapCone (Cocone.op (Pairwise.cocone fun j => WalkingPair.casesOn j.down U V)))))) { pt := s.pt, π := NatTrans.mk fun X_1 => Opposite.casesOn X_1 fun unop => Pairwise.casesOn unop (fun a => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s) (PullbackCone.snd s)) fun a a_1 => ULift.casesOn a fun down => WalkingPair.casesOn down (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ (fun j => WalkingPair.casesOn j.down U V) a_1 ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ (fun j => WalkingPair.casesOn j.down U V) a_1 ≤ V)).op) } ≫ F.val.map (eqToHom (_ : U ⊔ V = ⨆ (j : ULift WalkingPair), WalkingPair.casesOn j.down U V)).op ≫ F.val.map (homOfLE (_ : V ≤ U ⊔ V)).op = PullbackCone.snd s [PROOFSTEP] simp_rw [← F.1.map_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ IsLimit.lift (Nonempty.some (_ : Nonempty (IsLimit ((presheaf F).mapCone (Cocone.op (Pairwise.cocone fun j => WalkingPair.casesOn j.down U V)))))) { pt := s.pt, π := NatTrans.mk fun X_1 => Pairwise.rec (fun a => WalkingPair.rec (PullbackCone.fst s) (PullbackCone.snd s) a.down) (fun a a_1 => WalkingPair.rec (PullbackCone.fst s ≫ F.val.map (homOfLE (_ : U ⊓ WalkingPair.rec U V a_1.down ≤ U)).op) (PullbackCone.snd s ≫ F.val.map (homOfLE (_ : V ⊓ WalkingPair.rec U V a_1.down ≤ V)).op) a.down) X_1.unop } ≫ F.val.map ((eqToHom (_ : U ⊔ V = ⨆ (j : ULift WalkingPair), WalkingPair.casesOn j.down U V)).op ≫ (homOfLE (_ : V ≤ U ⊔ V)).op) = PullbackCone.snd s [PROOFSTEP] exact (F.presheaf.isSheaf_iff_isSheafPairwiseIntersections.mp F.2 _).some.fac _ <| op <| Pairwise.single <| ULift.up WalkingPair.right [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ IsLimit (interUnionPullbackCone F U V) [PROOFSTEP] let ι : ULift.{w} WalkingPair → Opens X := fun ⟨j⟩ => WalkingPair.casesOn j U V [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V ⊢ IsLimit (interUnionPullbackCone F U V) [PROOFSTEP] have hι : U ⊔ V = iSup ι := by ext rw [Opens.coe_iSup, Set.mem_iUnion] constructor · rintro (h | h) exacts [⟨⟨WalkingPair.left⟩, h⟩, ⟨⟨WalkingPair.right⟩, h⟩] · rintro ⟨⟨_ | _⟩, h⟩ exacts [Or.inl h, Or.inr h] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V ⊢ U ⊔ V = iSup ι [PROOFSTEP] ext [GOAL] case h.h C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V x✝ : ↑X ⊢ x✝ ∈ ↑(U ⊔ V) ↔ x✝ ∈ ↑(iSup ι) [PROOFSTEP] rw [Opens.coe_iSup, Set.mem_iUnion] [GOAL] case h.h C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V x✝ : ↑X ⊢ x✝ ∈ ↑(U ⊔ V) ↔ ∃ i, x✝ ∈ ↑(match i with | { down := j } => WalkingPair.casesOn j U V) [PROOFSTEP] constructor [GOAL] case h.h.mp C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V x✝ : ↑X ⊢ x✝ ∈ ↑(U ⊔ V) → ∃ i, x✝ ∈ ↑(match i with | { down := j } => WalkingPair.casesOn j U V) [PROOFSTEP] rintro (h | h) [GOAL] case h.h.mp.inl C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V x✝ : ↑X h : x✝ ∈ ↑U ⊢ ∃ i, x✝ ∈ ↑(match i with | { down := j } => WalkingPair.casesOn j U V) case h.h.mp.inr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V x✝ : ↑X h : x✝ ∈ ↑V ⊢ ∃ i, x✝ ∈ ↑(match i with | { down := j } => WalkingPair.casesOn j U V) [PROOFSTEP] exacts [⟨⟨WalkingPair.left⟩, h⟩, ⟨⟨WalkingPair.right⟩, h⟩] [GOAL] case h.h.mpr C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V x✝ : ↑X ⊢ (∃ i, x✝ ∈ ↑(match i with | { down := j } => WalkingPair.casesOn j U V)) → x✝ ∈ ↑(U ⊔ V) [PROOFSTEP] rintro ⟨⟨_ | _⟩, h⟩ [GOAL] case h.h.mpr.intro.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V x✝ : ↑X h : x✝ ∈ ↑(match { down := WalkingPair.left } with | { down := j } => WalkingPair.casesOn j U V) ⊢ x✝ ∈ ↑(U ⊔ V) case h.h.mpr.intro.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V x✝ : ↑X h : x✝ ∈ ↑(match { down := WalkingPair.right } with | { down := j } => WalkingPair.casesOn j U V) ⊢ x✝ ∈ ↑(U ⊔ V) [PROOFSTEP] exacts [Or.inl h, Or.inr h] [GOAL] C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι ⊢ IsLimit (interUnionPullbackCone F U V) [PROOFSTEP] apply PullbackCone.isLimitAux' [GOAL] case create C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι ⊢ (s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op)) → { l // l ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (interUnionPullbackCone F U V).pt}, m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s → m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s → m = l } [PROOFSTEP] intro s [GOAL] case create C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ { l // l ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s ∧ l ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (interUnionPullbackCone F U V).pt}, m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s → m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s → m = l } [PROOFSTEP] use interUnionPullbackConeLift F U V s [GOAL] case property C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ interUnionPullbackConeLift F U V s ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s ∧ interUnionPullbackConeLift F U V s ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ∧ ∀ {m : s.pt ⟶ (interUnionPullbackCone F U V).pt}, m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s → m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s → m = interUnionPullbackConeLift F U V s [PROOFSTEP] refine' ⟨_, _, _⟩ [GOAL] case property.refine'_1 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ interUnionPullbackConeLift F U V s ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s [PROOFSTEP] apply interUnionPullbackConeLift_left [GOAL] case property.refine'_2 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ interUnionPullbackConeLift F U V s ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s [PROOFSTEP] apply interUnionPullbackConeLift_right [GOAL] case property.refine'_3 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ⊢ ∀ {m : s.pt ⟶ (interUnionPullbackCone F U V).pt}, m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s → m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s → m = interUnionPullbackConeLift F U V s [PROOFSTEP] intro m h₁ h₂ [GOAL] case property.refine'_3 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ m = interUnionPullbackConeLift F U V s [PROOFSTEP] rw [← cancel_mono (F.1.map (eqToHom hι.symm).op)] [GOAL] case property.refine'_3 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op [PROOFSTEP] apply (F.presheaf.isSheaf_iff_isSheafPairwiseIntersections.mp F.2 ι).some.hom_ext [GOAL] case property.refine'_3 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ ∀ (j : (CategoryTheory.Pairwise (ULift WalkingPair))ᵒᵖ), (m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π j = (interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π j [PROOFSTEP] rintro ((_ | _) | (_ | _)) [GOAL] case property.refine'_3.mk.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ (m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.single { down := WalkingPair.left } } = (interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.single { down := WalkingPair.left } } [PROOFSTEP] rw [Category.assoc, Category.assoc] [GOAL] case property.refine'_3.mk.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ (m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.single { down := WalkingPair.right } } = (interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.single { down := WalkingPair.right } } [PROOFSTEP] rw [Category.assoc, Category.assoc] [GOAL] case property.refine'_3.mk.pair.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ (m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.left } a✝ } = (interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.left } a✝ } [PROOFSTEP] rw [Category.assoc, Category.assoc] [GOAL] case property.refine'_3.mk.pair.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ (m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.right } a✝ } = (interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op) ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.right } a✝ } [PROOFSTEP] rw [Category.assoc, Category.assoc] [GOAL] case property.refine'_3.mk.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.single { down := WalkingPair.left } } = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.single { down := WalkingPair.left } } [PROOFSTEP] erw [← F.1.map_comp] [GOAL] case property.refine'_3.mk.single.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ m ≫ F.val.map ((eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app (Cocone.op (Pairwise.cocone ι)).π { unop := Pairwise.single { down := WalkingPair.left } }) = interUnionPullbackConeLift F U V s ≫ F.val.map ((eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app (Cocone.op (Pairwise.cocone ι)).π { unop := Pairwise.single { down := WalkingPair.left } }) [PROOFSTEP] convert h₁ [GOAL] case h.e'_3.h C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s e_1✝ : (s.pt ⟶ ((Pairwise.diagram ι).op ⋙ presheaf F).obj { unop := Pairwise.single { down := WalkingPair.left } }) = (s.pt ⟶ F.val.obj (op U)) ⊢ interUnionPullbackConeLift F U V s ≫ F.val.map ((eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app (Cocone.op (Pairwise.cocone ι)).π { unop := Pairwise.single { down := WalkingPair.left } }) = PullbackCone.fst s [PROOFSTEP] apply interUnionPullbackConeLift_left [GOAL] case property.refine'_3.mk.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.single { down := WalkingPair.right } } = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.single { down := WalkingPair.right } } [PROOFSTEP] erw [← F.1.map_comp] [GOAL] case property.refine'_3.mk.single.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s ⊢ m ≫ F.val.map ((eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app (Cocone.op (Pairwise.cocone ι)).π { unop := Pairwise.single { down := WalkingPair.right } }) = interUnionPullbackConeLift F U V s ≫ F.val.map ((eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app (Cocone.op (Pairwise.cocone ι)).π { unop := Pairwise.single { down := WalkingPair.right } }) [PROOFSTEP] convert h₂ [GOAL] case h.e'_3.h C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s e_1✝ : (s.pt ⟶ ((Pairwise.diagram ι).op ⋙ presheaf F).obj { unop := Pairwise.single { down := WalkingPair.right } }) = (s.pt ⟶ F.val.obj (op V)) ⊢ interUnionPullbackConeLift F U V s ≫ F.val.map ((eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app (Cocone.op (Pairwise.cocone ι)).π { unop := Pairwise.single { down := WalkingPair.right } }) = PullbackCone.snd s [PROOFSTEP] apply interUnionPullbackConeLift_right [GOAL] case property.refine'_3.mk.pair.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.left } a✝ } = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.left } a✝ } case property.refine'_3.mk.pair.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.right } a✝ } = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.right } a✝ } [PROOFSTEP] all_goals dsimp only [Functor.op, Pairwise.cocone_ι_app, Functor.mapCone_π_app, Cocone.op, Pairwise.coconeιApp, unop_op, op_comp, NatTrans.op] simp_rw [F.1.map_comp, ← Category.assoc] congr 1 simp_rw [Category.assoc, ← F.1.map_comp] [GOAL] case property.refine'_3.mk.pair.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.left } a✝ } = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.left } a✝ } [PROOFSTEP] dsimp only [Functor.op, Pairwise.cocone_ι_app, Functor.mapCone_π_app, Cocone.op, Pairwise.coconeιApp, unop_op, op_comp, NatTrans.op] [GOAL] case property.refine'_3.mk.pair.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ m ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (presheaf F).map ((homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ⊓ WalkingPair.rec U V a✝.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op) = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (presheaf F).map ((homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ⊓ WalkingPair.rec U V a✝.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op) [PROOFSTEP] simp_rw [F.1.map_comp, ← Category.assoc] [GOAL] case property.refine'_3.mk.pair.up.left C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ ((m ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ⊓ WalkingPair.rec U V a✝.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op = ((interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ⊓ WalkingPair.rec U V a✝.down ≤ WalkingPair.rec U V { down := WalkingPair.left }.down)).op [PROOFSTEP] congr 1 [GOAL] case property.refine'_3.mk.pair.up.left.e_a C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ (m ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op = (interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op [PROOFSTEP] simp_rw [Category.assoc, ← F.1.map_comp] [GOAL] case property.refine'_3.mk.pair.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ m ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.right } a✝ } = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : iSup ι = U ⊔ V)).op ≫ NatTrans.app ((presheaf F).mapCone (Cocone.op (Pairwise.cocone ι))).π { unop := Pairwise.pair { down := WalkingPair.right } a✝ } [PROOFSTEP] dsimp only [Functor.op, Pairwise.cocone_ι_app, Functor.mapCone_π_app, Cocone.op, Pairwise.coconeιApp, unop_op, op_comp, NatTrans.op] [GOAL] case property.refine'_3.mk.pair.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ m ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (presheaf F).map ((homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V a✝.down ≤ WalkingPair.rec U V { down := WalkingPair.right }.down)).op) = interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (presheaf F).map ((homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V a✝.down ≤ WalkingPair.rec U V { down := WalkingPair.right }.down)).op) [PROOFSTEP] simp_rw [F.1.map_comp, ← Category.assoc] [GOAL] case property.refine'_3.mk.pair.up.right C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ ((m ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V a✝.down ≤ WalkingPair.rec U V { down := WalkingPair.right }.down)).op = ((interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ⊓ WalkingPair.rec U V a✝.down ≤ WalkingPair.rec U V { down := WalkingPair.right }.down)).op [PROOFSTEP] congr 1 [GOAL] case property.refine'_3.mk.pair.up.right.e_a C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ (m ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op = (interUnionPullbackConeLift F U V s ≫ F.val.map (eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op) ≫ F.val.map (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op [PROOFSTEP] simp_rw [Category.assoc, ← F.1.map_comp] [GOAL] case property.refine'_3.mk.pair.up.left.e_a C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ m ≫ F.val.map ((eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) = interUnionPullbackConeLift F U V s ≫ F.val.map ((eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) [PROOFSTEP] convert h₁ [GOAL] case h.e'_3 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ interUnionPullbackConeLift F U V s ≫ F.val.map ((eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.left }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) = PullbackCone.fst s [PROOFSTEP] apply interUnionPullbackConeLift_left [GOAL] case property.refine'_3.mk.pair.up.right.e_a C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ m ≫ F.val.map ((eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) = interUnionPullbackConeLift F U V s ≫ F.val.map ((eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) [PROOFSTEP] convert h₂ [GOAL] case h.e'_3 C : Type u inst✝ : Category.{v, u} C X : TopCat F : Sheaf C X U V : Opens ↑X s✝ : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) ι : ULift WalkingPair → Opens ↑X := fun x => match x with | { down := j } => WalkingPair.casesOn j U V hι : U ⊔ V = iSup ι s : PullbackCone (F.val.map (homOfLE (_ : U ⊓ V ≤ U)).op) (F.val.map (homOfLE (_ : U ⊓ V ≤ V)).op) m : s.pt ⟶ (interUnionPullbackCone F U V).pt h₁ : m ≫ PullbackCone.fst (interUnionPullbackCone F U V) = PullbackCone.fst s h₂ : m ≫ PullbackCone.snd (interUnionPullbackCone F U V) = PullbackCone.snd s a✝ : ULift WalkingPair ⊢ interUnionPullbackConeLift F U V s ≫ F.val.map ((eqToHom (_ : ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down = U ⊔ V)).op ≫ (homOfLE (_ : WalkingPair.rec U V { down := WalkingPair.right }.down ≤ ⨆ (x : ULift WalkingPair), WalkingPair.rec U V x.down)).op) = PullbackCone.snd s [PROOFSTEP] apply interUnionPullbackConeLift_right
{"mathlib_filename": "Mathlib.Topology.Sheaves.SheafCondition.PairwiseIntersections", "llama_tokens": 62412}
[GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ a * a = 0 ↔ ∀ (x y : R), ↑(↑(LinearEquiv.toEquiv (LinearEquiv.symm (LinearMap.ringLmapEquivSelf R ℕ A))) a) x * ↑(↑(LinearEquiv.toEquiv (LinearEquiv.symm (LinearMap.ringLmapEquivSelf R ℕ A))) a) y = 0 [PROOFSTEP] dsimp [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ a * a = 0 ↔ ∀ (x y : R), x • a * y • a = 0 [PROOFSTEP] simp_rw [smul_mul_smul] [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A ⊢ a * a = 0 ↔ ∀ (x y : R), (x * y) • (a * a) = 0 [PROOFSTEP] refine' ⟨fun h x y => h.symm ▸ smul_zero _, fun h => by simpa using h 1 1⟩ [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A a : A h : ∀ (x y : R), (x * y) • (a * a) = 0 ⊢ a * a = 0 [PROOFSTEP] simpa using h 1 1 [GOAL] R : Type u_1 A : Type u_2 inst✝² : CommSemiring R inst✝¹ : Semiring A inst✝ : Algebra R A e : { e // e * e = 0 } ⊢ ↑(↑lift e) ε = ↑e [PROOFSTEP] simp only [lift_apply_apply, fst_eps, map_zero, snd_eps, one_smul, zero_add]
{"mathlib_filename": "Mathlib.Algebra.DualNumber", "llama_tokens": 617}
{"mathlib_filename": "Mathlib.Algebra.Quotient", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Elab.Tactic.Basic", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Algebra.FreeNonUnitalNonAssocAlgebra", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α x✝ : ℕ n : ℕ := x✝ h : ¬n < E.order k : Fin E.order ⊢ n - E.order + ↑k < n [PROOFSTEP] rw [add_comm, ← add_tsub_assoc_of_le (not_lt.mp h), tsub_lt_iff_left] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α x✝ : ℕ n : ℕ := x✝ h : ¬n < E.order k : Fin E.order ⊢ ↑k + n < E.order + n [PROOFSTEP] exact add_lt_add_right k.is_lt n [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α x✝ : ℕ n : ℕ := x✝ h : ¬n < E.order k : Fin E.order ⊢ E.order ≤ ↑k + n [PROOFSTEP] convert add_le_add (zero_le (k : ℕ)) (not_lt.mp h) [GOAL] case h.e'_3 α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α x✝ : ℕ n : ℕ := x✝ h : ¬n < E.order k : Fin E.order ⊢ E.order = 0 + E.order [PROOFSTEP] simp only [zero_add] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α ⊢ IsSolution E (mkSol E init) [PROOFSTEP] intro n [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α n : ℕ ⊢ mkSol E init (n + E.order) = ∑ i : Fin E.order, coeffs E i * mkSol E init (n + ↑i) [PROOFSTEP] rw [mkSol] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α n : ℕ ⊢ (if h : n + E.order < E.order then init { val := n + E.order, isLt := h } else ∑ k : Fin E.order, let_fun x := (_ : n + E.order - E.order + ↑k < n + E.order); coeffs E k * mkSol E init (n + E.order - E.order + ↑k)) = ∑ i : Fin E.order, coeffs E i * mkSol E init (n + ↑i) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α ⊢ ∀ (n : Fin E.order), mkSol E init ↑n = init n [PROOFSTEP] intro n [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α n : Fin E.order ⊢ mkSol E init ↑n = init n [PROOFSTEP] rw [mkSol] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α init : Fin E.order → α n : Fin E.order ⊢ (if h : ↑n < E.order then init { val := ↑n, isLt := h } else ∑ k : Fin E.order, let_fun x := (_ : ↑n - E.order + ↑k < ↑n); coeffs E k * mkSol E init (↑n - E.order + ↑k)) = init n [PROOFSTEP] simp only [n.is_lt, dif_pos, Fin.mk_val, Fin.eta] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n ⊢ ∀ (n : ℕ), u n = mkSol E init n [PROOFSTEP] intro n [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ ⊢ u n = mkSol E init n [PROOFSTEP] rw [mkSol] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ ⊢ u n = if h : n < E.order then init { val := n, isLt := h } else ∑ k : Fin E.order, let_fun x := (_ : n - E.order + ↑k < n); coeffs E k * mkSol E init (n - E.order + ↑k) [PROOFSTEP] split_ifs with h' [GOAL] case pos α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : n < E.order ⊢ u n = init { val := n, isLt := h' } [PROOFSTEP] exact_mod_cast heq ⟨n, h'⟩ [GOAL] case neg α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order ⊢ u n = ∑ k : Fin E.order, let_fun x := (_ : n - E.order + ↑k < n); coeffs E k * mkSol E init (n - E.order + ↑k) [PROOFSTEP] simp only [GOAL] case neg α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order ⊢ u n = ∑ x : Fin E.order, coeffs E x * mkSol E init (n - E.order + ↑x) [PROOFSTEP] rw [← tsub_add_cancel_of_le (le_of_not_lt h'), h (n - E.order)] [GOAL] case neg α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order ⊢ ∑ i : Fin E.order, coeffs E i * u (n - E.order + ↑i) = ∑ x : Fin E.order, coeffs E x * mkSol E init (n - E.order + E.order - E.order + ↑x) [PROOFSTEP] congr with k [GOAL] case neg.e_f.h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order k : Fin E.order ⊢ coeffs E k * u (n - E.order + ↑k) = coeffs E k * mkSol E init (n - E.order + E.order - E.order + ↑k) [PROOFSTEP] have : n - E.order + k < n := by rw [add_comm, ← add_tsub_assoc_of_le (not_lt.mp h'), tsub_lt_iff_left] · exact add_lt_add_right k.is_lt n · convert add_le_add (zero_le (k : ℕ)) (not_lt.mp h') simp only [zero_add] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order k : Fin E.order ⊢ n - E.order + ↑k < n [PROOFSTEP] rw [add_comm, ← add_tsub_assoc_of_le (not_lt.mp h'), tsub_lt_iff_left] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order k : Fin E.order ⊢ ↑k + n < E.order + n [PROOFSTEP] exact add_lt_add_right k.is_lt n [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order k : Fin E.order ⊢ E.order ≤ ↑k + n [PROOFSTEP] convert add_le_add (zero_le (k : ℕ)) (not_lt.mp h') [GOAL] case h.e'_3 α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order k : Fin E.order ⊢ E.order = 0 + E.order [PROOFSTEP] simp only [zero_add] [GOAL] case neg.e_f.h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order k : Fin E.order this : n - E.order + ↑k < n ⊢ coeffs E k * u (n - E.order + ↑k) = coeffs E k * mkSol E init (n - E.order + E.order - E.order + ↑k) [PROOFSTEP] rw [eq_mk_of_is_sol_of_eq_init h heq (n - E.order + k)] [GOAL] case neg.e_f.h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : ℕ → α init : Fin E.order → α h : IsSolution E u heq : ∀ (n : Fin E.order), u ↑n = init n n : ℕ h' : ¬n < E.order k : Fin E.order this : n - E.order + ↑k < n ⊢ coeffs E k * mkSol E (fun n => init n) (n - E.order + ↑k) = coeffs E k * mkSol E init (n - E.order + E.order - E.order + ↑k) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : u ∈ {u | IsSolution E u} hv : v ∈ {u | IsSolution E u} n : ℕ ⊢ (u + v) (n + E.order) = ∑ i : Fin E.order, coeffs E i * (u + v) (n + ↑i) [PROOFSTEP] simp [mul_add, sum_add_distrib, hu n, hv n] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α n : ℕ ⊢ OfNat.ofNat 0 (n + E.order) = ∑ i : Fin E.order, coeffs E i * OfNat.ofNat 0 (n + ↑i) [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α a : α u : ℕ → α hu : u ∈ { toAddSubsemigroup := { carrier := {u | IsSolution E u}, add_mem' := (_ : ∀ {u v : ℕ → α}, u ∈ {u | IsSolution E u} → v ∈ {u | IsSolution E u} → ∀ (n : ℕ), u (n + E.order) + v (n + E.order) = ∑ i : Fin E.order, coeffs E i * (u + v) (n + ↑i)) }, zero_mem' := (_ : ∀ (n : ℕ), 0 = ∑ i : Fin E.order, coeffs E i * OfNat.ofNat 0 (n + ↑i)) }.toAddSubsemigroup.carrier n : ℕ ⊢ (a • u) (n + E.order) = ∑ i : Fin E.order, coeffs E i * (a • u) (n + ↑i) [PROOFSTEP] simp [hu n, mul_sum] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α a : α u : ℕ → α hu : u ∈ { toAddSubsemigroup := { carrier := {u | IsSolution E u}, add_mem' := (_ : ∀ {u v : ℕ → α}, u ∈ {u | IsSolution E u} → v ∈ {u | IsSolution E u} → ∀ (n : ℕ), u (n + E.order) + v (n + E.order) = ∑ i : Fin E.order, coeffs E i * (u + v) (n + ↑i)) }, zero_mem' := (_ : ∀ (n : ℕ), 0 = ∑ i : Fin E.order, coeffs E i * OfNat.ofNat 0 (n + ↑i)) }.toAddSubsemigroup.carrier n : ℕ ⊢ ∑ x : Fin E.order, a * (coeffs E x * u (n + ↑x)) = ∑ x : Fin E.order, coeffs E x * (a * u (n + ↑x)) [PROOFSTEP] congr [GOAL] case e_f α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α a : α u : ℕ → α hu : u ∈ { toAddSubsemigroup := { carrier := {u | IsSolution E u}, add_mem' := (_ : ∀ {u v : ℕ → α}, u ∈ {u | IsSolution E u} → v ∈ {u | IsSolution E u} → ∀ (n : ℕ), u (n + E.order) + v (n + E.order) = ∑ i : Fin E.order, coeffs E i * (u + v) (n + ↑i)) }, zero_mem' := (_ : ∀ (n : ℕ), 0 = ∑ i : Fin E.order, coeffs E i * OfNat.ofNat 0 (n + ↑i)) }.toAddSubsemigroup.carrier n : ℕ ⊢ (fun x => a * (coeffs E x * u (n + ↑x))) = fun x => coeffs E x * (a * u (n + ↑x)) [PROOFSTEP] ext [GOAL] case e_f.h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α a : α u : ℕ → α hu : u ∈ { toAddSubsemigroup := { carrier := {u | IsSolution E u}, add_mem' := (_ : ∀ {u v : ℕ → α}, u ∈ {u | IsSolution E u} → v ∈ {u | IsSolution E u} → ∀ (n : ℕ), u (n + E.order) + v (n + E.order) = ∑ i : Fin E.order, coeffs E i * (u + v) (n + ↑i)) }, zero_mem' := (_ : ∀ (n : ℕ), 0 = ∑ i : Fin E.order, coeffs E i * OfNat.ofNat 0 (n + ↑i)) }.toAddSubsemigroup.carrier n : ℕ x✝ : Fin E.order ⊢ a * (coeffs E x✝ * u (n + ↑x✝)) = coeffs E x✝ * (a * u (n + ↑x✝)) [PROOFSTEP] ac_rfl [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : { x // x ∈ solSpace E } ⊢ (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v [PROOFSTEP] ext [GOAL] case h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : { x // x ∈ solSpace E } x✝ : Fin E.order ⊢ (fun u x => ↑u ↑x) (u + v) x✝ = ((fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α a : α u : { x // x ∈ solSpace E } ⊢ AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } (a • u) = ↑(RingHom.id α) a • AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } u [PROOFSTEP] ext [GOAL] case h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α a : α u : { x // x ∈ solSpace E } x✝ : Fin E.order ⊢ AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } (a • u) x✝ = (↑(RingHom.id α) a • AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } u) x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : { x // x ∈ solSpace E } ⊢ (fun u => { val := mkSol E u, property := (_ : IsSolution E (mkSol E u)) }) (AddHom.toFun { toAddHom := { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) }, map_smul' := (_ : ∀ (a : α) (u : { x // x ∈ solSpace E }), AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } (a • u) = ↑(RingHom.id α) a • AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } u) }.toAddHom u) = u [PROOFSTEP] ext n [GOAL] case a.h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : { x // x ∈ solSpace E } n : ℕ ⊢ ↑((fun u => { val := mkSol E u, property := (_ : IsSolution E (mkSol E u)) }) (AddHom.toFun { toAddHom := { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) }, map_smul' := (_ : ∀ (a : α) (u : { x // x ∈ solSpace E }), AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } (a • u) = ↑(RingHom.id α) a • AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } u) }.toAddHom u)) n = ↑u n [PROOFSTEP] symm [GOAL] case a.h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : { x // x ∈ solSpace E } n : ℕ ⊢ ↑u n = ↑((fun u => { val := mkSol E u, property := (_ : IsSolution E (mkSol E u)) }) (AddHom.toFun { toAddHom := { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) }, map_smul' := (_ : ∀ (a : α) (u : { x // x ∈ solSpace E }), AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } (a • u) = ↑(RingHom.id α) a • AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } u) }.toAddHom u)) n [PROOFSTEP] apply E.eq_mk_of_is_sol_of_eq_init u.2 [GOAL] case a.h.heq α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : { x // x ∈ solSpace E } n : ℕ ⊢ ∀ (n : Fin E.order), ↑u ↑n = AddHom.toFun { toAddHom := { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) }, map_smul' := (_ : ∀ (a : α) (u : { x // x ∈ solSpace E }), AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } (a • u) = ↑(RingHom.id α) a • AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } u) }.toAddHom u n [PROOFSTEP] intro k [GOAL] case a.h.heq α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u : { x // x ∈ solSpace E } n : ℕ k : Fin E.order ⊢ ↑u ↑k = AddHom.toFun { toAddHom := { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) }, map_smul' := (_ : ∀ (a : α) (u : { x // x ∈ solSpace E }), AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } (a • u) = ↑(RingHom.id α) a • AddHom.toFun { toFun := fun u x => ↑u ↑x, map_add' := (_ : ∀ (u v : { x // x ∈ solSpace E }), (fun u x => ↑u ↑x) (u + v) = (fun u x => ↑u ↑x) u + (fun u x => ↑u ↑x) v) } u) }.toAddHom u k [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v ⊢ u = v ↔ Set.EqOn u v ↑(range E.order) [PROOFSTEP] refine' Iff.intro (fun h x _ ↦ h ▸ rfl) _ [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v ⊢ Set.EqOn u v ↑(range E.order) → u = v [PROOFSTEP] intro h [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) ⊢ u = v [PROOFSTEP] set u' : ↥E.solSpace := ⟨u, hu⟩ [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) u' : { x // x ∈ solSpace E } := { val := u, property := hu } ⊢ u = v [PROOFSTEP] set v' : ↥E.solSpace := ⟨v, hv⟩ [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) u' : { x // x ∈ solSpace E } := { val := u, property := hu } v' : { x // x ∈ solSpace E } := { val := v, property := hv } ⊢ u = v [PROOFSTEP] change u'.val = v'.val [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) u' : { x // x ∈ solSpace E } := { val := u, property := hu } v' : { x // x ∈ solSpace E } := { val := v, property := hv } ⊢ ↑u' = ↑v' [PROOFSTEP] suffices h' : u' = v' [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) u' : { x // x ∈ solSpace E } := { val := u, property := hu } v' : { x // x ∈ solSpace E } := { val := v, property := hv } h' : u' = v' ⊢ ↑u' = ↑v' case h' α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) u' : { x // x ∈ solSpace E } := { val := u, property := hu } v' : { x // x ∈ solSpace E } := { val := v, property := hv } ⊢ u' = v' [PROOFSTEP] exact h' ▸ rfl [GOAL] case h' α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) u' : { x // x ∈ solSpace E } := { val := u, property := hu } v' : { x // x ∈ solSpace E } := { val := v, property := hv } ⊢ u' = v' [PROOFSTEP] rw [← E.toInit.toEquiv.apply_eq_iff_eq, LinearEquiv.coe_toEquiv] [GOAL] case h' α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) u' : { x // x ∈ solSpace E } := { val := u, property := hu } v' : { x // x ∈ solSpace E } := { val := v, property := hv } ⊢ ↑(toInit E) u' = ↑(toInit E) v' [PROOFSTEP] ext x [GOAL] case h'.h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α u v : ℕ → α hu : IsSolution E u hv : IsSolution E v h : Set.EqOn u v ↑(range E.order) u' : { x // x ∈ solSpace E } := { val := u, property := hu } v' : { x // x ∈ solSpace E } := { val := v, property := hv } x : Fin E.order ⊢ ↑(toInit E) u' x = ↑(toInit E) v' x [PROOFSTEP] exact_mod_cast h (mem_range.mpr x.2) [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x y : Fin E.order → α ⊢ (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) (x + y) = (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) x + (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) y [PROOFSTEP] ext i [GOAL] case h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x y : Fin E.order → α i : Fin E.order ⊢ (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) (x + y) i = ((fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) x + (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) y) i [PROOFSTEP] simp only [GOAL] case h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x y : Fin E.order → α i : Fin E.order ⊢ (if h : ↑i + 1 < E.order then (x + y) { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * (x + y) i) = ((fun i => if h : ↑i + 1 < E.order then x { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * x i) + fun i => if h : ↑i + 1 < E.order then y { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * y i) i [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x y : Fin E.order → α i : Fin E.order h : ↑i + 1 < E.order ⊢ (x + y) { val := ↑i + 1, isLt := h } = ((fun i => if h : ↑i + 1 < E.order then x { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * x i) + fun i => if h : ↑i + 1 < E.order then y { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * y i) i [PROOFSTEP] simp [h, mul_add, sum_add_distrib] [GOAL] case neg α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x y : Fin E.order → α i : Fin E.order h : ¬↑i + 1 < E.order ⊢ ∑ i : Fin E.order, coeffs E i * (x + y) i = ((fun i => if h : ↑i + 1 < E.order then x { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * x i) + fun i => if h : ↑i + 1 < E.order then y { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * y i) i [PROOFSTEP] simp [h, mul_add, sum_add_distrib] [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x : α y : Fin E.order → α ⊢ AddHom.toFun { toFun := fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i, map_add' := (_ : ∀ (x y : Fin E.order → α), (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) (x + y) = (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) x + (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) y) } (x • y) = ↑(RingHom.id α) x • AddHom.toFun { toFun := fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i, map_add' := (_ : ∀ (x y : Fin E.order → α), (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) (x + y) = (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) x + (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) y) } y [PROOFSTEP] ext i [GOAL] case h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x : α y : Fin E.order → α i : Fin E.order ⊢ AddHom.toFun { toFun := fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i, map_add' := (_ : ∀ (x y : Fin E.order → α), (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) (x + y) = (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) x + (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) y) } (x • y) i = (↑(RingHom.id α) x • AddHom.toFun { toFun := fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i, map_add' := (_ : ∀ (x y : Fin E.order → α), (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) (x + y) = (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) x + (fun X i => if h : ↑i + 1 < E.order then X { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * X i) y) } y) i [PROOFSTEP] simp only [GOAL] case h α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x : α y : Fin E.order → α i : Fin E.order ⊢ (if h : ↑i + 1 < E.order then (x • y) { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * (x • y) i) = (↑(RingHom.id α) x • fun i => if h : ↑i + 1 < E.order then y { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * y i) i [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x : α y : Fin E.order → α i : Fin E.order h : ↑i + 1 < E.order ⊢ (x • y) { val := ↑i + 1, isLt := h } = (↑(RingHom.id α) x • fun i => if h : ↑i + 1 < E.order then y { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * y i) i [PROOFSTEP] simp [h, mul_sum] [GOAL] case neg α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x : α y : Fin E.order → α i : Fin E.order h : ¬↑i + 1 < E.order ⊢ ∑ i : Fin E.order, coeffs E i * (x • y) i = (↑(RingHom.id α) x • fun i => if h : ↑i + 1 < E.order then y { val := ↑i + 1, isLt := h } else ∑ i : Fin E.order, coeffs E i * y i) i [PROOFSTEP] simp [h, mul_sum] [GOAL] case neg α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x : α y : Fin E.order → α i : Fin E.order h : ¬↑i + 1 < E.order ⊢ ∑ x_1 : Fin E.order, coeffs E x_1 * (x * y x_1) = ∑ x_1 : Fin E.order, x * (coeffs E x_1 * y x_1) [PROOFSTEP] exact sum_congr rfl fun x _ ↦ by ac_rfl [GOAL] α : Type u_1 inst✝ : CommSemiring α E : LinearRecurrence α x✝¹ : α y : Fin E.order → α i : Fin E.order h : ¬↑i + 1 < E.order x : Fin E.order x✝ : x ∈ univ ⊢ coeffs E x * (x✝¹ * y x) = x✝¹ * (coeffs E x * y x) [PROOFSTEP] ac_rfl [GOAL] α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α ⊢ (IsSolution E fun n => q ^ n) ↔ IsRoot (charPoly E) q [PROOFSTEP] rw [charPoly, Polynomial.IsRoot.def, Polynomial.eval] [GOAL] α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α ⊢ (IsSolution E fun n => q ^ n) ↔ eval₂ (RingHom.id α) q (↑(monomial E.order) 1 - ∑ i : Fin E.order, ↑(monomial ↑i) (coeffs E i)) = 0 [PROOFSTEP] simp only [Polynomial.eval₂_finset_sum, one_mul, RingHom.id_apply, Polynomial.eval₂_monomial, Polynomial.eval₂_sub] [GOAL] α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α ⊢ (IsSolution E fun n => q ^ n) ↔ q ^ E.order - ∑ x : Fin E.order, coeffs E x * q ^ ↑x = 0 [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α ⊢ (IsSolution E fun n => q ^ n) → q ^ E.order - ∑ x : Fin E.order, coeffs E x * q ^ ↑x = 0 [PROOFSTEP] intro h [GOAL] case mp α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α h : IsSolution E fun n => q ^ n ⊢ q ^ E.order - ∑ x : Fin E.order, coeffs E x * q ^ ↑x = 0 [PROOFSTEP] simpa [sub_eq_zero] using h 0 [GOAL] case mpr α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α ⊢ q ^ E.order - ∑ x : Fin E.order, coeffs E x * q ^ ↑x = 0 → IsSolution E fun n => q ^ n [PROOFSTEP] intro h n [GOAL] case mpr α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α h : q ^ E.order - ∑ x : Fin E.order, coeffs E x * q ^ ↑x = 0 n : ℕ ⊢ (fun n => q ^ n) (n + E.order) = ∑ i : Fin E.order, coeffs E i * (fun n => q ^ n) (n + ↑i) [PROOFSTEP] simp only [pow_add, sub_eq_zero.mp h, mul_sum] [GOAL] case mpr α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α h : q ^ E.order - ∑ x : Fin E.order, coeffs E x * q ^ ↑x = 0 n : ℕ ⊢ ∑ x : Fin E.order, q ^ n * (coeffs E x * q ^ ↑x) = ∑ x : Fin E.order, coeffs E x * (q ^ n * q ^ ↑x) [PROOFSTEP] exact sum_congr rfl fun _ _ ↦ by ring [GOAL] α : Type u_1 inst✝ : CommRing α E : LinearRecurrence α q : α h : q ^ E.order - ∑ x : Fin E.order, coeffs E x * q ^ ↑x = 0 n : ℕ x✝¹ : Fin E.order x✝ : x✝¹ ∈ univ ⊢ q ^ n * (coeffs E x✝¹ * q ^ ↑x✝¹) = coeffs E x✝¹ * (q ^ n * q ^ ↑x✝¹) [PROOFSTEP] ring
{"mathlib_filename": "Mathlib.Algebra.LinearRecurrence", "llama_tokens": 14164}
{"mathlib_filename": "Mathlib.Algebra.HierarchyDesign", "llama_tokens": 0}
[GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : Zero R inst✝⁴ : Zero M inst✝³ : SMulWithZero R M a✝ : R b : M inst✝² : Zero R' inst✝¹ : Zero M' inst✝ : SMul R M' f : ZeroHom M' M hf : Injective ↑f smul : ∀ (a : R) (b : M'), ↑f (a • b) = a • ↑f b a : R ⊢ ↑f (a • 0) = ↑f 0 [PROOFSTEP] simp [smul] [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : Zero R inst✝⁴ : Zero M inst✝³ : SMulWithZero R M a✝ : R b : M inst✝² : Zero R' inst✝¹ : Zero M' inst✝ : SMul R M' f : ZeroHom M' M hf : Injective ↑f smul : ∀ (a : R) (b : M'), ↑f (a • b) = a • ↑f b a : M' ⊢ ↑f (0 • a) = ↑f 0 [PROOFSTEP] simp [smul] [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : Zero R inst✝⁴ : Zero M inst✝³ : SMulWithZero R M a : R b : M inst✝² : Zero R' inst✝¹ : Zero M' inst✝ : SMul R M' f : ZeroHom M M' hf : Surjective ↑f smul : ∀ (a : R) (b : M), ↑f (a • b) = a • ↑f b c : R ⊢ c • 0 = 0 [PROOFSTEP] rw [← f.map_zero, ← smul, smul_zero] [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : Zero R inst✝⁴ : Zero M inst✝³ : SMulWithZero R M a : R b : M inst✝² : Zero R' inst✝¹ : Zero M' inst✝ : SMul R M' f : ZeroHom M M' hf : Surjective ↑f smul : ∀ (a : R) (b : M), ↑f (a • b) = a • ↑f b m : M' ⊢ 0 • m = 0 [PROOFSTEP] rcases hf m with ⟨x, rfl⟩ [GOAL] case intro R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : Zero R inst✝⁴ : Zero M inst✝³ : SMulWithZero R M a : R b : M inst✝² : Zero R' inst✝¹ : Zero M' inst✝ : SMul R M' f : ZeroHom M M' hf : Surjective ↑f smul : ∀ (a : R) (b : M), ↑f (a • b) = a • ↑f b x : M ⊢ 0 • ↑f x = 0 [PROOFSTEP] simp [← smul] [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : Zero R inst✝⁴ : Zero M inst✝³ : SMulWithZero R M a : R b : M inst✝² : Zero R' inst✝¹ : Zero M' inst✝ : SMul R M' f : ZeroHom R' R m : M ⊢ 0 • m = 0 [PROOFSTEP] show (f 0) • m = 0 [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : Zero R inst✝⁴ : Zero M inst✝³ : SMulWithZero R M a : R b : M inst✝² : Zero R' inst✝¹ : Zero M' inst✝ : SMul R M' f : ZeroHom R' R m : M ⊢ ↑f 0 • m = 0 [PROOFSTEP] rw [map_zero, zero_smul] [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁴ : MonoidWithZero R inst✝³ : MonoidWithZero R' inst✝² : Zero M inst✝¹ : MulActionWithZero R M inst✝ : Subsingleton R x y : M ⊢ x = y [PROOFSTEP] rw [← one_smul R x, ← one_smul R y, Subsingleton.elim (1 : R) 0, zero_smul, zero_smul] [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : MonoidWithZero R inst✝⁴ : MonoidWithZero R' inst✝³ : Zero M inst✝² : MulActionWithZero R M inst✝¹ : Zero M' inst✝ : SMul R M' f : R' →*₀ R src✝ : SMulWithZero R' M := SMulWithZero.compHom M ↑f m : M ⊢ 1 • m = m [PROOFSTEP] show (f 1) • m = m [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : MonoidWithZero R inst✝⁴ : MonoidWithZero R' inst✝³ : Zero M inst✝² : MulActionWithZero R M inst✝¹ : Zero M' inst✝ : SMul R M' f : R' →*₀ R src✝ : SMulWithZero R' M := SMulWithZero.compHom M ↑f m : M ⊢ ↑f 1 • m = m [PROOFSTEP] simp [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : MonoidWithZero R inst✝⁴ : MonoidWithZero R' inst✝³ : Zero M inst✝² : MulActionWithZero R M inst✝¹ : Zero M' inst✝ : SMul R M' f : R' →*₀ R src✝ : SMulWithZero R' M := SMulWithZero.compHom M ↑f r s : R' m : M ⊢ (r * s) • m = r • s • m [PROOFSTEP] show f (r * s) • m = (f r) • (f s) • m [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 inst✝⁵ : MonoidWithZero R inst✝⁴ : MonoidWithZero R' inst✝³ : Zero M inst✝² : MulActionWithZero R M inst✝¹ : Zero M' inst✝ : SMul R M' f : R' →*₀ R src✝ : SMulWithZero R' M := SMulWithZero.compHom M ↑f r s : R' m : M ⊢ ↑f (r * s) • m = ↑f r • ↑f s • m [PROOFSTEP] simp [mul_smul] [GOAL] R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β ⊢ (c • x)⁻¹ = c⁻¹ • x⁻¹ [PROOFSTEP] obtain rfl | hc := eq_or_ne c 0 [GOAL] case inl R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β x : β ⊢ (0 • x)⁻¹ = 0⁻¹ • x⁻¹ [PROOFSTEP] simp only [inv_zero, zero_smul] [GOAL] case inr R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β hc : c ≠ 0 ⊢ (c • x)⁻¹ = c⁻¹ • x⁻¹ [PROOFSTEP] obtain rfl | hx := eq_or_ne x 0 [GOAL] case inr.inl R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α hc : c ≠ 0 ⊢ (c • 0)⁻¹ = c⁻¹ • 0⁻¹ [PROOFSTEP] simp only [inv_zero, smul_zero] [GOAL] case inr.inr R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β hc : c ≠ 0 hx : x ≠ 0 ⊢ (c • x)⁻¹ = c⁻¹ • x⁻¹ [PROOFSTEP] refine' inv_eq_of_mul_eq_one_left _ [GOAL] case inr.inr R : Type u_1 R' : Type u_2 M : Type u_3 M' : Type u_4 α : Type u_5 β : Type u_6 inst✝⁴ : GroupWithZero α inst✝³ : GroupWithZero β inst✝² : MulActionWithZero α β inst✝¹ : SMulCommClass α β β inst✝ : IsScalarTower α β β c : α x : β hc : c ≠ 0 hx : x ≠ 0 ⊢ c⁻¹ • x⁻¹ * c • x = 1 [PROOFSTEP] rw [smul_mul_smul, inv_mul_cancel hc, inv_mul_cancel hx, one_smul]
{"mathlib_filename": "Mathlib.Algebra.SMulWithZero", "llama_tokens": 3190}
[GOAL] ⊢ ∀ (a b c : PUnit), a * b * c = a * (b * c) [PROOFSTEP] intros [GOAL] a✝ b✝ c✝ : PUnit ⊢ a✝ * b✝ * c✝ = a✝ * (b✝ * c✝) [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a : PUnit), 1 * a = a [PROOFSTEP] intros [GOAL] a✝ : PUnit ⊢ 1 * a✝ = a✝ [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a : PUnit), a * 1 = a [PROOFSTEP] intros [GOAL] a✝ : PUnit ⊢ a✝ * 1 = a✝ [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a : PUnit), a⁻¹ * a = 1 [PROOFSTEP] intros [GOAL] a✝ : PUnit ⊢ a✝⁻¹ * a✝ = 1 [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a b : PUnit), a * b = b * a [PROOFSTEP] intros [GOAL] a✝ b✝ : PUnit ⊢ a✝ * b✝ = b✝ * a✝ [PROOFSTEP] rfl -- shortcut instances [GOAL] src✝¹ : CommGroup PUnit := commGroup src✝ : AddCommGroup PUnit := addCommGroup ⊢ ∀ (a b c : PUnit), a * (b + c) = a * b + a * c [PROOFSTEP] intros [GOAL] src✝¹ : CommGroup PUnit := commGroup src✝ : AddCommGroup PUnit := addCommGroup a✝ b✝ c✝ : PUnit ⊢ a✝ * (b✝ + c✝) = a✝ * b✝ + a✝ * c✝ [PROOFSTEP] rfl [GOAL] src✝¹ : CommGroup PUnit := commGroup src✝ : AddCommGroup PUnit := addCommGroup ⊢ ∀ (a b c : PUnit), (a + b) * c = a * c + b * c [PROOFSTEP] intros [GOAL] src✝¹ : CommGroup PUnit := commGroup src✝ : AddCommGroup PUnit := addCommGroup a✝ b✝ c✝ : PUnit ⊢ (a✝ + b✝) * c✝ = a✝ * c✝ + b✝ * c✝ [PROOFSTEP] rfl [GOAL] src✝¹ : CommGroup PUnit := commGroup src✝ : AddCommGroup PUnit := addCommGroup ⊢ ∀ (a : PUnit), 0 * a = 0 [PROOFSTEP] intros [GOAL] src✝¹ : CommGroup PUnit := commGroup src✝ : AddCommGroup PUnit := addCommGroup a✝ : PUnit ⊢ 0 * a✝ = 0 [PROOFSTEP] rfl [GOAL] src✝¹ : CommGroup PUnit := commGroup src✝ : AddCommGroup PUnit := addCommGroup ⊢ ∀ (a : PUnit), a * 0 = 0 [PROOFSTEP] intros [GOAL] src✝¹ : CommGroup PUnit := commGroup src✝ : AddCommGroup PUnit := addCommGroup a✝ : PUnit ⊢ a✝ * 0 = 0 [PROOFSTEP] rfl [GOAL] ⊢ CancelCommMonoidWithZero PUnit [PROOFSTEP] refine' { PUnit.commRing with .. } [GOAL] src✝ : CommRing PUnit := commRing ⊢ ∀ {a b c : PUnit}, a ≠ 0 → a * b = a * c → b = c [PROOFSTEP] intros [GOAL] src✝ : CommRing PUnit := commRing a✝² b✝ c✝ : PUnit a✝¹ : a✝² ≠ 0 a✝ : a✝² * b✝ = a✝² * c✝ ⊢ b✝ = c✝ [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] ⊢ ∀ {a b : PUnit}, a ≠ 0 → b ≠ 0 → (fun x => 1) (a * b) = (fun x => 1) a * (fun x => 1) b [PROOFSTEP] intros [GOAL] a✝² b✝ : PUnit a✝¹ : a✝² ≠ 0 a✝ : b✝ ≠ 0 ⊢ (fun x => 1) (a✝² * b✝) = (fun x => 1) a✝² * (fun x => 1) b✝ [PROOFSTEP] rfl [GOAL] ⊢ ∀ (u : PUnitˣ), (fun x => 1) ↑u = u⁻¹ [PROOFSTEP] intros [GOAL] u✝ : PUnitˣ ⊢ (fun x => 1) ↑u✝ = u✝⁻¹ [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a : PUnit), (fun x x => unit) 0 a = 0 [PROOFSTEP] intros [GOAL] a✝ : PUnit ⊢ (fun x x => unit) 0 a✝ = 0 [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a : PUnit), (fun x x => unit) a 0 = 0 [PROOFSTEP] intros [GOAL] a✝ : PUnit ⊢ (fun x x => unit) a✝ 0 = 0 [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a b : PUnit), ↑normalize (gcd a b) = gcd a b [PROOFSTEP] intros [GOAL] a✝ b✝ : PUnit ⊢ ↑normalize (gcd a✝ b✝) = gcd a✝ b✝ [PROOFSTEP] rfl [GOAL] ⊢ ∀ (a b : PUnit), ↑normalize (lcm a b) = lcm a b [PROOFSTEP] intros [GOAL] a✝ b✝ : PUnit ⊢ ↑normalize (lcm a✝ b✝) = lcm a✝ b✝ [PROOFSTEP] rfl --porting notes: simpNF lint: simp can prove this @[simp] [GOAL] ⊢ CanonicallyOrderedAddMonoid PUnit [PROOFSTEP] refine' { PUnit.commRing, PUnit.completeBooleanAlgebra with exists_add_of_le := fun {_ _} _ => ⟨unit, Subsingleton.elim _ _⟩ .. } [GOAL] case refine'_1 src✝¹ : CommRing PUnit := commRing src✝ : CompleteBooleanAlgebra PUnit := completeBooleanAlgebra ⊢ ∀ (a b : PUnit), a ≤ b → ∀ (c : PUnit), c + a ≤ c + b [PROOFSTEP] intros [GOAL] case refine'_2 src✝¹ : CommRing PUnit := commRing src✝ : CompleteBooleanAlgebra PUnit := completeBooleanAlgebra ⊢ ∀ (a b : PUnit), a ≤ a + b [PROOFSTEP] intros [GOAL] case refine'_1 src✝¹ : CommRing PUnit := commRing src✝ : CompleteBooleanAlgebra PUnit := completeBooleanAlgebra a✝¹ b✝ : PUnit a✝ : a✝¹ ≤ b✝ c✝ : PUnit ⊢ c✝ + a✝¹ ≤ c✝ + b✝ [PROOFSTEP] trivial [GOAL] case refine'_2 src✝¹ : CommRing PUnit := commRing src✝ : CompleteBooleanAlgebra PUnit := completeBooleanAlgebra a✝ b✝ : PUnit ⊢ a✝ ≤ a✝ + b✝ [PROOFSTEP] trivial [GOAL] src✝¹ : CanonicallyOrderedAddMonoid PUnit := canonicallyOrderedAddMonoid src✝ : LinearOrder PUnit := linearOrder ⊢ ∀ (a b : PUnit), a ≤ b → ∀ (c : PUnit), c + a ≤ c + b [PROOFSTEP] intros [GOAL] src✝¹ : CanonicallyOrderedAddMonoid PUnit := canonicallyOrderedAddMonoid src✝ : LinearOrder PUnit := linearOrder a✝¹ b✝ : PUnit a✝ : a✝¹ ≤ b✝ c✝ : PUnit ⊢ c✝ + a✝¹ ≤ c✝ + b✝ [PROOFSTEP] rfl [GOAL] R : Type ?u.10038 inst✝ : Zero R ⊢ SMulWithZero R PUnit [PROOFSTEP] refine' { PUnit.smul with .. } [GOAL] case refine'_1 R : Type ?u.10038 inst✝ : Zero R src✝ : SMul R PUnit := smul ⊢ ∀ (a : R), a • 0 = 0 [PROOFSTEP] intros [GOAL] case refine'_2 R : Type ?u.10038 inst✝ : Zero R src✝ : SMul R PUnit := smul ⊢ ∀ (m : PUnit), 0 • m = 0 [PROOFSTEP] intros [GOAL] case refine'_1 R : Type ?u.10038 inst✝ : Zero R src✝ : SMul R PUnit := smul a✝ : R ⊢ a✝ • 0 = 0 [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case refine'_2 R : Type ?u.10038 inst✝ : Zero R src✝ : SMul R PUnit := smul m✝ : PUnit ⊢ 0 • m✝ = 0 [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] R : Type ?u.10319 inst✝ : Monoid R ⊢ MulAction R PUnit [PROOFSTEP] refine' { PUnit.smul with .. } [GOAL] case refine'_1 R : Type ?u.10319 inst✝ : Monoid R src✝ : SMul R PUnit := smul ⊢ ∀ (b : PUnit), 1 • b = b [PROOFSTEP] intros [GOAL] case refine'_2 R : Type ?u.10319 inst✝ : Monoid R src✝ : SMul R PUnit := smul ⊢ ∀ (x y : R) (b : PUnit), (x * y) • b = x • y • b [PROOFSTEP] intros [GOAL] case refine'_1 R : Type ?u.10319 inst✝ : Monoid R src✝ : SMul R PUnit := smul b✝ : PUnit ⊢ 1 • b✝ = b✝ [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case refine'_2 R : Type ?u.10319 inst✝ : Monoid R src✝ : SMul R PUnit := smul x✝ y✝ : R b✝ : PUnit ⊢ (x✝ * y✝) • b✝ = x✝ • y✝ • b✝ [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] R : Type ?u.10545 inst✝ : Monoid R ⊢ DistribMulAction R PUnit [PROOFSTEP] refine' { PUnit.mulAction with .. } [GOAL] case refine'_1 R : Type ?u.10545 inst✝ : Monoid R src✝ : MulAction R PUnit := mulAction ⊢ ∀ (a : R), a • 0 = 0 [PROOFSTEP] intros [GOAL] case refine'_2 R : Type ?u.10545 inst✝ : Monoid R src✝ : MulAction R PUnit := mulAction ⊢ ∀ (a : R) (x y : PUnit), a • (x + y) = a • x + a • y [PROOFSTEP] intros [GOAL] case refine'_1 R : Type ?u.10545 inst✝ : Monoid R src✝ : MulAction R PUnit := mulAction a✝ : R ⊢ a✝ • 0 = 0 [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case refine'_2 R : Type ?u.10545 inst✝ : Monoid R src✝ : MulAction R PUnit := mulAction a✝ : R x✝ y✝ : PUnit ⊢ a✝ • (x✝ + y✝) = a✝ • x✝ + a✝ • y✝ [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] R : Type ?u.11055 inst✝ : Monoid R ⊢ MulDistribMulAction R PUnit [PROOFSTEP] refine' { PUnit.mulAction with .. } [GOAL] case refine'_1 R : Type ?u.11055 inst✝ : Monoid R src✝ : MulAction R PUnit := mulAction ⊢ ∀ (r : R) (x y : PUnit), r • (x * y) = r • x * r • y [PROOFSTEP] intros [GOAL] case refine'_2 R : Type ?u.11055 inst✝ : Monoid R src✝ : MulAction R PUnit := mulAction ⊢ ∀ (r : R), r • 1 = 1 [PROOFSTEP] intros [GOAL] case refine'_1 R : Type ?u.11055 inst✝ : Monoid R src✝ : MulAction R PUnit := mulAction r✝ : R x✝ y✝ : PUnit ⊢ r✝ • (x✝ * y✝) = r✝ • x✝ * r✝ • y✝ [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case refine'_2 R : Type ?u.11055 inst✝ : Monoid R src✝ : MulAction R PUnit := mulAction r✝ : R ⊢ r✝ • 1 = 1 [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] R : Type ?u.13538 inst✝ : Semiring R ⊢ Module R PUnit [PROOFSTEP] refine' { PUnit.distribMulAction with .. } [GOAL] case refine'_1 R : Type ?u.13538 inst✝ : Semiring R src✝ : DistribMulAction R PUnit := distribMulAction ⊢ ∀ (r s : R) (x : PUnit), (r + s) • x = r • x + s • x [PROOFSTEP] intros [GOAL] case refine'_2 R : Type ?u.13538 inst✝ : Semiring R src✝ : DistribMulAction R PUnit := distribMulAction ⊢ ∀ (x : PUnit), 0 • x = 0 [PROOFSTEP] intros [GOAL] case refine'_1 R : Type ?u.13538 inst✝ : Semiring R src✝ : DistribMulAction R PUnit := distribMulAction r✝ s✝ : R x✝ : PUnit ⊢ (r✝ + s✝) • x✝ = r✝ • x✝ + s✝ • x✝ [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case refine'_2 R : Type ?u.13538 inst✝ : Semiring R src✝ : DistribMulAction R PUnit := distribMulAction x✝ : PUnit ⊢ 0 • x✝ = 0 [PROOFSTEP] exact Subsingleton.elim _ _
{"mathlib_filename": "Mathlib.Algebra.PUnitInstances", "llama_tokens": 4514}
{"mathlib_filename": "Mathlib.Algebra.Expr", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Lean.Meta.Basic", "llama_tokens": 0}
[GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝² : One M inst✝¹ : One N s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α inst✝ : Decidable (a ∈ s) ⊢ mulIndicator s f a = if a ∈ s then f a else 1 [PROOFSTEP] unfold mulIndicator [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝² : One M inst✝¹ : One N s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α inst✝ : Decidable (a ∈ s) ⊢ (if a ∈ s then f a else 1) = if a ∈ s then f a else 1 [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α ⊢ mulIndicator s f a = 1 ∨ mulIndicator s f a = f a [PROOFSTEP] by_cases h : a ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α h : a ∈ s ⊢ mulIndicator s f a = 1 ∨ mulIndicator s f a = f a [PROOFSTEP] exact Or.inr (mulIndicator_of_mem h f) [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α h : ¬a ∈ s ⊢ mulIndicator s f a = 1 ∨ mulIndicator s f a = f a [PROOFSTEP] exact Or.inl (mulIndicator_of_not_mem h f) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α this : Decidable (a ∈ s) := Classical.dec (a ∈ s) ⊢ ¬a ∈ s → 1 = f a ↔ ¬a ∈ s → f a = 1 [PROOFSTEP] rw [@eq_comm _ (f a)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α ⊢ mulIndicator s f = f ↔ mulSupport f ⊆ s [PROOFSTEP] simp only [funext_iff, subset_def, mem_mulSupport, mulIndicator_apply_eq_self, not_imp_comm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α h1 : mulIndicator s f = f h2 : s ⊆ t ⊢ mulIndicator t f = f [PROOFSTEP] rw [mulIndicator_eq_self] at h1 ⊢ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α h1 : mulSupport f ⊆ s h2 : s ⊆ t ⊢ mulSupport f ⊆ t [PROOFSTEP] exact Subset.trans h1 h2 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α ⊢ (mulIndicator s f = fun x => 1) ↔ Disjoint (mulSupport f) s [PROOFSTEP] simp only [funext_iff, mulIndicator_apply_eq_one, Set.disjoint_left, mem_mulSupport, not_imp_not] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a✝ a : α ⊢ mulIndicator s f a ≠ 1 ↔ a ∈ s ∩ mulSupport f [PROOFSTEP] simp only [Ne.def, mulIndicator_apply_eq_one, not_imp, mem_inter_iff, mem_mulSupport] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a x : α ⊢ x ∈ mulSupport (mulIndicator s f) ↔ x ∈ s ∩ mulSupport f [PROOFSTEP] simp [Function.mem_mulSupport, mulIndicator_apply_eq_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α h : EqOn f g s x : α ⊢ mulIndicator s f x = mulIndicator s g x [PROOFSTEP] simp only [mulIndicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α h : EqOn f g s x : α ⊢ (if x ∈ s then f x else 1) = if x ∈ s then g x else 1 [PROOFSTEP] split_ifs with h_1 [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α h : EqOn f g s x : α h_1 : x ∈ s ⊢ f x = g x [PROOFSTEP] exact h h_1 [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α h : EqOn f g s x : α h_1 : ¬x ∈ s ⊢ 1 = 1 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a : α s : Set α ⊢ Disjoint (mulSupport fun x => 1) s [PROOFSTEP] simp only [mulSupport_one, empty_disjoint] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s t : Set α f : α → M x : α ⊢ mulIndicator s (mulIndicator t f) x = mulIndicator (s ∩ t) f x [PROOFSTEP] simp only [mulIndicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s t : Set α f : α → M x : α ⊢ (if x ∈ s then if x ∈ t then f x else 1 else 1) = if x ∈ s ∩ t then f x else 1 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s t : Set α f : α → M x : α h✝² : x ∈ s h✝¹ : x ∈ t h✝ : x ∈ s ∩ t ⊢ f x = f x [PROOFSTEP] simp_all (config := { contextual := true }) [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s t : Set α f : α → M x : α h✝² : x ∈ s h✝¹ : x ∈ t h✝ : ¬x ∈ s ∩ t ⊢ f x = 1 [PROOFSTEP] simp_all (config := { contextual := true }) [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s t : Set α f : α → M x : α h✝² : x ∈ s h✝¹ : ¬x ∈ t h✝ : x ∈ s ∩ t ⊢ 1 = f x [PROOFSTEP] simp_all (config := { contextual := true }) [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s t : Set α f : α → M x : α h✝² : x ∈ s h✝¹ : ¬x ∈ t h✝ : ¬x ∈ s ∩ t ⊢ 1 = 1 [PROOFSTEP] simp_all (config := { contextual := true }) [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s t : Set α f : α → M x : α h✝¹ : ¬x ∈ s h✝ : x ∈ s ∩ t ⊢ 1 = f x [PROOFSTEP] simp_all (config := { contextual := true }) [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s t : Set α f : α → M x : α h✝¹ : ¬x ∈ s h✝ : ¬x ∈ s ∩ t ⊢ 1 = 1 [PROOFSTEP] simp_all (config := { contextual := true }) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α s : Set α f : α → M ⊢ mulIndicator (s ∩ mulSupport f) f = mulIndicator s f [PROOFSTEP] rw [← mulIndicator_mulIndicator, mulIndicator_mulSupport] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝² : One M inst✝¹ : One N s✝ t : Set α f✝ g : α → M a : α h : M → β f : α → M s : Set α x : α inst✝ : DecidablePred fun x => x ∈ s ⊢ h (mulIndicator s f x) = piecewise s (h ∘ f) (const α (h 1)) x [PROOFSTEP] letI := Classical.decPred (· ∈ s) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝² : One M inst✝¹ : One N s✝ t : Set α f✝ g : α → M a : α h : M → β f : α → M s : Set α x : α inst✝ : DecidablePred fun x => x ∈ s this : DecidablePred fun x => x ∈ s := Classical.decPred fun x => x ∈ s ⊢ h (mulIndicator s f x) = piecewise s (h ∘ f) (const α (h 1)) x [PROOFSTEP] convert s.apply_piecewise f (const α 1) (fun _ => h) (x := x) using 2 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β ⊢ mulIndicator (f ⁻¹' s) (g ∘ f) x = mulIndicator s g (f x) [PROOFSTEP] simp only [mulIndicator, Function.comp] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β ⊢ (if x ∈ f ⁻¹' s then g (f x) else 1) = if f x ∈ s then g (f x) else 1 [PROOFSTEP] split_ifs with h h' h'' [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : x ∈ f ⁻¹' s h' : f x ∈ s ⊢ g (f x) = g (f x) [PROOFSTEP] first | rfl | contradiction [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : x ∈ f ⁻¹' s h' : f x ∈ s ⊢ g (f x) = g (f x) [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : x ∈ f ⁻¹' s h' : ¬f x ∈ s ⊢ g (f x) = 1 [PROOFSTEP] first | rfl | contradiction [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : x ∈ f ⁻¹' s h' : ¬f x ∈ s ⊢ g (f x) = 1 [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : x ∈ f ⁻¹' s h' : ¬f x ∈ s ⊢ g (f x) = 1 [PROOFSTEP] contradiction [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : ¬x ∈ f ⁻¹' s h'' : f x ∈ s ⊢ 1 = g (f x) [PROOFSTEP] first | rfl | contradiction [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : ¬x ∈ f ⁻¹' s h'' : f x ∈ s ⊢ 1 = g (f x) [PROOFSTEP] rfl [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : ¬x ∈ f ⁻¹' s h'' : f x ∈ s ⊢ 1 = g (f x) [PROOFSTEP] contradiction [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : ¬x ∈ f ⁻¹' s h'' : ¬f x ∈ s ⊢ 1 = 1 [PROOFSTEP] first | rfl | contradiction [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → α g : α → M x : β h : ¬x ∈ f ⁻¹' s h'' : ¬f x ∈ s ⊢ 1 = 1 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f : β → M g : α → β hg : Injective g x : α ⊢ mulIndicator (g '' s) f (g x) = mulIndicator s (f ∘ g) x [PROOFSTEP] rw [← mulIndicator_comp_right, preimage_image_eq _ hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g✝ : α → M a : α g : M → N hg : g 1 = 1 ⊢ mulIndicator s (g ∘ f) = g ∘ mulIndicator s f [PROOFSTEP] funext [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g✝ : α → M a : α g : M → N hg : g 1 = 1 x✝ : α ⊢ mulIndicator s (g ∘ f) x✝ = (g ∘ mulIndicator s f) x✝ [PROOFSTEP] simp only [mulIndicator] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g✝ : α → M a : α g : M → N hg : g 1 = 1 x✝ : α ⊢ (if x✝ ∈ s then (g ∘ f) x✝ else 1) = (g ∘ mulIndicator s f) x✝ [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g✝ : α → M a : α g : M → N hg : g 1 = 1 x✝ : α h✝ : x✝ ∈ s ⊢ (g ∘ f) x✝ = (g ∘ mulIndicator s f) x✝ [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g✝ : α → M a : α g : M → N hg : g 1 = 1 x✝ : α h✝ : ¬x✝ ∈ s ⊢ 1 = (g ∘ mulIndicator s f) x✝ [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a : α s : Set M ⊢ mulIndicator t 1 ⁻¹' s ∈ {univ, ∅} [PROOFSTEP] classical rw [mulIndicator_one', preimage_one] split_ifs <;> simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a : α s : Set M ⊢ mulIndicator t 1 ⁻¹' s ∈ {univ, ∅} [PROOFSTEP] rw [mulIndicator_one', preimage_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a : α s : Set M ⊢ (if 1 ∈ s then univ else ∅) ∈ {univ, ∅} [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a : α s : Set M h✝ : 1 ∈ s ⊢ univ ∈ {univ, ∅} [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a : α s : Set M h✝ : ¬1 ∈ s ⊢ ∅ ∈ {univ, ∅} [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : One M inst✝² : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M inst✝¹ : Decidable (a ∈ s) inst✝ : Decidable (1 ∈ s) ⊢ (mulIndicator U fun x => a) ⁻¹' s = (if a ∈ s then U else ∅) ∪ if 1 ∈ s then Uᶜ else ∅ [PROOFSTEP] rw [mulIndicator_preimage, preimage_one, preimage_const] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : One M inst✝² : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M inst✝¹ : Decidable (a ∈ s) inst✝ : Decidable (1 ∈ s) ⊢ Set.ite U (if a ∈ s then univ else ∅) (if 1 ∈ s then univ else ∅) = (if a ∈ s then U else ∅) ∪ if 1 ∈ s then Uᶜ else ∅ [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : One M inst✝² : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M inst✝¹ : Decidable (a ∈ s) inst✝ : Decidable (1 ∈ s) h✝¹ : a ∈ s h✝ : 1 ∈ s ⊢ Set.ite U univ univ = U ∪ Uᶜ [PROOFSTEP] simp [← compl_eq_univ_diff] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : One M inst✝² : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M inst✝¹ : Decidable (a ∈ s) inst✝ : Decidable (1 ∈ s) h✝¹ : a ∈ s h✝ : ¬1 ∈ s ⊢ Set.ite U univ ∅ = U ∪ ∅ [PROOFSTEP] simp [← compl_eq_univ_diff] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : One M inst✝² : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M inst✝¹ : Decidable (a ∈ s) inst✝ : Decidable (1 ∈ s) h✝¹ : ¬a ∈ s h✝ : 1 ∈ s ⊢ Set.ite U ∅ univ = ∅ ∪ Uᶜ [PROOFSTEP] simp [← compl_eq_univ_diff] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝³ : One M inst✝² : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M inst✝¹ : Decidable (a ∈ s) inst✝ : Decidable (1 ∈ s) h✝¹ : ¬a ∈ s h✝ : ¬1 ∈ s ⊢ Set.ite U ∅ ∅ = ∅ ∪ ∅ [PROOFSTEP] simp [← compl_eq_univ_diff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M ⊢ (mulIndicator U fun x => a) ⁻¹' s ∈ {univ, U, Uᶜ, ∅} [PROOFSTEP] classical rw [mulIndicator_const_preimage_eq_union] split_ifs <;> simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M ⊢ (mulIndicator U fun x => a) ⁻¹' s ∈ {univ, U, Uᶜ, ∅} [PROOFSTEP] rw [mulIndicator_const_preimage_eq_union] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M ⊢ ((if a ∈ s then U else ∅) ∪ if 1 ∈ s then Uᶜ else ∅) ∈ {univ, U, Uᶜ, ∅} [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M h✝¹ : a ∈ s h✝ : 1 ∈ s ⊢ U ∪ Uᶜ ∈ {univ, U, Uᶜ, ∅} [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M h✝¹ : a ∈ s h✝ : ¬1 ∈ s ⊢ U ∪ ∅ ∈ {univ, U, Uᶜ, ∅} [PROOFSTEP] simp [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M h✝¹ : ¬a ∈ s h✝ : 1 ∈ s ⊢ ∅ ∪ Uᶜ ∈ {univ, U, Uᶜ, ∅} [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f g : α → M a✝ : α U : Set α s : Set M a : M h✝¹ : ¬a ∈ s h✝ : ¬1 ∈ s ⊢ ∅ ∪ ∅ ∈ {univ, U, Uᶜ, ∅} [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t✝ : Set α f✝ g : α → M a : α s : Set α f : α → M t : Set M ht : ¬1 ∈ t ⊢ mulIndicator s f ⁻¹' t = f ⁻¹' t ∩ s [PROOFSTEP] simp [mulIndicator_preimage, Pi.one_def, Set.preimage_const_of_not_mem ht] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M ⊢ r ∈ range (mulIndicator s f) ↔ r = 1 ∧ s ≠ univ ∨ r ∈ f '' s [PROOFSTEP] simp only [mem_range, mulIndicator, ne_eq, mem_image] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M ⊢ (∃ y, (if y ∈ s then f y else 1) = r) ↔ r = 1 ∧ ¬s = univ ∨ ∃ x, x ∈ s ∧ f x = r [PROOFSTEP] rw [eq_univ_iff_forall, not_forall] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M ⊢ (∃ y, (if y ∈ s then f y else 1) = r) ↔ (r = 1 ∧ ∃ x, ¬x ∈ s) ∨ ∃ x, x ∈ s ∧ f x = r [PROOFSTEP] refine ⟨?_, ?_⟩ [GOAL] case refine_1 α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M ⊢ (∃ y, (if y ∈ s then f y else 1) = r) → (r = 1 ∧ ∃ x, ¬x ∈ s) ∨ ∃ x, x ∈ s ∧ f x = r [PROOFSTEP] rintro ⟨y, hy⟩ [GOAL] case refine_1.intro α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M y : α hy : (if y ∈ s then f y else 1) = r ⊢ (r = 1 ∧ ∃ x, ¬x ∈ s) ∨ ∃ x, x ∈ s ∧ f x = r [PROOFSTEP] split_ifs at hy with hys [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M y : α hys : y ∈ s hy : f y = r ⊢ (r = 1 ∧ ∃ x, ¬x ∈ s) ∨ ∃ x, x ∈ s ∧ f x = r [PROOFSTEP] tauto [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M y : α hys : ¬y ∈ s hy : 1 = r ⊢ (r = 1 ∧ ∃ x, ¬x ∈ s) ∨ ∃ x, x ∈ s ∧ f x = r [PROOFSTEP] left [GOAL] case neg.h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M y : α hys : ¬y ∈ s hy : 1 = r ⊢ r = 1 ∧ ∃ x, ¬x ∈ s [PROOFSTEP] tauto [GOAL] case refine_2 α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M ⊢ ((r = 1 ∧ ∃ x, ¬x ∈ s) ∨ ∃ x, x ∈ s ∧ f x = r) → ∃ y, (if y ∈ s then f y else 1) = r [PROOFSTEP] rintro (⟨hr, ⟨x, hx⟩⟩ | ⟨x, ⟨hx, hxs⟩⟩) [GOAL] case refine_2.inl.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M hr : r = 1 x : α hx : ¬x ∈ s ⊢ ∃ y, (if y ∈ s then f y else 1) = r [PROOFSTEP] use x [GOAL] case refine_2.inr.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M x : α hx : x ∈ s hxs : f x = r ⊢ ∃ y, (if y ∈ s then f y else 1) = r [PROOFSTEP] use x [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M hr : r = 1 x : α hx : ¬x ∈ s ⊢ (if x ∈ s then f x else 1) = r [PROOFSTEP] split_ifs [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M x : α hx : x ∈ s hxs : f x = r ⊢ (if x ∈ s then f x else 1) = r [PROOFSTEP] split_ifs [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M hr : r = 1 x : α hx : ¬x ∈ s ⊢ 1 = r [PROOFSTEP] tauto [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s✝ t : Set α f✝ g : α → M a : α r : M s : Set α f : α → M x : α hx : x ∈ s hxs : f x = r ⊢ f x = r [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α r : M → M → Prop h1 : r 1 1 ha : a ∈ s → r (f a) (g a) ⊢ r (mulIndicator s f a) (mulIndicator s g a) [PROOFSTEP] simp only [mulIndicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α r : M → M → Prop h1 : r 1 1 ha : a ∈ s → r (f a) (g a) ⊢ r (if a ∈ s then f a else 1) (if a ∈ s then g a else 1) [PROOFSTEP] split_ifs with has [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α r : M → M → Prop h1 : r 1 1 ha : a ∈ s → r (f a) (g a) has : a ∈ s ⊢ r (f a) (g a) case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M inst✝ : One N s t : Set α f g : α → M a : α r : M → M → Prop h1 : r 1 1 ha : a ∈ s → r (f a) (g a) has : ¬a ∈ s ⊢ r 1 1 [PROOFSTEP] exacts [ha has, h1] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t✝ : Set α f✝ g : α → M a✝ : α f : α → M s t : Set α a : α ⊢ mulIndicator (s ∪ t) f a * mulIndicator (s ∩ t) f a = mulIndicator s f a * mulIndicator t f a [PROOFSTEP] by_cases hs : a ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t✝ : Set α f✝ g : α → M a✝ : α f : α → M s t : Set α a : α hs : a ∈ s ⊢ mulIndicator (s ∪ t) f a * mulIndicator (s ∩ t) f a = mulIndicator s f a * mulIndicator t f a [PROOFSTEP] by_cases ht : a ∈ t [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t✝ : Set α f✝ g : α → M a✝ : α f : α → M s t : Set α a : α hs : ¬a ∈ s ⊢ mulIndicator (s ∪ t) f a * mulIndicator (s ∩ t) f a = mulIndicator s f a * mulIndicator t f a [PROOFSTEP] by_cases ht : a ∈ t [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t✝ : Set α f✝ g : α → M a✝ : α f : α → M s t : Set α a : α hs : a ∈ s ht : a ∈ t ⊢ mulIndicator (s ∪ t) f a * mulIndicator (s ∩ t) f a = mulIndicator s f a * mulIndicator t f a [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t✝ : Set α f✝ g : α → M a✝ : α f : α → M s t : Set α a : α hs : a ∈ s ht : ¬a ∈ t ⊢ mulIndicator (s ∪ t) f a * mulIndicator (s ∩ t) f a = mulIndicator s f a * mulIndicator t f a [PROOFSTEP] simp [*] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t✝ : Set α f✝ g : α → M a✝ : α f : α → M s t : Set α a : α hs : ¬a ∈ s ht : a ∈ t ⊢ mulIndicator (s ∪ t) f a * mulIndicator (s ∩ t) f a = mulIndicator s f a * mulIndicator t f a [PROOFSTEP] simp [*] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t✝ : Set α f✝ g : α → M a✝ : α f : α → M s t : Set α a : α hs : ¬a ∈ s ht : ¬a ∈ t ⊢ mulIndicator (s ∪ t) f a * mulIndicator (s ∩ t) f a = mulIndicator s f a * mulIndicator t f a [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s t : Set α f✝ g : α → M a : α h : ¬a ∈ s ∩ t f : α → M ⊢ mulIndicator (s ∪ t) f a = mulIndicator s f a * mulIndicator t f a [PROOFSTEP] rw [← mulIndicator_union_mul_inter_apply f s t, mulIndicator_of_not_mem h, mul_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M ⊢ (mulIndicator s fun a => f a * g a) = fun a => mulIndicator s f a * mulIndicator s g a [PROOFSTEP] funext [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M x✝ : α ⊢ mulIndicator s (fun a => f a * g a) x✝ = mulIndicator s f x✝ * mulIndicator s g x✝ [PROOFSTEP] simp only [mulIndicator] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M x✝ : α ⊢ (if x✝ ∈ s then f x✝ * g x✝ else 1) = (if x✝ ∈ s then f x✝ else 1) * if x✝ ∈ s then g x✝ else 1 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M x✝ : α h✝ : x✝ ∈ s ⊢ f x✝ * g x✝ = f x✝ * g x✝ [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M x✝ : α h✝ : ¬x✝ ∈ s ⊢ 1 = 1 * 1 [PROOFSTEP] rw [mul_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α ha : a ∈ s ⊢ mulIndicator sᶜ f a * mulIndicator s f a = f a [PROOFSTEP] simp [ha] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α ha : ¬a ∈ s ⊢ mulIndicator sᶜ f a * mulIndicator s f a = f a [PROOFSTEP] simp [ha] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α ha : a ∈ s ⊢ mulIndicator s f a * mulIndicator sᶜ f a = f a [PROOFSTEP] simp [ha] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s✝ t : Set α f✝ g : α → M a✝ : α s : Set α f : α → M a : α ha : ¬a ∈ s ⊢ mulIndicator s f a * mulIndicator sᶜ f a = f a [PROOFSTEP] simp [ha] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α f g : α → M h : Disjoint (mulSupport f) (mulSupport g) ⊢ mulIndicator (mulSupport f) (f * g) = f [PROOFSTEP] refine' (mulIndicator_congr fun x hx => _).trans mulIndicator_mulSupport [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α f g : α → M h : Disjoint (mulSupport f) (mulSupport g) x : α hx : x ∈ mulSupport f ⊢ (f * g) x = f x [PROOFSTEP] have : g x = 1 := nmem_mulSupport.1 (disjoint_left.1 h hx) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α f g : α → M h : Disjoint (mulSupport f) (mulSupport g) x : α hx : x ∈ mulSupport f this : g x = 1 ⊢ (f * g) x = f x [PROOFSTEP] rw [Pi.mul_apply, this, mul_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α f g : α → M h : Disjoint (mulSupport f) (mulSupport g) ⊢ mulIndicator (mulSupport g) (f * g) = g [PROOFSTEP] refine' (mulIndicator_congr fun x hx => _).trans mulIndicator_mulSupport [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α f g : α → M h : Disjoint (mulSupport f) (mulSupport g) x : α hx : x ∈ mulSupport g ⊢ (f * g) x = g x [PROOFSTEP] have : f x = 1 := nmem_mulSupport.1 (disjoint_right.1 h hx) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α f g : α → M h : Disjoint (mulSupport f) (mulSupport g) x : α hx : x ∈ mulSupport g this : f x = 1 ⊢ (f * g) x = g x [PROOFSTEP] rw [Pi.mul_apply, this, one_mul] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α inst✝ : DecidablePred fun x => x ∈ s f g : α → M ⊢ mulIndicator s f * mulIndicator sᶜ g = piecewise s f g [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α inst✝ : DecidablePred fun x => x ∈ s f g : α → M x : α ⊢ (mulIndicator s f * mulIndicator sᶜ g) x = piecewise s f g x [PROOFSTEP] by_cases h : x ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α inst✝ : DecidablePred fun x => x ∈ s f g : α → M x : α h : x ∈ s ⊢ (mulIndicator s f * mulIndicator sᶜ g) x = piecewise s f g x [PROOFSTEP] rw [piecewise_eq_of_mem _ _ _ h, Pi.mul_apply, Set.mulIndicator_of_mem h, Set.mulIndicator_of_not_mem (Set.not_mem_compl_iff.2 h), mul_one] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulOneClass M s t : Set α f✝ g✝ : α → M a : α inst✝ : DecidablePred fun x => x ∈ s f g : α → M x : α h : ¬x ∈ s ⊢ (mulIndicator s f * mulIndicator sᶜ g) x = piecewise s f g x [PROOFSTEP] rw [piecewise_eq_of_not_mem _ _ _ h, Pi.mul_apply, Set.mulIndicator_of_not_mem h, Set.mulIndicator_of_mem (Set.mem_compl h), one_mul] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 A : Type u_6 inst✝² : AddMonoid A inst✝¹ : Monoid M inst✝ : DistribMulAction M A s : Set α r : α → M f : α → A x : α ⊢ indicator s (fun x => r x • f x) x = r x • indicator s f x [PROOFSTEP] dsimp only [indicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 A : Type u_6 inst✝² : AddMonoid A inst✝¹ : Monoid M inst✝ : DistribMulAction M A s : Set α r : α → M f : α → A x : α ⊢ (if x ∈ s then r x • f x else 0) = r x • if x ∈ s then f x else 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 A : Type u_6 inst✝² : AddMonoid A inst✝¹ : Monoid M inst✝ : DistribMulAction M A s : Set α r : α → M f : α → A x : α h✝ : x ∈ s ⊢ r x • f x = r x • f x case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 A : Type u_6 inst✝² : AddMonoid A inst✝¹ : Monoid M inst✝ : DistribMulAction M A s : Set α r : α → M f : α → A x : α h✝ : ¬x ∈ s ⊢ 0 = r x • 0 [PROOFSTEP] exacts [rfl, (smul_zero (r x)).symm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 A : Type u_6 inst✝² : Zero A inst✝¹ : Zero M inst✝ : SMulWithZero M A s : Set α r : α → M f : α → A x : α ⊢ indicator s (fun x => r x • f x) x = indicator s r x • f x [PROOFSTEP] dsimp only [indicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 A : Type u_6 inst✝² : Zero A inst✝¹ : Zero M inst✝ : SMulWithZero M A s : Set α r : α → M f : α → A x : α ⊢ (if x ∈ s then r x • f x else 0) = (if x ∈ s then r x else 0) • f x [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 A : Type u_6 inst✝² : Zero A inst✝¹ : Zero M inst✝ : SMulWithZero M A s : Set α r : α → M f : α → A x : α h✝ : x ∈ s ⊢ r x • f x = r x • f x case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 A : Type u_6 inst✝² : Zero A inst✝¹ : Zero M inst✝ : SMulWithZero M A s : Set α r : α → M f : α → A x : α h✝ : ¬x ∈ s ⊢ 0 = 0 • f x [PROOFSTEP] exacts [rfl, (zero_smul _ (f x)).symm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 inst✝ : Group G s✝ t : Set α f✝ g : α → G a : α s : Set α f : α → G ⊢ mulIndicator sᶜ f = f / mulIndicator s f [PROOFSTEP] rw [div_eq_mul_inv, mulIndicator_compl] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 inst✝ : Group G s t : Set α f✝ g : α → G a : α h : s ⊆ t f : α → G ⊢ mulIndicator (t \ s) f * mulIndicator s f = mulIndicator t f [PROOFSTEP] rw [Pi.mul_def, ← mulIndicator_union_of_disjoint, diff_union_self, union_eq_self_of_subset_right h] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 inst✝ : Group G s t : Set α f✝ g : α → G a : α h : s ⊆ t f : α → G ⊢ Disjoint (t \ s) s [PROOFSTEP] exact disjoint_sdiff_self_left [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 G : Type u_6 inst✝ : Group G s t : Set α f✝ g : α → G a : α h : s ⊆ t f : α → G ⊢ mulIndicator (t \ s) f = mulIndicator t f / mulIndicator s f [PROOFSTEP] rw [mulIndicator_diff h, div_eq_mul_inv] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 ⊢ ∏ i in s, g i (f i) = ∏ i in t, g i (mulIndicator (↑s) f i) [PROOFSTEP] rw [← Finset.prod_subset h _] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 ⊢ ∏ i in s, g i (f i) = ∏ x in s, g x (mulIndicator (↑s) f x) [PROOFSTEP] apply Finset.prod_congr rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 ⊢ ∀ (x : α), x ∈ s → g x (f x) = g x (mulIndicator (↑s) f x) [PROOFSTEP] intro i hi [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 i : α hi : i ∈ s ⊢ g i (f i) = g i (mulIndicator (↑s) f i) [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 i : α hi : i ∈ s ⊢ f i = mulIndicator (↑s) f i [PROOFSTEP] symm -- Porting note: This did not use to need the implicit argument [GOAL] case e_a α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 i : α hi : i ∈ s ⊢ mulIndicator (↑s) f i = f i [PROOFSTEP] exact mulIndicator_of_mem (α := α) hi f [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 ⊢ ∀ (x : α), x ∈ t → ¬x ∈ s → g x (mulIndicator (↑s) f x) = 1 [PROOFSTEP] refine' fun i _ hn => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 i : α x✝ : i ∈ t hn : ¬i ∈ s ⊢ g i (mulIndicator (↑s) f i) = 1 [PROOFSTEP] convert hg i [GOAL] case h.e'_2.h.e'_2 α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M inst✝ : One N f : α → N g : α → N → M s t : Finset α h : s ⊆ t hg : ∀ (a : α), g a 1 = 1 i : α x✝ : i ∈ t hn : ¬i ∈ s ⊢ mulIndicator (↑s) f i = 1 [PROOFSTEP] exact mulIndicator_of_not_mem (α := α) hn f [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M s : Finset ι f : ι → α → M t : ι → Set α g : ι → α inst✝ : DecidablePred fun i => g i ∈ t i ⊢ ∏ i in s, mulIndicator (t i) (f i) (g i) = ∏ i in Finset.filter (fun i => g i ∈ t i) s, f i (g i) [PROOFSTEP] refine' (Finset.prod_filter_mul_prod_filter_not s (fun i => g i ∈ t i) _).symm.trans _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M s : Finset ι f : ι → α → M t : ι → Set α g : ι → α inst✝ : DecidablePred fun i => g i ∈ t i ⊢ (∏ x in Finset.filter (fun i => g i ∈ t i) s, mulIndicator (t x) (f x) (g x)) * ∏ x in Finset.filter (fun x => ¬g x ∈ t x) s, mulIndicator (t x) (f x) (g x) = ∏ i in Finset.filter (fun i => g i ∈ t i) s, f i (g i) [PROOFSTEP] refine' Eq.trans _ (mul_one _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : CommMonoid M s : Finset ι f : ι → α → M t : ι → Set α g : ι → α inst✝ : DecidablePred fun i => g i ∈ t i ⊢ (∏ x in Finset.filter (fun i => g i ∈ t i) s, mulIndicator (t x) (f x) (g x)) * ∏ x in Finset.filter (fun x => ¬g x ∈ t x) s, mulIndicator (t x) (f x) (g x) = (∏ i in Finset.filter (fun i => g i ∈ t i) s, f i (g i)) * 1 [PROOFSTEP] exact congr_arg₂ (· * ·) (Finset.prod_congr rfl fun x hx => mulIndicator_of_mem (Finset.mem_filter.1 hx).2 _) (Finset.prod_eq_one fun x hx => mulIndicator_of_not_mem (Finset.mem_filter.1 hx).2 _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I : Finset ι s : ι → Set α f : α → M ⊢ (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a [PROOFSTEP] classical refine' Finset.induction_on I _ _ · intro funext simp intro a I haI ih hI funext rw [Finset.prod_insert haI, Finset.set_biUnion_insert, mulIndicator_union_of_not_mem_inter, ih _] · intro i hi j hj hij exact hI i (Finset.mem_insert_of_mem hi) j (Finset.mem_insert_of_mem hj) hij simp only [not_exists, exists_prop, mem_iUnion, mem_inter_iff, not_and] intro hx a' ha' refine' disjoint_left.1 (hI a (Finset.mem_insert_self _ _) a' (Finset.mem_insert_of_mem ha') _) hx exact (ne_of_mem_of_not_mem ha' haI).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I : Finset ι s : ι → Set α f : α → M ⊢ (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a [PROOFSTEP] refine' Finset.induction_on I _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I : Finset ι s : ι → Set α f : α → M ⊢ (∀ (i : ι), i ∈ ∅ → ∀ (j : ι), j ∈ ∅ → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ ∅), s i) f = fun a => ∏ i in ∅, mulIndicator (s i) f a [PROOFSTEP] intro [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I : Finset ι s : ι → Set α f : α → M a✝ : ∀ (i : ι), i ∈ ∅ → ∀ (j : ι), j ∈ ∅ → i ≠ j → Disjoint (s i) (s j) ⊢ mulIndicator (⋃ (i : ι) (_ : i ∈ ∅), s i) f = fun a => ∏ i in ∅, mulIndicator (s i) f a [PROOFSTEP] funext [GOAL] case refine'_1.h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I : Finset ι s : ι → Set α f : α → M a✝ : ∀ (i : ι), i ∈ ∅ → ∀ (j : ι), j ∈ ∅ → i ≠ j → Disjoint (s i) (s j) x✝ : α ⊢ mulIndicator (⋃ (i : ι) (_ : i ∈ ∅), s i) f x✝ = ∏ i in ∅, mulIndicator (s i) f x✝ [PROOFSTEP] simp [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I : Finset ι s : ι → Set α f : α → M ⊢ ∀ ⦃a : ι⦄ {s_1 : Finset ι}, ¬a ∈ s_1 → ((∀ (i : ι), i ∈ s_1 → ∀ (j : ι), j ∈ s_1 → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ s_1), s i) f = fun a => ∏ i in s_1, mulIndicator (s i) f a) → (∀ (i : ι), i ∈ insert a s_1 → ∀ (j : ι), j ∈ insert a s_1 → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ insert a s_1), s i) f = fun a_4 => ∏ i in insert a s_1, mulIndicator (s i) f a_4 [PROOFSTEP] intro a I haI ih hI [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I✝ : Finset ι s : ι → Set α f : α → M a : ι I : Finset ι haI : ¬a ∈ I ih : (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a hI : ∀ (i : ι), i ∈ insert a I → ∀ (j : ι), j ∈ insert a I → i ≠ j → Disjoint (s i) (s j) ⊢ mulIndicator (⋃ (i : ι) (_ : i ∈ insert a I), s i) f = fun a_1 => ∏ i in insert a I, mulIndicator (s i) f a_1 [PROOFSTEP] funext [GOAL] case refine'_2.h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I✝ : Finset ι s : ι → Set α f : α → M a : ι I : Finset ι haI : ¬a ∈ I ih : (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a hI : ∀ (i : ι), i ∈ insert a I → ∀ (j : ι), j ∈ insert a I → i ≠ j → Disjoint (s i) (s j) x✝ : α ⊢ mulIndicator (⋃ (i : ι) (_ : i ∈ insert a I), s i) f x✝ = ∏ i in insert a I, mulIndicator (s i) f x✝ [PROOFSTEP] rw [Finset.prod_insert haI, Finset.set_biUnion_insert, mulIndicator_union_of_not_mem_inter, ih _] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I✝ : Finset ι s : ι → Set α f : α → M a : ι I : Finset ι haI : ¬a ∈ I ih : (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a hI : ∀ (i : ι), i ∈ insert a I → ∀ (j : ι), j ∈ insert a I → i ≠ j → Disjoint (s i) (s j) x✝ : α ⊢ ∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j) [PROOFSTEP] intro i hi j hj hij [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I✝ : Finset ι s : ι → Set α f : α → M a : ι I : Finset ι haI : ¬a ∈ I ih : (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a hI : ∀ (i : ι), i ∈ insert a I → ∀ (j : ι), j ∈ insert a I → i ≠ j → Disjoint (s i) (s j) x✝ : α i : ι hi : i ∈ I j : ι hj : j ∈ I hij : i ≠ j ⊢ Disjoint (s i) (s j) [PROOFSTEP] exact hI i (Finset.mem_insert_of_mem hi) j (Finset.mem_insert_of_mem hj) hij [GOAL] case refine'_2.h.h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I✝ : Finset ι s : ι → Set α f : α → M a : ι I : Finset ι haI : ¬a ∈ I ih : (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a hI : ∀ (i : ι), i ∈ insert a I → ∀ (j : ι), j ∈ insert a I → i ≠ j → Disjoint (s i) (s j) x✝ : α ⊢ ¬x✝ ∈ s a ∩ ⋃ (x : ι) (_ : x ∈ I), s x [PROOFSTEP] simp only [not_exists, exists_prop, mem_iUnion, mem_inter_iff, not_and] [GOAL] case refine'_2.h.h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I✝ : Finset ι s : ι → Set α f : α → M a : ι I : Finset ι haI : ¬a ∈ I ih : (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a hI : ∀ (i : ι), i ∈ insert a I → ∀ (j : ι), j ∈ insert a I → i ≠ j → Disjoint (s i) (s j) x✝ : α ⊢ x✝ ∈ s a → ∀ (x : ι), x ∈ I → ¬x✝ ∈ s x [PROOFSTEP] intro hx a' ha' [GOAL] case refine'_2.h.h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I✝ : Finset ι s : ι → Set α f : α → M a : ι I : Finset ι haI : ¬a ∈ I ih : (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a hI : ∀ (i : ι), i ∈ insert a I → ∀ (j : ι), j ∈ insert a I → i ≠ j → Disjoint (s i) (s j) x✝ : α hx : x✝ ∈ s a a' : ι ha' : a' ∈ I ⊢ ¬x✝ ∈ s a' [PROOFSTEP] refine' disjoint_left.1 (hI a (Finset.mem_insert_self _ _) a' (Finset.mem_insert_of_mem ha') _) hx [GOAL] case refine'_2.h.h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I✝ : Finset ι s : ι → Set α f : α → M a : ι I : Finset ι haI : ¬a ∈ I ih : (∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j)) → mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f = fun a => ∏ i in I, mulIndicator (s i) f a hI : ∀ (i : ι), i ∈ insert a I → ∀ (j : ι), j ∈ insert a I → i ≠ j → Disjoint (s i) (s j) x✝ : α hx : x✝ ∈ s a a' : ι ha' : a' ∈ I ⊢ a ≠ a' [PROOFSTEP] exact (ne_of_mem_of_not_mem ha' haI).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : CommMonoid M I : Finset ι s : ι → Set α f : α → M h : ∀ (i : ι), i ∈ I → ∀ (j : ι), j ∈ I → i ≠ j → Disjoint (s i) (s j) x : α ⊢ mulIndicator (⋃ (i : ι) (_ : i ∈ I), s i) f x = ∏ i in I, mulIndicator (s i) f x [PROOFSTEP] rw [Set.mulIndicator_finset_biUnion I s h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M ⊢ (indicator s fun a => f a * g a) = fun a => indicator s f a * indicator s g a [PROOFSTEP] funext [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M x✝ : α ⊢ indicator s (fun a => f a * g a) x✝ = indicator s f x✝ * indicator s g x✝ [PROOFSTEP] simp only [indicator] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M x✝ : α ⊢ (if x✝ ∈ s then f x✝ * g x✝ else 0) = (if x✝ ∈ s then f x✝ else 0) * if x✝ ∈ s then g x✝ else 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M x✝ : α h✝ : x✝ ∈ s ⊢ f x✝ * g x✝ = f x✝ * g x✝ [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M x✝ : α h✝ : ¬x✝ ∈ s ⊢ 0 = 0 * 0 [PROOFSTEP] rw [mul_zero] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M ⊢ indicator s (fun a => f a * g a) a = indicator s f a * g a [PROOFSTEP] simp only [indicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M ⊢ (if a ∈ s then f a * g a else 0) = (if a ∈ s then f a else 0) * g a [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M h✝ : a ∈ s ⊢ f a * g a = f a * g a [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M h✝ : ¬a ∈ s ⊢ 0 = 0 * g a [PROOFSTEP] rw [zero_mul] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M ⊢ indicator s (fun a => f a * g a) a = f a * indicator s g a [PROOFSTEP] simp only [indicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M ⊢ (if a ∈ s then f a * g a else 0) = f a * if a ∈ s then g a else 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M h✝ : a ∈ s ⊢ f a * g a = f a * g a [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s✝ t : Set α f✝ g✝ : α → M a : α s : Set α f g : α → M h✝ : ¬a ∈ s ⊢ 0 = f a * 0 [PROOFSTEP] rw [mul_zero] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s t : Set α f✝ g✝ : α → M a : α t1 t2 : Set α f g : α → M x : α ⊢ indicator (t1 ∩ t2) (fun x => f x * g x) x = indicator t1 f x * indicator t2 g x [PROOFSTEP] rw [← Set.indicator_indicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s t : Set α f✝ g✝ : α → M a : α t1 t2 : Set α f g : α → M x : α ⊢ indicator t1 (indicator t2 fun x => f x * g x) x = indicator t1 f x * indicator t2 g x [PROOFSTEP] simp_rw [indicator] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s t : Set α f✝ g✝ : α → M a : α t1 t2 : Set α f g : α → M x : α ⊢ (if x ∈ t1 then if x ∈ t2 then f x * g x else 0 else 0) = (if x ∈ t1 then f x else 0) * if x ∈ t2 then g x else 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s t : Set α f✝ g✝ : α → M a : α t1 t2 : Set α f g : α → M x : α h✝¹ : x ∈ t1 h✝ : x ∈ t2 ⊢ f x * g x = f x * g x [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s t : Set α f✝ g✝ : α → M a : α t1 t2 : Set α f g : α → M x : α h✝¹ : x ∈ t1 h✝ : ¬x ∈ t2 ⊢ 0 = f x * 0 [PROOFSTEP] simp [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s t : Set α f✝ g✝ : α → M a : α t1 t2 : Set α f g : α → M x : α h✝¹ : ¬x ∈ t1 h✝ : x ∈ t2 ⊢ 0 = 0 * g x [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroClass M s t : Set α f✝ g✝ : α → M a : α t1 t2 : Set α f g : α → M x : α h✝¹ : ¬x ∈ t1 h✝ : ¬x ∈ t2 ⊢ 0 = 0 * 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s t : Set α x✝ : α ⊢ indicator (s ∩ t) 1 x✝ = (indicator s 1 * indicator t 1) x✝ [PROOFSTEP] simp only [← inter_indicator_mul, Pi.mul_apply, Pi.one_apply, one_mul] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s t : Set α x✝ : α ⊢ indicator (s ∩ t) 1 x✝ = indicator (s ∩ t) (fun x => 1) x✝ [PROOFSTEP] congr [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β ⊢ indicator (s ×ˢ t) 1 (x, y) = indicator s 1 x * indicator t 1 y [PROOFSTEP] simp_rw [indicator, mem_prod_eq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β ⊢ (if x ∈ s ∧ y ∈ t then OfNat.ofNat 1 (x, y) else 0) = (if x ∈ s then OfNat.ofNat 1 x else 0) * if y ∈ t then OfNat.ofNat 1 y else 0 [PROOFSTEP] split_ifs with h₀ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : x ∈ s ∧ y ∈ t h✝¹ : x ∈ s h✝ : y ∈ t ⊢ OfNat.ofNat 1 (x, y) = OfNat.ofNat 1 x * OfNat.ofNat 1 y [PROOFSTEP] simp only [Pi.one_apply, mul_one, mul_zero] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : x ∈ s ∧ y ∈ t h✝¹ : x ∈ s h✝ : ¬y ∈ t ⊢ OfNat.ofNat 1 (x, y) = OfNat.ofNat 1 x * 0 [PROOFSTEP] simp only [Pi.one_apply, mul_one, mul_zero] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : x ∈ s ∧ y ∈ t h✝¹ : ¬x ∈ s h✝ : y ∈ t ⊢ OfNat.ofNat 1 (x, y) = 0 * OfNat.ofNat 1 y [PROOFSTEP] simp only [Pi.one_apply, mul_one, mul_zero] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : x ∈ s ∧ y ∈ t h✝¹ : ¬x ∈ s h✝ : ¬y ∈ t ⊢ OfNat.ofNat 1 (x, y) = 0 * 0 [PROOFSTEP] simp only [Pi.one_apply, mul_one, mul_zero] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : ¬(x ∈ s ∧ y ∈ t) h✝¹ : x ∈ s h✝ : y ∈ t ⊢ 0 = OfNat.ofNat 1 x * OfNat.ofNat 1 y [PROOFSTEP] simp only [Pi.one_apply, mul_one, mul_zero] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : ¬(x ∈ s ∧ y ∈ t) h✝¹ : x ∈ s h✝ : ¬y ∈ t ⊢ 0 = OfNat.ofNat 1 x * 0 [PROOFSTEP] simp only [Pi.one_apply, mul_one, mul_zero] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : ¬(x ∈ s ∧ y ∈ t) h✝¹ : ¬x ∈ s h✝ : y ∈ t ⊢ 0 = 0 * OfNat.ofNat 1 y [PROOFSTEP] simp only [Pi.one_apply, mul_one, mul_zero] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : ¬(x ∈ s ∧ y ∈ t) h✝¹ : ¬x ∈ s h✝ : ¬y ∈ t ⊢ 0 = 0 * 0 [PROOFSTEP] simp only [Pi.one_apply, mul_one, mul_zero] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : x ∈ s ∧ y ∈ t h✝¹ : x ∈ s h✝ : ¬y ∈ t ⊢ 1 = 0 [PROOFSTEP] tauto [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : x ∈ s ∧ y ∈ t h✝¹ : ¬x ∈ s h✝ : y ∈ t ⊢ 1 = 0 [PROOFSTEP] tauto [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : x ∈ s ∧ y ∈ t h✝¹ : ¬x ∈ s h✝ : ¬y ∈ t ⊢ 1 = 0 [PROOFSTEP] tauto [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝ : MulZeroOneClass M s : Set α t : Set β x : α y : β h₀ : ¬(x ∈ s ∧ y ∈ t) h✝¹ : x ∈ s h✝ : y ∈ t ⊢ 0 = 1 [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulZeroOneClass M inst✝ : Nontrivial M U : Set α x : α ⊢ indicator U 1 x = 0 ↔ ¬x ∈ U [PROOFSTEP] classical simp [indicator_apply, imp_false] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulZeroOneClass M inst✝ : Nontrivial M U : Set α x : α ⊢ indicator U 1 x = 0 ↔ ¬x ∈ U [PROOFSTEP] simp [indicator_apply, imp_false] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulZeroOneClass M inst✝ : Nontrivial M U : Set α x : α ⊢ indicator U 1 x = 1 ↔ x ∈ U [PROOFSTEP] classical simp [indicator_apply, imp_false] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulZeroOneClass M inst✝ : Nontrivial M U : Set α x : α ⊢ indicator U 1 x = 1 ↔ x ∈ U [PROOFSTEP] simp [indicator_apply, imp_false] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulZeroOneClass M inst✝ : Nontrivial M U V : Set α h : indicator U 1 = indicator V 1 ⊢ U = V [PROOFSTEP] ext [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : MulZeroOneClass M inst✝ : Nontrivial M U V : Set α h : indicator U 1 = indicator V 1 x✝ : α ⊢ x✝ ∈ U ↔ x✝ ∈ V [PROOFSTEP] simp_rw [← indicator_eq_one_iff_mem M, h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M s t : Set α f g : α → M a : α y : M inst✝ : LE M hfg : a ∈ s → f a ≤ y hg : ¬a ∈ s → 1 ≤ y ⊢ mulIndicator s f a ≤ y [PROOFSTEP] by_cases ha : a ∈ s [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M s t : Set α f g : α → M a : α y : M inst✝ : LE M hfg : a ∈ s → f a ≤ y hg : ¬a ∈ s → 1 ≤ y ha : a ∈ s ⊢ mulIndicator s f a ≤ y [PROOFSTEP] simpa [ha] using hfg ha [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 inst✝¹ : One M s t : Set α f g : α → M a : α y : M inst✝ : LE M hfg : a ∈ s → f a ≤ y hg : ¬a ∈ s → 1 ≤ y ha : ¬a ∈ s ⊢ mulIndicator s f a ≤ y [PROOFSTEP] simpa [ha] using hg ha [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α ⊢ mulIndicator (⋃ (i : ι), s i) f x = ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] by_cases hx : x ∈ ⋃ i, s i [GOAL] case pos α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : x ∈ ⋃ (i : ι), s i ⊢ mulIndicator (⋃ (i : ι), s i) f x = ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] rw [mulIndicator_of_mem hx] [GOAL] case pos α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : x ∈ ⋃ (i : ι), s i ⊢ f x = ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] rw [mem_iUnion] at hx [GOAL] case pos α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ∃ i, x ∈ s i ⊢ f x = ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] refine' le_antisymm _ (iSup_le fun i => mulIndicator_le_self' (fun x _ => h1 ▸ bot_le) x) [GOAL] case pos α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ∃ i, x ∈ s i ⊢ f x ≤ ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] rcases hx with ⟨i, hi⟩ [GOAL] case pos.intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α i : ι hi : x ∈ s i ⊢ f x ≤ ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] exact le_iSup_of_le i (ge_of_eq <| mulIndicator_of_mem hi _) [GOAL] case neg α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ¬x ∈ ⋃ (i : ι), s i ⊢ mulIndicator (⋃ (i : ι), s i) f x = ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] rw [mulIndicator_of_not_mem hx] [GOAL] case neg α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ¬x ∈ ⋃ (i : ι), s i ⊢ 1 = ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] simp only [mem_iUnion, not_exists] at hx [GOAL] case neg α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝³ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝² : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ∀ (x_1 : ι), ¬x ∈ s x_1 ⊢ 1 = ⨆ (i : ι), mulIndicator (s i) f x [PROOFSTEP] simp [hx, ← h1] [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α ⊢ mulIndicator (⋂ (i : ι), s i) f x = ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] by_cases hx : x ∈ ⋂ i, s i [GOAL] case pos α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : x ∈ ⋂ (i : ι), s i ⊢ mulIndicator (⋂ (i : ι), s i) f x = ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] rw [mulIndicator_of_mem hx] [GOAL] case pos α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : x ∈ ⋂ (i : ι), s i ⊢ f x = ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] rw [mem_iInter] at hx [GOAL] case pos α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ∀ (i : ι), x ∈ s i ⊢ f x = ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] refine le_antisymm ?_ (by simp only [mulIndicator_of_mem (hx _), ciInf_const, le_refl]) [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ∀ (i : ι), x ∈ s i ⊢ ⨅ (i : ι), mulIndicator (s i) f x ≤ f x [PROOFSTEP] simp only [mulIndicator_of_mem (hx _), ciInf_const, le_refl] [GOAL] case pos α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ∀ (i : ι), x ∈ s i ⊢ f x ≤ ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] exact le_iInf (fun j ↦ by simp only [mulIndicator_of_mem (hx j), le_refl]) [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ∀ (i : ι), x ∈ s i j : ι ⊢ f x ≤ mulIndicator (s j) f x [PROOFSTEP] simp only [mulIndicator_of_mem (hx j), le_refl] [GOAL] case neg α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ¬x ∈ ⋂ (i : ι), s i ⊢ mulIndicator (⋂ (i : ι), s i) f x = ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] rw [mulIndicator_of_not_mem hx] [GOAL] case neg α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ¬x ∈ ⋂ (i : ι), s i ⊢ 1 = ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] simp only [mem_iInter, not_exists, not_forall] at hx [GOAL] case neg α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α hx : ∃ x_1, ¬x ∈ s x_1 ⊢ 1 = ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] rcases hx with ⟨j, hj⟩ [GOAL] case neg.intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α j : ι hj : ¬x ∈ s j ⊢ 1 = ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] refine le_antisymm (by simp only [← h1, le_iInf_iff, bot_le, forall_const]) ?_ [GOAL] α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α j : ι hj : ¬x ∈ s j ⊢ 1 ≤ ⨅ (i : ι), mulIndicator (s i) f x [PROOFSTEP] simp only [← h1, le_iInf_iff, bot_le, forall_const] [GOAL] case neg.intro α : Type u_1 β : Type u_2 ι✝ : Type u_3 M✝ : Type u_4 N : Type u_5 inst✝⁴ : One M✝ s✝ t : Set α f✝ g : α → M✝ a : α y : M✝ inst✝³ : Preorder M✝ ι : Sort u_6 M : Type u_7 inst✝² : Nonempty ι inst✝¹ : CompleteLattice M inst✝ : One M h1 : ⊥ = 1 s : ι → Set α f : α → M x : α j : ι hj : ¬x ∈ s j ⊢ ⨅ (i : ι), mulIndicator (s i) f x ≤ 1 [PROOFSTEP] simpa [mulIndicator_of_not_mem hj] using (iInf_le (fun i ↦ (s i).mulIndicator f) j) x [GOAL] α : Type u_1 β✝ : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 β : Type u_6 inst✝¹ : LinearOrder β inst✝ : Zero β s : Set α f : α → β ⊢ indicator s f ≤ indicator {x | 0 ≤ f x} f [PROOFSTEP] intro x [GOAL] α : Type u_1 β✝ : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 β : Type u_6 inst✝¹ : LinearOrder β inst✝ : Zero β s : Set α f : α → β x : α ⊢ indicator s f x ≤ indicator {x | 0 ≤ f x} f x [PROOFSTEP] classical simp_rw [indicator_apply] split_ifs with h_1 h_2 h_3 · exact le_rfl · exact (not_le.mp h_2).le · exact h_3 · exact le_rfl [GOAL] α : Type u_1 β✝ : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 β : Type u_6 inst✝¹ : LinearOrder β inst✝ : Zero β s : Set α f : α → β x : α ⊢ indicator s f x ≤ indicator {x | 0 ≤ f x} f x [PROOFSTEP] simp_rw [indicator_apply] [GOAL] α : Type u_1 β✝ : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 β : Type u_6 inst✝¹ : LinearOrder β inst✝ : Zero β s : Set α f : α → β x : α ⊢ (if x ∈ s then f x else 0) ≤ if x ∈ {x | 0 ≤ f x} then f x else 0 [PROOFSTEP] split_ifs with h_1 h_2 h_3 [GOAL] case pos α : Type u_1 β✝ : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 β : Type u_6 inst✝¹ : LinearOrder β inst✝ : Zero β s : Set α f : α → β x : α h_1 : x ∈ s h_2 : x ∈ {x | 0 ≤ f x} ⊢ f x ≤ f x [PROOFSTEP] exact le_rfl [GOAL] case neg α : Type u_1 β✝ : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 β : Type u_6 inst✝¹ : LinearOrder β inst✝ : Zero β s : Set α f : α → β x : α h_1 : x ∈ s h_2 : ¬x ∈ {x | 0 ≤ f x} ⊢ f x ≤ 0 [PROOFSTEP] exact (not_le.mp h_2).le [GOAL] case pos α : Type u_1 β✝ : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 β : Type u_6 inst✝¹ : LinearOrder β inst✝ : Zero β s : Set α f : α → β x : α h_1 : ¬x ∈ s h_3 : x ∈ {x | 0 ≤ f x} ⊢ 0 ≤ f x [PROOFSTEP] exact h_3 [GOAL] case neg α : Type u_1 β✝ : Type u_2 ι : Type u_3 M : Type u_4 N : Type u_5 β : Type u_6 inst✝¹ : LinearOrder β inst✝ : Zero β s : Set α f : α → β x : α h_1 : ¬x ∈ s h_3 : ¬x ∈ {x | 0 ≤ f x} ⊢ 0 ≤ 0 [PROOFSTEP] exact le_rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 M✝ : Type u_4 N✝ : Type u_5 M : Type u_6 N : Type u_7 inst✝¹ : MulOneClass M inst✝ : MulOneClass N f : M →* N s : Set α g : α → M x : α ⊢ ↑f (Set.mulIndicator s g x) = Set.mulIndicator s (↑f ∘ g) x [PROOFSTEP] simp [Set.mulIndicator_comp_of_one]
{"mathlib_filename": "Mathlib.Algebra.IndicatorFunction", "llama_tokens": 37742}
[GOAL] α : Type u_1 inst✝ : AddCommGroup α p a✝ a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ a : α ⊢ a - a = 0 • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ (∃ b_1, b - a = ↑(Equiv.neg ℤ).symm b_1 • p) ↔ b ≡ a [PMOD p] [PROOFSTEP] simp [ModEq, ← neg_eq_iff_eq_neg] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n✝ : ℕ z : ℤ x✝¹ : a ≡ b [PMOD p] x✝ : b ≡ c [PMOD p] m : ℤ hm : b - a = m • p n : ℤ hn : c - b = n • p ⊢ c - a = (m + n) • p [PROOFSTEP] simp [add_smul, ← hm, ← hn] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ -b ≡ -a [PMOD p] ↔ a ≡ b [PMOD p] [PROOFSTEP] simp [ModEq, neg_add_eq_sub] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ b ≡ a [PMOD -p] ↔ a ≡ b [PMOD p] [PROOFSTEP] simp [ModEq, ← neg_eq_iff_eq_neg] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ a ≡ b [PMOD 0] ↔ a = b [PROOFSTEP] simp [ModEq, sub_eq_zero, eq_comm] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ 0 - p = -1 • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z✝ z : ℤ ⊢ 0 - z • p = -z • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z✝ z : ℤ ⊢ a - (a + z • p) = -z • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z✝ z : ℤ ⊢ a - (z • p + a) = -z • p [PROOFSTEP] simp [← sub_sub] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n✝ : ℕ z : ℤ n : ℕ ⊢ a - (a + n • p) = -↑n • p [PROOFSTEP] simp [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n✝ : ℕ z : ℤ n : ℕ ⊢ a - (n • p + a) = -↑n • p [PROOFSTEP] simp [← sub_sub] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ x✝ : a ≡ b [PMOD z • p] m : ℤ hm : b - a = m • z • p ⊢ b - a = (m * z) • p [PROOFSTEP] rwa [mul_smul] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ x✝ : a ≡ b [PMOD n • p] m : ℤ hm : b - a = m • n • p ⊢ b - a = (m * ↑n) • p [PROOFSTEP] rwa [mul_smul, coe_nat_zsmul] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z m : ℤ hm : b - a = m • p ⊢ z • b - z • a = m • z • p [PROOFSTEP] rw [← smul_sub, hm, smul_comm] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z m : ℤ hm : b - a = m • p ⊢ n • b - n • a = m • n • p [PROOFSTEP] rw [← smul_sub, hm, smul_comm] [GOAL] α : Type u_1 inst✝¹ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ inst✝ : NoZeroSMulDivisors ℤ α hn : z ≠ 0 m : ℤ ⊢ z • b - z • a = m • z • p ↔ b - a = m • p [PROOFSTEP] rw [← smul_sub, smul_comm, smul_right_inj hn] [GOAL] α : Type u_1 inst✝¹ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ inst✝ : NoZeroSMulDivisors ℕ α hn : n ≠ 0 m : ℤ ⊢ n • b - n • a = m • n • p ↔ b - a = m • p [PROOFSTEP] rw [← smul_sub, smul_comm, smul_right_inj hn] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ x✝ : a₁ ≡ b₁ [PMOD p] m : ℤ hm : b₁ - a₁ = m • p ⊢ (∃ b, b₁ + b₂ - (a₁ + a₂) = ↑(Equiv.addLeft m).symm.symm b • p) ↔ a₂ ≡ b₂ [PMOD p] [PROOFSTEP] simp [add_sub_add_comm, hm, add_smul, ModEq] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ x✝ : a₂ ≡ b₂ [PMOD p] m : ℤ hm : b₂ - a₂ = m • p ⊢ (∃ b, b₁ + b₂ - (a₁ + a₂) = ↑(Equiv.addRight m).symm.symm b • p) ↔ a₁ ≡ b₁ [PMOD p] [PROOFSTEP] simp [add_sub_add_comm, hm, add_smul, ModEq] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ x✝ : a₁ ≡ b₁ [PMOD p] m : ℤ hm : b₁ - a₁ = m • p ⊢ (∃ b, b₁ - b₂ - (a₁ - a₂) = ↑(Equiv.subLeft m).symm.symm b • p) ↔ a₂ ≡ b₂ [PMOD p] [PROOFSTEP] simp [sub_sub_sub_comm, hm, sub_smul, ModEq] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ x✝ : a₂ ≡ b₂ [PMOD p] m : ℤ hm : b₂ - a₂ = m • p ⊢ (∃ b, b₁ - b₂ - (a₁ - a₂) = ↑(Equiv.subRight m).symm.symm b • p) ↔ a₁ ≡ b₁ [PMOD p] [PROOFSTEP] simp [sub_sub_sub_comm, hm, sub_smul, ModEq] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ a ≡ b - c [PMOD p] ↔ c + a ≡ b [PMOD p] [PROOFSTEP] simp [ModEq, sub_sub] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ c + a ≡ b [PMOD p] ↔ a + c ≡ b [PMOD p] [PROOFSTEP] rw [add_comm] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ a - b ≡ 0 [PMOD p] ↔ a ≡ b [PMOD p] [PROOFSTEP] simp [sub_modEq_iff_modEq_add] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ a + b ≡ a [PMOD p] ↔ b ≡ 0 [PMOD p] [PROOFSTEP] simp [← modEq_sub_iff_add_modEq'] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ a + b ≡ b [PMOD p] ↔ a ≡ 0 [PMOD p] [PROOFSTEP] simp [← modEq_sub_iff_add_modEq] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ a ≡ b [PMOD p] ↔ ∃ z, b = a + z • p [PROOFSTEP] simp_rw [ModEq, sub_eq_iff_eq_add'] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ ¬a ≡ b [PMOD p] ↔ ∀ (z : ℤ), b ≠ a + z • p [PROOFSTEP] rw [modEq_iff_eq_add_zsmul, not_exists] [GOAL] α : Type u_1 inst✝ : AddCommGroup α p a a₁ a₂ b b₁ b₂ c : α n : ℕ z : ℤ ⊢ a ≡ b [PMOD p] ↔ ↑b = ↑a [PROOFSTEP] simp_rw [modEq_iff_eq_add_zsmul, QuotientAddGroup.eq_iff_sub_mem, AddSubgroup.mem_zmultiples_iff, eq_sub_iff_add_eq', eq_comm] [GOAL] α : Type u_1 a b z : ℤ ⊢ a ≡ b [PMOD z] ↔ a ≡ b [ZMOD z] [PROOFSTEP] simp [ModEq, dvd_iff_exists_eq_mul_left, Int.modEq_iff_dvd] [GOAL] α : Type u_1 inst✝¹ : AddCommGroupWithOne α inst✝ : CharZero α a b z : ℤ ⊢ ↑a ≡ ↑b [PMOD ↑z] ↔ a ≡ b [PMOD z] [PROOFSTEP] simp_rw [ModEq, ← Int.cast_mul_eq_zsmul_cast] [GOAL] α : Type u_1 inst✝¹ : AddCommGroupWithOne α inst✝ : CharZero α a b z : ℤ ⊢ (∃ z_1, ↑b - ↑a = ↑(z_1 * z)) ↔ ∃ z_1, b - a = z_1 • z [PROOFSTEP] norm_cast [GOAL] α : Type u_1 inst✝¹ : AddCommGroupWithOne α inst✝ : CharZero α a b n : ℕ ⊢ ↑a ≡ ↑b [PMOD ↑n] ↔ a ≡ b [MOD n] [PROOFSTEP] simp_rw [← Int.coe_nat_modEq_iff, ← modEq_iff_int_modEq, ← @int_cast_modEq_int_cast α, Int.cast_ofNat]
{"mathlib_filename": "Mathlib.Algebra.ModEq", "llama_tokens": 3644}
[GOAL] R : Type u_1 inst✝ : Zero R n : R ⊢ ¬NeZero n ↔ n = 0 [PROOFSTEP] simp [neZero_iff]
{"mathlib_filename": "Mathlib.Algebra.NeZero", "llama_tokens": 52}
[GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g✝ : α →ᵇ β x : α C : ℝ f g : α →ᵇ β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := f [GOAL] case mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g✝ : α →ᵇ β x : α C : ℝ g : α →ᵇ β toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ map_bounded'✝ : ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk toFun✝) x) (ContinuousMap.toFun (ContinuousMap.mk toFun✝) y) ≤ C h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, map_bounded' := map_bounded'✝ } = (fun f => f.toFun) g ⊢ { toContinuousMap := ContinuousMap.mk toFun✝, map_bounded' := map_bounded'✝ } = g [PROOFSTEP] obtain ⟨⟨_, _⟩, _⟩ := g [GOAL] case mk.mk.mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ toFun✝¹ : α → β continuous_toFun✝¹ : Continuous toFun✝¹ map_bounded'✝¹ : ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk toFun✝¹) x) (ContinuousMap.toFun (ContinuousMap.mk toFun✝¹) y) ≤ C toFun✝ : α → β continuous_toFun✝ : Continuous toFun✝ map_bounded'✝ : ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk toFun✝) x) (ContinuousMap.toFun (ContinuousMap.mk toFun✝) y) ≤ C h : (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝¹, map_bounded' := map_bounded'✝¹ } = (fun f => f.toFun) { toContinuousMap := ContinuousMap.mk toFun✝, map_bounded' := map_bounded'✝ } ⊢ { toContinuousMap := ContinuousMap.mk toFun✝¹, map_bounded' := map_bounded'✝¹ } = { toContinuousMap := ContinuousMap.mk toFun✝, map_bounded' := map_bounded'✝ } [PROOFSTEP] congr [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ ⊢ ∃ C, 0 ≤ C ∧ ∀ (x : α), dist (↑f x) (↑g x) ≤ C [PROOFSTEP] rcases f.bounded_range.union g.bounded_range with ⟨C, hC⟩ [GOAL] case intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C✝ C : ℝ hC : ∀ (x : β), x ∈ range ↑f ∪ range ↑g → ∀ (y : β), y ∈ range ↑f ∪ range ↑g → dist x y ≤ C ⊢ ∃ C, 0 ≤ C ∧ ∀ (x : α), dist (↑f x) (↑g x) ≤ C [PROOFSTEP] refine' ⟨max 0 C, le_max_left _ _, fun x => (hC _ _ _ _).trans (le_max_right _ _)⟩ <;> [left; right] [GOAL] case intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C✝ C : ℝ hC : ∀ (x : β), x ∈ range ↑f ∪ range ↑g → ∀ (y : β), y ∈ range ↑f ∪ range ↑g → dist x y ≤ C ⊢ ∃ C, 0 ≤ C ∧ ∀ (x : α), dist (↑f x) (↑g x) ≤ C [PROOFSTEP] refine' ⟨max 0 C, le_max_left _ _, fun x => (hC _ _ _ _).trans (le_max_right _ _)⟩ [GOAL] case intro.refine'_1 F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C✝ C : ℝ hC : ∀ (x : β), x ∈ range ↑f ∪ range ↑g → ∀ (y : β), y ∈ range ↑f ∪ range ↑g → dist x y ≤ C x : α ⊢ ↑f x ∈ range ↑f ∪ range ↑g [PROOFSTEP] left [GOAL] case intro.refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C✝ C : ℝ hC : ∀ (x : β), x ∈ range ↑f ∪ range ↑g → ∀ (y : β), y ∈ range ↑f ∪ range ↑g → dist x y ≤ C x : α ⊢ ↑g x ∈ range ↑f ∪ range ↑g [PROOFSTEP] right [GOAL] case intro.refine'_1.h F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C✝ C : ℝ hC : ∀ (x : β), x ∈ range ↑f ∪ range ↑g → ∀ (y : β), y ∈ range ↑f ∪ range ↑g → dist x y ≤ C x : α ⊢ ↑f x ∈ range ↑f [PROOFSTEP] apply mem_range_self [GOAL] case intro.refine'_2.h F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C✝ C : ℝ hC : ∀ (x : β), x ∈ range ↑f ∪ range ↑g → ∀ (y : β), y ∈ range ↑f ∪ range ↑g → dist x y ≤ C x : α ⊢ ↑g x ∈ range ↑g [PROOFSTEP] apply mem_range_self [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝¹ : Nonempty α inst✝ : CompactSpace α w : ∀ (x : α), dist (↑f x) (↑g x) < C ⊢ dist f g < C [PROOFSTEP] have c : Continuous fun x => dist (f x) (g x) := by continuity [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝¹ : Nonempty α inst✝ : CompactSpace α w : ∀ (x : α), dist (↑f x) (↑g x) < C ⊢ Continuous fun x => dist (↑f x) (↑g x) [PROOFSTEP] continuity [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝¹ : Nonempty α inst✝ : CompactSpace α w : ∀ (x : α), dist (↑f x) (↑g x) < C c : Continuous fun x => dist (↑f x) (↑g x) ⊢ dist f g < C [PROOFSTEP] obtain ⟨x, -, le⟩ := IsCompact.exists_isMaxOn isCompact_univ Set.univ_nonempty (Continuous.continuousOn c) [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C : ℝ inst✝¹ : Nonempty α inst✝ : CompactSpace α w : ∀ (x : α), dist (↑f x) (↑g x) < C c : Continuous fun x => dist (↑f x) (↑g x) x : α le : IsMaxOn (fun x => dist (↑f x) (↑g x)) univ x ⊢ dist f g < C [PROOFSTEP] exact lt_of_le_of_lt (dist_le_iff_of_nonempty.mpr fun y => le trivial) (w x) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C ⊢ dist f g < C ↔ ∀ (x : α), dist (↑f x) (↑g x) < C [PROOFSTEP] fconstructor [GOAL] case mp F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C ⊢ dist f g < C → ∀ (x : α), dist (↑f x) (↑g x) < C [PROOFSTEP] intro w x [GOAL] case mp F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C w : dist f g < C x : α ⊢ dist (↑f x) (↑g x) < C [PROOFSTEP] exact lt_of_le_of_lt (dist_coe_le_dist x) w [GOAL] case mpr F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C ⊢ (∀ (x : α), dist (↑f x) (↑g x) < C) → dist f g < C [PROOFSTEP] by_cases h : Nonempty α [GOAL] case pos F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C h : Nonempty α ⊢ (∀ (x : α), dist (↑f x) (↑g x) < C) → dist f g < C [PROOFSTEP] exact dist_lt_of_nonempty_compact [GOAL] case neg F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C h : ¬Nonempty α ⊢ (∀ (x : α), dist (↑f x) (↑g x) < C) → dist f g < C [PROOFSTEP] rintro - [GOAL] case neg F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C h : ¬Nonempty α ⊢ dist f g < C [PROOFSTEP] convert C0 [GOAL] case h.e'_3 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C h : ¬Nonempty α ⊢ dist f g = 0 [PROOFSTEP] apply le_antisymm _ dist_nonneg' [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C h : ¬Nonempty α ⊢ dist f g ≤ 0 [PROOFSTEP] rw [dist_eq] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α C0 : 0 < C h : ¬Nonempty α ⊢ sInf {C | 0 ≤ C ∧ ∀ (x : α), dist (↑f x) (↑g x) ≤ C} ≤ 0 [PROOFSTEP] exact csInf_le ⟨0, fun C => And.left⟩ ⟨le_rfl, fun x => False.elim (h (Nonempty.intro x))⟩ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ f : α →ᵇ β x : α ⊢ dist (↑f x) (↑f x) ≤ 0 [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g✝ : α →ᵇ β x : α C : ℝ f g : α →ᵇ β ⊢ dist f g = dist g f [PROOFSTEP] simp [dist_eq, dist_comm] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C : ℝ x y : α →ᵇ β ⊢ (fun x y => ↑{ val := dist x y, property := (_ : 0 ≤ dist x y) }) x y = ENNReal.ofReal (dist x y) [PROOFSTEP] dsimp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C : ℝ x y : α →ᵇ β ⊢ ↑{ val := dist x y, property := (_ : 0 ≤ dist x y) } = ENNReal.ofReal (dist x y) [PROOFSTEP] congr [GOAL] case e_a.e_val F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x✝ : α C : ℝ x y : α →ᵇ β ⊢ dist x y = max (dist x y) 0 [PROOFSTEP] simp [dist_nonneg'] [GOAL] F : Type u_1 α✝ : Type u β✝ : Type v γ : Type w inst✝⁴ : TopologicalSpace α✝ inst✝³ : PseudoMetricSpace β✝ inst✝² : PseudoMetricSpace γ f g : α✝ →ᵇ β✝ x : α✝ C : ℝ α : Type ?u.332963 β : Type ?u.332966 inst✝¹ : TopologicalSpace α inst✝ : MetricSpace β x✝ y✝ : α →ᵇ β hfg : dist x✝ y✝ = 0 ⊢ x✝ = y✝ [PROOFSTEP] ext x [GOAL] case h F : Type u_1 α✝ : Type u β✝ : Type v γ : Type w inst✝⁴ : TopologicalSpace α✝ inst✝³ : PseudoMetricSpace β✝ inst✝² : PseudoMetricSpace γ f g : α✝ →ᵇ β✝ x✝¹ : α✝ C : ℝ α : Type ?u.332963 β : Type ?u.332966 inst✝¹ : TopologicalSpace α inst✝ : MetricSpace β x✝ y✝ : α →ᵇ β hfg : dist x✝ y✝ = 0 x : α ⊢ ↑x✝ x = ↑y✝ x [PROOFSTEP] exact eq_of_dist_eq_zero (le_antisymm (hfg ▸ dist_coe_le_dist _) dist_nonneg) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ ⊢ sInf {C | 0 ≤ C ∧ ∀ (x : α), dist (↑f x) (↑g x) ≤ C} = ↑(sInf {C | ∀ (x : α), nndist (↑f x) (↑g x) ≤ C}) [PROOFSTEP] rw [val_eq_coe, coe_sInf, coe_image] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ ⊢ sInf {C | 0 ≤ C ∧ ∀ (x : α), dist (↑f x) (↑g x) ≤ C} = sInf {x | ∃ h, { val := x, property := h } ∈ {C | ∀ (x : α), nndist (↑f x) (↑g x) ≤ C}} [PROOFSTEP] simp_rw [mem_setOf_eq, ← NNReal.coe_le_coe, coe_mk, exists_prop, coe_nndist] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ inst✝ : IsEmpty α ⊢ dist f g = 0 [PROOFSTEP] rw [(ext isEmptyElim : f = g), dist_self] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ ⊢ dist f g = ⨆ (x : α), dist (↑f x) (↑g x) [PROOFSTEP] cases isEmpty_or_nonempty α [GOAL] case inl F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ h✝ : IsEmpty α ⊢ dist f g = ⨆ (x : α), dist (↑f x) (↑g x) [PROOFSTEP] rw [iSup_of_empty', Real.sSup_empty, dist_zero_of_empty] [GOAL] case inr F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ h✝ : Nonempty α ⊢ dist f g = ⨆ (x : α), dist (↑f x) (↑g x) [PROOFSTEP] refine' (dist_le_iff_of_nonempty.mpr <| le_ciSup _).antisymm (ciSup_le dist_coe_le_dist) [GOAL] case inr F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ h✝ : Nonempty α ⊢ BddAbove (range fun x => dist (↑f x) (↑g x)) [PROOFSTEP] exact dist_set_exists.imp fun C hC => forall_range_iff.2 hC.2 [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ ⊢ ⨆ (x : α), dist (↑f x) (↑g x) = ↑(⨆ (x : α), nndist (↑f x) (↑g x)) [PROOFSTEP] simp_rw [val_eq_coe, coe_iSup, coe_nndist] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ ⊢ Inducing (↑UniformFun.ofFun ∘ FunLike.coe) [PROOFSTEP] rw [inducing_iff_nhds] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ ⊢ ∀ (a : α →ᵇ β), 𝓝 a = comap (↑UniformFun.ofFun ∘ FunLike.coe) (𝓝 ((↑UniformFun.ofFun ∘ FunLike.coe) a)) [PROOFSTEP] refine' fun f => eq_of_forall_le_iff fun l => _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ f : α →ᵇ β l : Filter (α →ᵇ β) ⊢ l ≤ 𝓝 f ↔ l ≤ comap (↑UniformFun.ofFun ∘ FunLike.coe) (𝓝 ((↑UniformFun.ofFun ∘ FunLike.coe) f)) [PROOFSTEP] rw [← tendsto_iff_comap, ← tendsto_id', tendsto_iff_tendstoUniformly, UniformFun.tendsto_iff_tendstoUniformly] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ f : α →ᵇ β l : Filter (α →ᵇ β) ⊢ TendstoUniformly (fun i => ↑(id i)) (↑f) l ↔ TendstoUniformly (↑UniformFun.ofFun ∘ FunLike.coe) ((↑UniformFun.ofFun ∘ FunLike.coe) f) l [PROOFSTEP] rfl [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f g : α →ᵇ β x : α C : ℝ b : β ⊢ ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.const α b) x) (ContinuousMap.toFun (ContinuousMap.const α b) y) ≤ 0 [PROOFSTEP] simp [le_rfl] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] rcases cauchySeq_iff_le_tendsto_0.1 hf with ⟨b, b0, b_bound, b_lim⟩ [GOAL] case intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] have f_bdd := fun x n m N hn hm => le_trans (dist_coe_le_dist x) (b_bound n m N hn hm) [GOAL] case intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] have fx_cau : ∀ x, CauchySeq fun n => f n x := fun x => cauchySeq_iff_le_tendsto_0.2 ⟨b, b0, f_bdd x, b_lim⟩ [GOAL] case intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] choose F hF using fun x => cauchySeq_tendsto_of_complete (fx_cau x) /- `F : α → β`, `hF : ∀ (x : α), Tendsto (fun n ↦ ↑(f n) x) atTop (𝓝 (F x))` `F` is the desired limit function. Check that it is uniformly approximated by `f N`. -/ [GOAL] case intro.intro.intro F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] have fF_bdd : ∀ x N, dist (f N x) (F x) ≤ b N := fun x N => le_of_tendsto (tendsto_const_nhds.dist (hF x)) (Filter.eventually_atTop.2 ⟨N, fun n hn => f_bdd x N n N (le_refl N) hn⟩) [GOAL] case intro.intro.intro F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ⊢ ∃ a, Tendsto f atTop (𝓝 a) [PROOFSTEP] refine' ⟨⟨⟨F, _⟩, _⟩, _⟩ [GOAL] case intro.intro.intro.refine'_1 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ⊢ Continuous F [PROOFSTEP] have : TendstoUniformly (fun n x => f n x) F atTop := by refine' Metric.tendstoUniformly_iff.2 fun ε ε0 => _ refine' ((tendsto_order.1 b_lim).2 ε ε0).mono fun n hn x => _ rw [dist_comm] exact lt_of_le_of_lt (fF_bdd x n) hn [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ⊢ TendstoUniformly (fun n x => ↑(f n) x) F atTop [PROOFSTEP] refine' Metric.tendstoUniformly_iff.2 fun ε ε0 => _ [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ε : ℝ ε0 : ε > 0 ⊢ ∀ᶠ (n : ℕ) in atTop, ∀ (x : α), dist (F x) (↑(f n) x) < ε [PROOFSTEP] refine' ((tendsto_order.1 b_lim).2 ε ε0).mono fun n hn x => _ [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ε : ℝ ε0 : ε > 0 n : ℕ hn : b n < ε x : α ⊢ dist (F x) (↑(f n) x) < ε [PROOFSTEP] rw [dist_comm] [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ε : ℝ ε0 : ε > 0 n : ℕ hn : b n < ε x : α ⊢ dist (↑(f n) x) (F x) < ε [PROOFSTEP] exact lt_of_le_of_lt (fF_bdd x n) hn [GOAL] case intro.intro.intro.refine'_1 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N this : TendstoUniformly (fun n x => ↑(f n) x) F atTop ⊢ Continuous F [PROOFSTEP] exact this.continuous (eventually_of_forall fun N => (f N).continuous) [GOAL] case intro.intro.intro.refine'_2 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk F) x) (ContinuousMap.toFun (ContinuousMap.mk F) y) ≤ C [PROOFSTEP] rcases(f 0).bounded with ⟨C, hC⟩ [GOAL] case intro.intro.intro.refine'_2.intro F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C✝ : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N C : ℝ hC : ∀ (x y : α), dist (↑(f 0) x) (↑(f 0) y) ≤ C ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk F) x) (ContinuousMap.toFun (ContinuousMap.mk F) y) ≤ C [PROOFSTEP] refine' ⟨C + (b 0 + b 0), fun x y => _⟩ [GOAL] case intro.intro.intro.refine'_2.intro F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C✝ : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N C : ℝ hC : ∀ (x y : α), dist (↑(f 0) x) (↑(f 0) y) ≤ C x y : α ⊢ dist (ContinuousMap.toFun (ContinuousMap.mk F) x) (ContinuousMap.toFun (ContinuousMap.mk F) y) ≤ C + (b 0 + b 0) [PROOFSTEP] calc dist (F x) (F y) ≤ dist (f 0 x) (f 0 y) + (dist (f 0 x) (F x) + dist (f 0 y) (F y)) := dist_triangle4_left _ _ _ _ _ ≤ C + (b 0 + b 0) := add_le_add (hC _ _) (add_le_add (fF_bdd _ _) (fF_bdd _ _)) -- porting note: was --by mono* [GOAL] case intro.intro.intro.refine'_3 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ⊢ Tendsto f atTop (𝓝 { toContinuousMap := ContinuousMap.mk F, map_bounded' := (_ : ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk F) x) (ContinuousMap.toFun (ContinuousMap.mk F) y) ≤ C) }) [PROOFSTEP] refine' tendsto_iff_dist_tendsto_zero.2 (squeeze_zero (fun _ => dist_nonneg) _ b_lim) [GOAL] case intro.intro.intro.refine'_3 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompleteSpace β f : ℕ → α →ᵇ β hf : CauchySeq f b : ℕ → ℝ b0 : ∀ (n : ℕ), 0 ≤ b n b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → dist (f n) (f m) ≤ b N b_lim : Tendsto b atTop (𝓝 0) f_bdd : ∀ (x : α) (n m N : ℕ), N ≤ n → N ≤ m → dist (↑(f n) x) (↑(f m) x) ≤ b N fx_cau : ∀ (x : α), CauchySeq fun n => ↑(f n) x F : (x : α) → (fun a => β) x hF : ∀ (x : α), Tendsto (fun n => ↑(f n) x) atTop (𝓝 (F x)) fF_bdd : ∀ (x : α) (N : ℕ), dist (↑(f N) x) (F x) ≤ b N ⊢ ∀ (t : ℕ), dist (f t) { toContinuousMap := ContinuousMap.mk F, map_bounded' := (_ : ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk F) x) (ContinuousMap.toFun (ContinuousMap.mk F) y) ≤ C) } ≤ b t [PROOFSTEP] exact fun N => (dist_le (b0 _)).2 fun x => fF_bdd x N [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C✝ : ℝ G : β → γ C : ℝ≥0 H : LipschitzWith C G f : α →ᵇ β D : ℝ hD : ∀ (x y : α), dist (↑f x) (↑f y) ≤ D x y : α ⊢ ↑C * dist (↑f x) (↑f y) ≤ ↑(max C 0) * dist (↑f x) (↑f y) [PROOFSTEP] gcongr [GOAL] case h.h F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C✝ : ℝ G : β → γ C : ℝ≥0 H : LipschitzWith C G f : α →ᵇ β D : ℝ hD : ∀ (x y : α), dist (↑f x) (↑f y) ≤ D x y : α ⊢ C ≤ max C 0 [PROOFSTEP] apply le_max_left [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C✝ : ℝ G : β → γ C : ℝ≥0 H : LipschitzWith C G f : α →ᵇ β D : ℝ hD : ∀ (x y : α), dist (↑f x) (↑f y) ≤ D x y : α ⊢ ↑(max C 0) * dist (↑f x) (↑f y) ≤ ↑(max C 0) * D [PROOFSTEP] gcongr [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C✝ : ℝ G : β → γ C : ℝ≥0 H : LipschitzWith C G f : α →ᵇ β D : ℝ hD : ∀ (x y : α), dist (↑f x) (↑f y) ≤ D x y : α ⊢ dist (↑f x) (↑f y) ≤ D [PROOFSTEP] apply hD [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g✝ : α →ᵇ β x✝ : α C✝ : ℝ G : β → γ C : ℝ≥0 H : LipschitzWith C G f g : α →ᵇ β x : α ⊢ ↑C * dist (↑f x) (↑g x) ≤ ↑C * dist f g [PROOFSTEP] gcongr [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : PseudoMetricSpace β inst✝ : PseudoMetricSpace γ f✝ g✝ : α →ᵇ β x✝ : α C✝ : ℝ G : β → γ C : ℝ≥0 H : LipschitzWith C G f g : α →ᵇ β x : α ⊢ dist (↑f x) (↑g x) ≤ dist f g [PROOFSTEP] apply dist_coe_le_dist [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g✝ : α →ᵇ β x : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g : α →ᵇ β h : δ →ᵇ β ⊢ ∃ C, ∀ (x y : δ), dist (ContinuousMap.toFun (ContinuousMap.mk (Function.extend ↑f ↑g ↑h)) x) (ContinuousMap.toFun (ContinuousMap.mk (Function.extend ↑f ↑g ↑h)) y) ≤ C [PROOFSTEP] rw [← bounded_range_iff, range_extend f.injective, Metric.bounded_union] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g✝ : α →ᵇ β x : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g : α →ᵇ β h : δ →ᵇ β ⊢ Metric.Bounded (range ↑g) ∧ Metric.Bounded (↑h '' (range ↑f)ᶜ) [PROOFSTEP] exact ⟨g.bounded_range, h.bounded_image _⟩ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β ⊢ dist (extend f g₁ h₁) (extend f g₂ h₂) = max (dist g₁ g₂) (dist (restrict h₁ (range ↑f)ᶜ) (restrict h₂ (range ↑f)ᶜ)) [PROOFSTEP] refine' le_antisymm ((dist_le <| le_max_iff.2 <| Or.inl dist_nonneg).2 fun x => _) (max_le _ _) [GOAL] case refine'_1 F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : δ ⊢ dist (↑(extend f g₁ h₁) x) (↑(extend f g₂ h₂) x) ≤ max (dist g₁ g₂) (dist (restrict h₁ (range ↑f)ᶜ) (restrict h₂ (range ↑f)ᶜ)) [PROOFSTEP] rcases _root_.em (∃ y, f y = x) with (⟨x, rfl⟩ | hx) [GOAL] case refine'_1.inl.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : α ⊢ dist (↑(extend f g₁ h₁) (↑f x)) (↑(extend f g₂ h₂) (↑f x)) ≤ max (dist g₁ g₂) (dist (restrict h₁ (range ↑f)ᶜ) (restrict h₂ (range ↑f)ᶜ)) [PROOFSTEP] simp only [extend_apply] [GOAL] case refine'_1.inl.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : α ⊢ dist (↑g₁ x) (↑g₂ x) ≤ max (dist g₁ g₂) (dist (restrict h₁ (range ↑f)ᶜ) (restrict h₂ (range ↑f)ᶜ)) [PROOFSTEP] exact (dist_coe_le_dist x).trans (le_max_left _ _) [GOAL] case refine'_1.inr F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : δ hx : ¬∃ y, ↑f y = x ⊢ dist (↑(extend f g₁ h₁) x) (↑(extend f g₂ h₂) x) ≤ max (dist g₁ g₂) (dist (restrict h₁ (range ↑f)ᶜ) (restrict h₂ (range ↑f)ᶜ)) [PROOFSTEP] simp only [extend_apply' hx] [GOAL] case refine'_1.inr F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : δ hx : ¬∃ y, ↑f y = x ⊢ dist (↑h₁ x) (↑h₂ x) ≤ max (dist g₁ g₂) (dist (restrict h₁ (range ↑f)ᶜ) (restrict h₂ (range ↑f)ᶜ)) [PROOFSTEP] lift x to ((range f)ᶜ : Set δ) using hx [GOAL] case refine'_1.inr.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : { x // x ∈ (range ↑f)ᶜ } ⊢ dist (↑h₁ ↑x) (↑h₂ ↑x) ≤ max (dist g₁ g₂) (dist (restrict h₁ (range ↑f)ᶜ) (restrict h₂ (range ↑f)ᶜ)) [PROOFSTEP] calc dist (h₁ x) (h₂ x) = dist (h₁.restrict (range f)ᶜ x) (h₂.restrict (range f)ᶜ x) := rfl _ ≤ dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ) := (dist_coe_le_dist x) _ ≤ _ := le_max_right _ _ [GOAL] case refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β ⊢ dist g₁ g₂ ≤ dist (extend f g₁ h₁) (extend f g₂ h₂) [PROOFSTEP] refine' (dist_le dist_nonneg).2 fun x => _ [GOAL] case refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : α ⊢ dist (↑g₁ x) (↑g₂ x) ≤ dist (extend f g₁ h₁) (extend f g₂ h₂) [PROOFSTEP] rw [← extend_apply f g₁ h₁, ← extend_apply f g₂ h₂] [GOAL] case refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : α ⊢ dist (↑(extend f g₁ h₁) (↑f x)) (↑(extend f g₂ h₂) (↑f x)) ≤ dist (extend f g₁ h₁) (extend f g₂ h₂) [PROOFSTEP] exact dist_coe_le_dist _ [GOAL] case refine'_3 F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β ⊢ dist (restrict h₁ (range ↑f)ᶜ) (restrict h₂ (range ↑f)ᶜ) ≤ dist (extend f g₁ h₁) (extend f g₂ h₂) [PROOFSTEP] refine' (dist_le dist_nonneg).2 fun x => _ [GOAL] case refine'_3 F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : ↑(range ↑f)ᶜ ⊢ dist (↑(restrict h₁ (range ↑f)ᶜ) x) (↑(restrict h₂ (range ↑f)ᶜ) x) ≤ dist (extend f g₁ h₁) (extend f g₂ h₂) [PROOFSTEP] calc dist (h₁ x) (h₂ x) = dist (extend f g₁ h₁ x) (extend f g₂ h₂ x) := by rw [extend_apply' x.coe_prop, extend_apply' x.coe_prop] _ ≤ _ := dist_coe_le_dist _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x✝ : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ g₁ g₂ : α →ᵇ β h₁ h₂ : δ →ᵇ β x : ↑(range ↑f)ᶜ ⊢ dist (↑h₁ ↑x) (↑h₂ ↑x) = dist (↑(extend f g₁ h₁) ↑x) (↑(extend f g₂ h₂) ↑x) [PROOFSTEP] rw [extend_apply' x.coe_prop, extend_apply' x.coe_prop] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : PseudoMetricSpace β inst✝² : PseudoMetricSpace γ f✝ g : α →ᵇ β x : α C : ℝ δ : Type u_2 inst✝¹ : TopologicalSpace δ inst✝ : DiscreteTopology δ f : α ↪ δ h : δ →ᵇ β g₁ g₂ : α →ᵇ β ⊢ dist (extend f g₁ h) (extend f g₂ h) = dist g₁ g₂ [PROOFSTEP] simp [dist_nonneg] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : Equicontinuous fun x => ↑↑x ⊢ IsCompact A [PROOFSTEP] simp_rw [Equicontinuous, Metric.equicontinuousAt_iff_pair] at H [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ⊢ IsCompact A [PROOFSTEP] refine' isCompact_of_totallyBounded_isClosed _ closed [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ⊢ TotallyBounded A [PROOFSTEP] refine' totallyBounded_of_finite_discretization fun ε ε0 => _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] rcases exists_between ε0 with ⟨ε₁, ε₁0, εε₁⟩ [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] let ε₂ := ε₁ / 2 / 2 /- We have to find a finite discretization of `u`, i.e., finite information that is sufficient to reconstruct `u` up to `ε`. This information will be provided by the values of `u` on a sufficiently dense set `tα`, slightly translated to fit in a finite `ε₂`-dense set `tβ` in the image. Such sets exist by compactness of the source and range. Then, to check that these data determine the function up to `ε`, one uses the control on the modulus of continuity to extend the closeness on tα to closeness everywhere. -/ [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] have ε₂0 : ε₂ > 0 := half_pos (half_pos ε₁0) [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] have : ∀ x : α, ∃ U, x ∈ U ∧ IsOpen U ∧ ∀ (y) (_ : y ∈ U) (z) (_ : z ∈ U) {f : α →ᵇ β}, f ∈ A → dist (f y) (f z) < ε₂ := fun x => let ⟨U, nhdsU, hU⟩ := H x _ ε₂0 let ⟨V, VU, openV, xV⟩ := _root_.mem_nhds_iff.1 nhdsU ⟨V, xV, openV, fun y hy z hz f hf => hU y (VU hy) z (VU hz) ⟨f, hf⟩⟩ [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 this : ∀ (x : α), ∃ U, x ∈ U ∧ IsOpen U ∧ ∀ (y : α), y ∈ U → ∀ (z : α), z ∈ U → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] choose U hU using this [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] rcases isCompact_univ.elim_finite_subcover_image (fun x _ => (hU x).2.1) fun x _ => mem_biUnion (mem_univ _) (hU x).1 with ⟨tα, _, ⟨_⟩, htα⟩ -- `tα: Set α`, `htα : univ ⊆ ⋃x ∈ tα, U x` [GOAL] case intro.intro.intro.intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝ : Fintype ↑tα ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] rcases@finite_cover_balls_of_compact β _ _ isCompact_univ _ ε₂0 with ⟨tβ, _, ⟨_⟩, htβ⟩ -- `tβ : Set β`, `htβ : univ ⊆ ⋃y ∈ tβ, ball y ε₂` -- Associate to every point `y` in the space a nearby point `F y` in `tβ` [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] choose F hF using fun y => show ∃ z ∈ tβ, dist y z < ε₂ by simpa using htβ (mem_univ y) -- `F : β → β`, `hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂` /- Associate to every function a discrete approximation, mapping each point in `tα` to a point in `tβ` close to its true image by the function. -/ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ y : β ⊢ ∃ z, z ∈ tβ ∧ dist y z < ε₂ [PROOFSTEP] simpa using htβ (mem_univ y) -- `F : β → β`, `hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂` /- Associate to every function a discrete approximation, mapping each point in `tα` to a point in `tβ` close to its true image by the function. -/ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ ⊢ ∃ β_1 x F, ∀ (x y : ↑A), F x = F y → dist ↑x ↑y < ε [PROOFSTEP] refine' ⟨tα → tβ, by infer_instance, fun f a => ⟨F (f.1 a), (hF (f.1 a)).1⟩, _⟩ [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ ⊢ Fintype (↑tα → ↑tβ) [PROOFSTEP] infer_instance [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ ⊢ ∀ (x y : ↑A), (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) x = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) y → dist ↑x ↑y < ε [PROOFSTEP] rintro ⟨f, hf⟩ ⟨g, hg⟩ f_eq_g [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.mk F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } ⊢ dist ↑{ val := f, property := hf } ↑{ val := g, property := hg } < ε [PROOFSTEP] refine' lt_of_le_of_lt ((dist_le <| le_of_lt ε₁0).2 fun x => _) εε₁ [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.mk F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x : α ⊢ dist (↑↑{ val := f, property := hf } x) (↑↑{ val := g, property := hg } x) ≤ ε₁ [PROOFSTEP] obtain ⟨x', x'tα, hx'⟩ := mem_iUnion₂.1 (htα (mem_univ x)) [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.mk.mk.intro.intro F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' ⊢ dist (↑↑{ val := f, property := hf } x) (↑↑{ val := g, property := hg } x) ≤ ε₁ [PROOFSTEP] calc dist (f x) (g x) ≤ dist (f x) (f x') + dist (g x) (g x') + dist (f x') (g x') := dist_triangle4_right _ _ _ _ _ ≤ ε₂ + ε₂ + ε₁ / 2 := by refine' le_of_lt (add_lt_add (add_lt_add _ _) _) · exact (hU x').2.2 _ hx' _ (hU x').1 hf · exact (hU x').2.2 _ hx' _ (hU x').1 hg · have F_f_g : F (f x') = F (g x') := (congr_arg (fun f : tα → tβ => (f ⟨x', x'tα⟩ : β)) f_eq_g : _) calc dist (f x') (g x') ≤ dist (f x') (F (f x')) + dist (g x') (F (f x')) := dist_triangle_right _ _ _ _ = dist (f x') (F (f x')) + dist (g x') (F (g x')) := by rw [F_f_g] _ < ε₂ + ε₂ := (add_lt_add (hF (f x')).2 (hF (g x')).2) _ = ε₁ / 2 := add_halves _ _ = ε₁ := by rw [add_halves, add_halves] [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' ⊢ dist (↑f x) (↑f x') + dist (↑g x) (↑g x') + dist (↑f x') (↑g x') ≤ ε₂ + ε₂ + ε₁ / 2 [PROOFSTEP] refine' le_of_lt (add_lt_add (add_lt_add _ _) _) [GOAL] case refine'_1 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' ⊢ dist (↑f x) (↑f x') < ε₂ [PROOFSTEP] exact (hU x').2.2 _ hx' _ (hU x').1 hf [GOAL] case refine'_2 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' ⊢ dist (↑g x) (↑g x') < ε₂ [PROOFSTEP] exact (hU x').2.2 _ hx' _ (hU x').1 hg [GOAL] case refine'_3 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' ⊢ dist (↑f x') (↑g x') < ε₁ / 2 [PROOFSTEP] have F_f_g : F (f x') = F (g x') := (congr_arg (fun f : tα → tβ => (f ⟨x', x'tα⟩ : β)) f_eq_g : _) [GOAL] case refine'_3 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' F_f_g : F (↑f x') = F (↑g x') ⊢ dist (↑f x') (↑g x') < ε₁ / 2 [PROOFSTEP] calc dist (f x') (g x') ≤ dist (f x') (F (f x')) + dist (g x') (F (f x')) := dist_triangle_right _ _ _ _ = dist (f x') (F (f x')) + dist (g x') (F (g x')) := by rw [F_f_g] _ < ε₂ + ε₂ := (add_lt_add (hF (f x')).2 (hF (g x')).2) _ = ε₁ / 2 := add_halves _ [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' F_f_g : F (↑f x') = F (↑g x') ⊢ dist (↑f x') (F (↑f x')) + dist (↑g x') (F (↑f x')) = dist (↑f x') (F (↑f x')) + dist (↑g x') (F (↑g x')) [PROOFSTEP] rw [F_f_g] [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : CompactSpace α inst✝¹ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝ : CompactSpace β A : Set (α →ᵇ β) closed : IsClosed A H : ∀ (x₀ : α) (ε : ℝ), ε > 0 → ∃ U, U ∈ 𝓝 x₀ ∧ ∀ (x : α), x ∈ U → ∀ (x' : α), x' ∈ U → ∀ (i : ↑A), dist (↑↑i x) (↑↑i x') < ε ε : ℝ ε0 : ε > 0 ε₁ : ℝ ε₁0 : 0 < ε₁ εε₁ : ε₁ < ε ε₂ : ℝ := ε₁ / 2 / 2 ε₂0 : ε₂ > 0 U : α → Set α hU : ∀ (x : α), x ∈ U x ∧ IsOpen (U x) ∧ ∀ (y : α), y ∈ U x → ∀ (z : α), z ∈ U x → ∀ {f : α →ᵇ β}, f ∈ A → dist (↑f y) (↑f z) < ε₂ tα : Set α left✝¹ : tα ⊆ univ htα : univ ⊆ ⋃ (i : α) (_ : i ∈ tα), U i a✝¹ : Fintype ↑tα tβ : Set β left✝ : tβ ⊆ univ htβ : univ ⊆ ⋃ (x : β) (_ : x ∈ tβ), ball x ε₂ a✝ : Fintype ↑tβ F : β → β hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ f : α →ᵇ β hf : f ∈ A g : α →ᵇ β hg : g ∈ A f_eq_g : (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := f, property := hf } = (fun f a => { val := F (↑↑f ↑a), property := (_ : F (↑↑f ↑a) ∈ tβ) }) { val := g, property := hg } x x' : α x'tα : x' ∈ tα hx' : x ∈ U x' ⊢ ε₂ + ε₂ + ε₁ / 2 = ε₁ [PROOFSTEP] rw [add_halves, add_halves] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x ⊢ IsCompact A [PROOFSTEP] have M : LipschitzWith 1 (↑) := LipschitzWith.subtype_val s [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val ⊢ IsCompact A [PROOFSTEP] let F : (α →ᵇ s) → α →ᵇ β := comp (↑) M [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M ⊢ IsCompact A [PROOFSTEP] refine' isCompact_of_isClosed_subset ((_ : IsCompact (F ⁻¹' A)).image (continuous_comp M)) closed fun f hf => _ [GOAL] case refine'_1 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M ⊢ IsCompact (F ⁻¹' A) [PROOFSTEP] haveI : CompactSpace s := isCompact_iff_compactSpace.1 hs [GOAL] case refine'_1 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M this : CompactSpace ↑s ⊢ IsCompact (F ⁻¹' A) [PROOFSTEP] refine' arzela_ascoli₁ _ (continuous_iff_isClosed.1 (continuous_comp M) _ closed) _ [GOAL] case refine'_1 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M this : CompactSpace ↑s ⊢ Equicontinuous fun x => ↑↑x [PROOFSTEP] rw [uniformEmbedding_subtype_val.toUniformInducing.equicontinuous_iff] [GOAL] case refine'_1 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f g : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M this : CompactSpace ↑s ⊢ Equicontinuous ((fun x x_1 => x ∘ x_1) Subtype.val ∘ fun x => ↑↑x) [PROOFSTEP] exact H.comp (A.restrictPreimage F) [GOAL] case refine'_2 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f✝ g : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M f : α →ᵇ β hf : f ∈ A ⊢ f ∈ comp Subtype.val M '' (F ⁻¹' A) [PROOFSTEP] let g := codRestrict s f fun x => in_s f x hf [GOAL] case refine'_2 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M f : α →ᵇ β hf : f ∈ A g : α →ᵇ ↑s := codRestrict s f (_ : ∀ (x : α), ↑f x ∈ s) ⊢ f ∈ comp Subtype.val M '' (F ⁻¹' A) [PROOFSTEP] rw [show f = F g by ext; rfl] at hf ⊢ [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M f : α →ᵇ β hf : f ∈ A g : α →ᵇ ↑s := codRestrict s f (_ : ∀ (x : α), ↑f x ∈ s) ⊢ f = F g [PROOFSTEP] ext [GOAL] case h F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M f : α →ᵇ β hf : f ∈ A g : α →ᵇ ↑s := codRestrict s f (_ : ∀ (x : α), ↑f x ∈ s) x✝ : α ⊢ ↑f x✝ = ↑(F g) x✝ [PROOFSTEP] rfl [GOAL] F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M f : α →ᵇ β hf✝ : f ∈ A g : α →ᵇ ↑s := codRestrict s f (_ : ∀ (x : α), ↑f x ∈ s) hf : F g ∈ A ⊢ f = F g [PROOFSTEP] ext [GOAL] case h F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M f : α →ᵇ β hf✝ : f ∈ A g : α →ᵇ ↑s := codRestrict s f (_ : ∀ (x : α), ↑f x ∈ s) hf : F g ∈ A x✝ : α ⊢ ↑f x✝ = ↑(F g) x✝ [PROOFSTEP] rfl [GOAL] case refine'_2 F✝ : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : CompactSpace α inst✝ : PseudoMetricSpace β f✝ g✝ : α →ᵇ β x : α C : ℝ s : Set β hs : IsCompact s A : Set (α →ᵇ β) closed : IsClosed A in_s : ∀ (f : α →ᵇ β) (x : α), f ∈ A → ↑f x ∈ s H : Equicontinuous fun x => ↑↑x M : LipschitzWith 1 Subtype.val F : (α →ᵇ ↑s) → α →ᵇ β := comp Subtype.val M f : α →ᵇ β hf✝ : f ∈ A g : α →ᵇ ↑s := codRestrict s f (_ : ∀ (x : α), ↑f x ∈ s) hf : F g ∈ A ⊢ F g ∈ comp Subtype.val M '' (F ⁻¹' A) [PROOFSTEP] exact ⟨g, hf, rfl⟩ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g✝ : α →ᵇ β x : α C : ℝ f g : α →ᵇ β ⊢ ∀ (x y : α), dist (↑(f.toContinuousMap + g.toContinuousMap) x) (↑(f.toContinuousMap + g.toContinuousMap) y) ≤ ↑(LipschitzAdd.C β) * max (choose (_ : ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C)) (choose (_ : ∃ C, ∀ (x y : α), dist (↑g x) (↑g y) ≤ C)) [PROOFSTEP] intro x y [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x y : α ⊢ dist (↑(f.toContinuousMap + g.toContinuousMap) x) (↑(f.toContinuousMap + g.toContinuousMap) y) ≤ ↑(LipschitzAdd.C β) * max (choose (_ : ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C)) (choose (_ : ∃ C, ∀ (x y : α), dist (↑g x) (↑g y) ≤ C)) [PROOFSTEP] refine' le_trans (lipschitz_with_lipschitz_const_add ⟨f x, g x⟩ ⟨f y, g y⟩) _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x y : α ⊢ ↑(LipschitzAdd.C ((fun a => β) x)) * dist (↑f x, ↑g x) (↑f y, ↑g y) ≤ ↑(LipschitzAdd.C β) * max (choose (_ : ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C)) (choose (_ : ∃ C, ∀ (x y : α), dist (↑g x) (↑g y) ≤ C)) [PROOFSTEP] rw [Prod.dist_eq] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x y : α ⊢ ↑(LipschitzAdd.C ((fun a => β) x)) * max (dist (↑f x, ↑g x).fst (↑f y, ↑g y).fst) (dist (↑f x, ↑g x).snd (↑f y, ↑g y).snd) ≤ ↑(LipschitzAdd.C β) * max (choose (_ : ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C)) (choose (_ : ∃ C, ∀ (x y : α), dist (↑g x) (↑g y) ≤ C)) [PROOFSTEP] refine' mul_le_mul_of_nonneg_left _ (LipschitzAdd.C β).coe_nonneg [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x y : α ⊢ max (dist (↑f x, ↑g x).fst (↑f y, ↑g y).fst) (dist (↑f x, ↑g x).snd (↑f y, ↑g y).snd) ≤ max (choose (_ : ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C)) (choose (_ : ∃ C, ∀ (x y : α), dist (↑g x) (↑g y) ≤ C)) [PROOFSTEP] apply max_le_max [GOAL] case a F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x y : α ⊢ dist (↑f x, ↑g x).fst (↑f y, ↑g y).fst ≤ choose (_ : ∃ C, ∀ (x y : α), dist (↑f x) (↑f y) ≤ C) case a F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x y : α ⊢ dist (↑f x, ↑g x).snd (↑f y, ↑g y).snd ≤ choose (_ : ∃ C, ∀ (x y : α), dist (↑g x) (↑g y) ≤ C) [PROOFSTEP] exact Classical.choose_spec f.bounded x y [GOAL] case a F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x y : α ⊢ dist (↑f x, ↑g x).snd (↑f y, ↑g y).snd ≤ choose (_ : ∃ C, ∀ (x y : α), dist (↑g x) (↑g y) ≤ C) [PROOFSTEP] exact Classical.choose_spec g.bounded x y [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ ⊢ ↑(nsmulRec 0 f) = 0 • ↑f [PROOFSTEP] rw [nsmulRec, zero_smul, coe_zero] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ n : ℕ ⊢ ↑(nsmulRec (n + 1) f) = (n + 1) • ↑f [PROOFSTEP] rw [nsmulRec, succ_nsmul, coe_add, coe_nsmulRec n] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f✝ g : α →ᵇ β x : α C : ℝ n : ℕ f : α →ᵇ β ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (n • f.toContinuousMap) x) (ContinuousMap.toFun (n • f.toContinuousMap) y) ≤ C [PROOFSTEP] simpa [coe_nsmulRec] using (nsmulRec n f).map_bounded' [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ ⊢ LipschitzWith (LipschitzAdd.C β) fun p => p.fst + p.snd [PROOFSTEP] have C_nonneg := (LipschitzAdd.C β).coe_nonneg [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) ⊢ LipschitzWith (LipschitzAdd.C β) fun p => p.fst + p.snd [PROOFSTEP] rw [lipschitzWith_iff_dist_le_mul] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) ⊢ ∀ (x y : (α →ᵇ β) × (α →ᵇ β)), dist (x.fst + x.snd) (y.fst + y.snd) ≤ ↑(LipschitzAdd.C β) * dist x y [PROOFSTEP] rintro ⟨f₁, g₁⟩ ⟨f₂, g₂⟩ [GOAL] case mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) f₁ g₁ f₂ g₂ : α →ᵇ β ⊢ dist ((f₁, g₁).fst + (f₁, g₁).snd) ((f₂, g₂).fst + (f₂, g₂).snd) ≤ ↑(LipschitzAdd.C β) * dist (f₁, g₁) (f₂, g₂) [PROOFSTEP] rw [dist_le (mul_nonneg C_nonneg dist_nonneg)] [GOAL] case mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) f₁ g₁ f₂ g₂ : α →ᵇ β ⊢ ∀ (x : α), dist (↑((f₁, g₁).fst + (f₁, g₁).snd) x) (↑((f₂, g₂).fst + (f₂, g₂).snd) x) ≤ ↑(LipschitzAdd.C β) * dist (f₁, g₁) (f₂, g₂) [PROOFSTEP] intro x [GOAL] case mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x✝ : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) f₁ g₁ f₂ g₂ : α →ᵇ β x : α ⊢ dist (↑((f₁, g₁).fst + (f₁, g₁).snd) x) (↑((f₂, g₂).fst + (f₂, g₂).snd) x) ≤ ↑(LipschitzAdd.C β) * dist (f₁, g₁) (f₂, g₂) [PROOFSTEP] refine' le_trans (lipschitz_with_lipschitz_const_add ⟨f₁ x, g₁ x⟩ ⟨f₂ x, g₂ x⟩) _ [GOAL] case mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x✝ : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) f₁ g₁ f₂ g₂ : α →ᵇ β x : α ⊢ ↑(LipschitzAdd.C ((fun a => β) x)) * dist (↑f₁ x, ↑g₁ x) (↑f₂ x, ↑g₂ x) ≤ ↑(LipschitzAdd.C β) * dist (f₁, g₁) (f₂, g₂) [PROOFSTEP] refine' mul_le_mul_of_nonneg_left _ C_nonneg [GOAL] case mk.mk F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x✝ : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) f₁ g₁ f₂ g₂ : α →ᵇ β x : α ⊢ dist (↑f₁ x, ↑g₁ x) (↑f₂ x, ↑g₂ x) ≤ dist (f₁, g₁) (f₂, g₂) [PROOFSTEP] apply max_le_max [GOAL] case mk.mk.a F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x✝ : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) f₁ g₁ f₂ g₂ : α →ᵇ β x : α ⊢ dist (↑f₁ x, ↑g₁ x).fst (↑f₂ x, ↑g₂ x).fst ≤ dist (f₁, g₁).fst (f₂, g₂).fst [PROOFSTEP] exact dist_coe_le_dist x [GOAL] case mk.mk.a F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x✝ : α C : ℝ C_nonneg : 0 ≤ ↑(LipschitzAdd.C β) f₁ g₁ f₂ g₂ : α →ᵇ β x : α ⊢ dist (↑f₁ x, ↑g₁ x).snd (↑f₂ x, ↑g₂ x).snd ≤ dist (f₁, g₁).snd (f₂, g₂).snd [PROOFSTEP] exact dist_coe_le_dist x [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ ⊢ ∀ (x y : α →ᵇ β), ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } (x + y) = ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } x + ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } y [PROOFSTEP] intros [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ x✝ y✝ : α →ᵇ β ⊢ ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } (x✝ + y✝) = ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } x✝ + ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } y✝ [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddMonoid β inst✝ : LipschitzAdd β f g : α →ᵇ β x : α C : ℝ x✝ y✝ : α →ᵇ β a✝ : α ⊢ ↑(ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } (x✝ + y✝)) a✝ = ↑(ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } x✝ + ZeroHom.toFun { toFun := toContinuousMap, map_zero' := (_ : 0.toContinuousMap = 0.toContinuousMap) } y✝) a✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddCommMonoid β inst✝ : LipschitzAdd β src✝ : AddMonoid (α →ᵇ β) := addMonoid f g : α →ᵇ β ⊢ f + g = g + f [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddCommMonoid β inst✝ : LipschitzAdd β src✝ : AddMonoid (α →ᵇ β) := addMonoid f g : α →ᵇ β x✝ : α ⊢ ↑(f + g) x✝ = ↑(g + f) x✝ [PROOFSTEP] simp [add_comm] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : PseudoMetricSpace β inst✝¹ : AddCommMonoid β inst✝ : LipschitzAdd β ι : Type u_2 s : Finset ι f : ι → α →ᵇ β a : α ⊢ ↑(∑ i in s, f i) a = ∑ i in s, ↑(f i) a [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ f : α →ᵇ β ⊢ ‖f‖ = sInf {C | 0 ≤ C ∧ ∀ (x : α), ‖↑f x‖ ≤ C} [PROOFSTEP] simp [norm_def, BoundedContinuousFunction.dist_eq] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ h : Nonempty α ⊢ ‖f‖ = sInf {C | ∀ (x : α), ‖↑f x‖ ≤ C} [PROOFSTEP] obtain ⟨a⟩ := h [GOAL] case intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ a : α ⊢ ‖f‖ = sInf {C | ∀ (x : α), ‖↑f x‖ ≤ C} [PROOFSTEP] rw [norm_eq] [GOAL] case intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ a : α ⊢ sInf {C | 0 ≤ C ∧ ∀ (x : α), ‖↑f x‖ ≤ C} = sInf {C | ∀ (x : α), ‖↑f x‖ ≤ C} [PROOFSTEP] congr [GOAL] case intro.e_a F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ a : α ⊢ {C | 0 ≤ C ∧ ∀ (x : α), ‖↑f x‖ ≤ C} = {C | ∀ (x : α), ‖↑f x‖ ≤ C} [PROOFSTEP] ext [GOAL] case intro.e_a.h F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ a : α x✝ : ℝ ⊢ x✝ ∈ {C | 0 ≤ C ∧ ∀ (x : α), ‖↑f x‖ ≤ C} ↔ x✝ ∈ {C | ∀ (x : α), ‖↑f x‖ ≤ C} [PROOFSTEP] simp only [mem_setOf_eq, and_iff_right_iff_imp] [GOAL] case intro.e_a.h F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ a : α x✝ : ℝ ⊢ (∀ (x : α), ‖↑f x‖ ≤ x✝) → 0 ≤ x✝ [PROOFSTEP] exact fun h' => le_trans (norm_nonneg (f a)) (h' a) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x✝ : α C : ℝ x : α ⊢ ‖↑f x‖ = dist (↑f x) (↑0 x) [PROOFSTEP] simp [dist_zero_right] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ C0 : 0 ≤ C ⊢ ‖f‖ ≤ C ↔ ∀ (x : α), ‖↑f x‖ ≤ C [PROOFSTEP] simpa using @dist_le _ _ _ _ f 0 _ C0 [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ inst✝ : Nonempty α f : α →ᵇ β M : ℝ ⊢ ‖f‖ ≤ M ↔ ∀ (x : α), ‖↑f x‖ ≤ M [PROOFSTEP] simp_rw [norm_def, ← dist_zero_right] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ inst✝ : Nonempty α f : α →ᵇ β M : ℝ ⊢ dist f 0 ≤ M ↔ ∀ (x : α), dist (↑f x) 0 ≤ M [PROOFSTEP] exact dist_le_iff_of_nonempty [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α f : α →ᵇ β M : ℝ M0 : 0 < M ⊢ ‖f‖ < M ↔ ∀ (x : α), ‖↑f x‖ < M [PROOFSTEP] simp_rw [norm_def, ← dist_zero_right] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ inst✝ : CompactSpace α f : α →ᵇ β M : ℝ M0 : 0 < M ⊢ dist f 0 < M ↔ ∀ (x : α), dist (↑f x) 0 < M [PROOFSTEP] exact dist_lt_iff_of_compact M0 [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ inst✝¹ : Nonempty α inst✝ : CompactSpace α f : α →ᵇ β M : ℝ ⊢ ‖f‖ < M ↔ ∀ (x : α), ‖↑f x‖ < M [PROOFSTEP] simp_rw [norm_def, ← dist_zero_right] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ inst✝¹ : Nonempty α inst✝ : CompactSpace α f : α →ᵇ β M : ℝ ⊢ dist f 0 < M ↔ ∀ (x : α), dist (↑f x) 0 < M [PROOFSTEP] exact dist_lt_iff_of_nonempty_compact [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ ⊢ ‖normComp f‖ = ‖f‖ [PROOFSTEP] simp only [norm_eq, coe_normComp, norm_norm, Function.comp] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ ⊢ ‖f‖ = ⨆ (x : α), ‖↑f x‖ [PROOFSTEP] simp_rw [norm_def, dist_eq_iSup, coe_zero, Pi.zero_apply, dist_zero_right] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝⁴ : TopologicalSpace α inst✝³ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ inst✝² : Nonempty α inst✝¹ : One β inst✝ : NormOneClass β ⊢ ‖1‖ = 1 [PROOFSTEP] simp only [norm_eq_iSup_norm, coe_one, Pi.one_apply, norm_one, ciSup_const] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x : α ⊢ ‖(↑f - ↑g) x‖ ≤ ‖f‖ + ‖g‖ [PROOFSTEP] simp only [sub_eq_add_neg] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ f g : α →ᵇ β x : α ⊢ ‖(↑f + -↑g) x‖ ≤ ‖f‖ + ‖g‖ [PROOFSTEP] exact le_trans (norm_add_le _ _) (add_le_add (f.norm_coe_le_norm x) <| norm_neg ((⇑g) x) ▸ g.norm_coe_le_norm x) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ n : ℕ ⊢ ↑(zsmulRec (Int.ofNat n) f) = Int.ofNat n • ↑f [PROOFSTEP] rw [zsmulRec, Int.ofNat_eq_coe, coe_nsmulRec, coe_nat_zsmul] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ n : ℕ ⊢ ↑(zsmulRec (Int.negSucc n) f) = Int.negSucc n • ↑f [PROOFSTEP] rw [zsmulRec, negSucc_zsmul, coe_neg, coe_nsmulRec] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ n : ℤ f : α →ᵇ β ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (n • f.toContinuousMap) x) (ContinuousMap.toFun (n • f.toContinuousMap) y) ≤ C [PROOFSTEP] simpa using (zsmulRec n f).map_bounded' [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f✝ g✝ : α →ᵇ β x : α C : ℝ f g : α →ᵇ β ⊢ dist f g = ‖f - g‖ [PROOFSTEP] simp only [norm_eq, dist_eq, dist_eq_norm, sub_apply] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ ⊢ ⨆ (x : α), ‖↑f x‖ = ↑(⨆ (x : α), ‖↑f x‖₊) [PROOFSTEP] simp_rw [val_eq_coe, NNReal.coe_iSup, coe_nnnorm] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ ⊢ ‖↑f x - ↑g x‖ ≤ dist f g [PROOFSTEP] rw [dist_eq_norm] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : SeminormedAddCommGroup β f g : α →ᵇ β x : α C : ℝ ⊢ ‖↑f x - ↑g x‖ ≤ ‖f - g‖ [PROOFSTEP] exact (f - g).norm_coe_le_norm x [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝² : TopologicalSpace α inst✝¹ : SeminormedAddCommGroup β f✝ g✝ : α →ᵇ β x : α C : ℝ inst✝ : TopologicalSpace γ f : α →ᵇ β g : C(γ, α) ⊢ ↑1 * dist f 0 ≤ ‖f‖ [PROOFSTEP] rw [NNReal.coe_one, one_mul, dist_zero_right] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c : 𝕜 f : α →ᵇ β b : ℝ hb : ∀ (x y : α), dist (↑f x) (↑f y) ≤ b x y : α ⊢ dist (ContinuousMap.toFun (c • f.toContinuousMap) x) (ContinuousMap.toFun (c • f.toContinuousMap) y) ≤ dist c 0 * b [PROOFSTEP] refine' (dist_smul_pair c (f x) (f y)).trans _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c : 𝕜 f : α →ᵇ β b : ℝ hb : ∀ (x y : α), dist (↑f x) (↑f y) ≤ b x y : α ⊢ dist c 0 * dist (↑f x) (↑f y) ≤ dist c 0 * b [PROOFSTEP] refine' mul_le_mul_of_nonneg_left _ dist_nonneg [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c : 𝕜 f : α →ᵇ β b : ℝ hb : ∀ (x y : α), dist (↑f x) (↑f y) ≤ b x y : α ⊢ dist (↑f x) (↑f y) ≤ b [PROOFSTEP] exact hb x y [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c : 𝕜 f₁ f₂ : α →ᵇ β ⊢ dist (c • f₁) (c • f₂) ≤ dist c 0 * dist f₁ f₂ [PROOFSTEP] rw [dist_le (mul_nonneg dist_nonneg dist_nonneg)] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c : 𝕜 f₁ f₂ : α →ᵇ β ⊢ ∀ (x : α), dist (↑(c • f₁) x) (↑(c • f₂) x) ≤ dist c 0 * dist f₁ f₂ [PROOFSTEP] intro x [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c : 𝕜 f₁ f₂ : α →ᵇ β x : α ⊢ dist (↑(c • f₁) x) (↑(c • f₂) x) ≤ dist c 0 * dist f₁ f₂ [PROOFSTEP] refine' (dist_smul_pair c (f₁ x) (f₂ x)).trans _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c : 𝕜 f₁ f₂ : α →ᵇ β x : α ⊢ dist c 0 * dist (↑f₁ x) (↑f₂ x) ≤ dist c 0 * dist f₁ f₂ [PROOFSTEP] exact mul_le_mul_of_nonneg_left (dist_coe_le_dist x) dist_nonneg [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c₁ c₂ : 𝕜 f : α →ᵇ β ⊢ dist (c₁ • f) (c₂ • f) ≤ dist c₁ c₂ * dist f 0 [PROOFSTEP] rw [dist_le (mul_nonneg dist_nonneg dist_nonneg)] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c₁ c₂ : 𝕜 f : α →ᵇ β ⊢ ∀ (x : α), dist (↑(c₁ • f) x) (↑(c₂ • f) x) ≤ dist c₁ c₂ * dist f 0 [PROOFSTEP] intro x [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c₁ c₂ : 𝕜 f : α →ᵇ β x : α ⊢ dist (↑(c₁ • f) x) (↑(c₂ • f) x) ≤ dist c₁ c₂ * dist f 0 [PROOFSTEP] refine' (dist_pair_smul c₁ c₂ (f x)).trans _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c₁ c₂ : 𝕜 f : α →ᵇ β x : α ⊢ dist c₁ c₂ * dist (↑f x) 0 ≤ dist c₁ c₂ * dist f 0 [PROOFSTEP] refine' mul_le_mul_of_nonneg_left _ dist_nonneg [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c₁ c₂ : 𝕜 f : α →ᵇ β x : α ⊢ dist (↑f x) 0 ≤ dist f 0 [PROOFSTEP] convert dist_coe_le_dist (β := β) x [GOAL] case h.e'_3.h.e'_4 F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁶ : PseudoMetricSpace 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : PseudoMetricSpace β inst✝³ : Zero 𝕜 inst✝² : Zero β inst✝¹ : SMul 𝕜 β inst✝ : BoundedSMul 𝕜 β c₁ c₂ : 𝕜 f : α →ᵇ β x : α ⊢ 0 = ↑0 x [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝³ : TopologicalSpace α inst✝² : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ inst✝¹ : NormedField 𝕜 inst✝ : NormedSpace 𝕜 β c : 𝕜 f : α →ᵇ β ⊢ ‖c • f‖ ≤ ‖c‖ * ‖f‖ [PROOFSTEP] refine' norm_ofNormedAddCommGroup_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝³ : TopologicalSpace α inst✝² : SeminormedAddCommGroup β f✝ g : α →ᵇ β x : α C : ℝ inst✝¹ : NormedField 𝕜 inst✝ : NormedSpace 𝕜 β c : 𝕜 f : α →ᵇ β ⊢ ∀ (x : α), ‖(c • ↑f.toContinuousMap) x‖ ≤ ‖c‖ * ‖f‖ [PROOFSTEP] exact fun x => norm_smul c (f x) ▸ mul_le_mul_of_nonneg_left (f.norm_coe_le_norm _) (norm_nonneg _) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : SeminormedAddCommGroup β f✝ g✝¹ : α →ᵇ β x : α C : ℝ inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedSpace 𝕜 β inst✝¹ : SeminormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g✝ : β →L[𝕜] γ f g : α →ᵇ β ⊢ (fun f => ofNormedAddCommGroup (↑g✝ ∘ ↑f) (_ : Continuous (↑g✝ ∘ ↑f)) (‖g✝‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g✝ (↑f x)‖ ≤ ‖g✝‖ * ‖f‖)) (f + g) = (fun f => ofNormedAddCommGroup (↑g✝ ∘ ↑f) (_ : Continuous (↑g✝ ∘ ↑f)) (‖g✝‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g✝ (↑f x)‖ ≤ ‖g✝‖ * ‖f‖)) f + (fun f => ofNormedAddCommGroup (↑g✝ ∘ ↑f) (_ : Continuous (↑g✝ ∘ ↑f)) (‖g✝‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g✝ (↑f x)‖ ≤ ‖g✝‖ * ‖f‖)) g [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : SeminormedAddCommGroup β f✝ g✝¹ : α →ᵇ β x : α C : ℝ inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedSpace 𝕜 β inst✝¹ : SeminormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g✝ : β →L[𝕜] γ f g : α →ᵇ β x✝ : α ⊢ ↑((fun f => ofNormedAddCommGroup (↑g✝ ∘ ↑f) (_ : Continuous (↑g✝ ∘ ↑f)) (‖g✝‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g✝ (↑f x)‖ ≤ ‖g✝‖ * ‖f‖)) (f + g)) x✝ = ↑((fun f => ofNormedAddCommGroup (↑g✝ ∘ ↑f) (_ : Continuous (↑g✝ ∘ ↑f)) (‖g✝‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g✝ (↑f x)‖ ≤ ‖g✝‖ * ‖f‖)) f + (fun f => ofNormedAddCommGroup (↑g✝ ∘ ↑f) (_ : Continuous (↑g✝ ∘ ↑f)) (‖g✝‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g✝ (↑f x)‖ ≤ ‖g✝‖ * ‖f‖)) g) x✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : SeminormedAddCommGroup β f✝ g✝ : α →ᵇ β x : α C : ℝ inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedSpace 𝕜 β inst✝¹ : SeminormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g : β →L[𝕜] γ c : 𝕜 f : α →ᵇ β ⊢ AddHom.toFun { toFun := fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖), map_add' := (_ : ∀ (f g_1 : α →ᵇ β), (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) (f + g_1) = (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) f + (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) g_1) } (c • f) = ↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖), map_add' := (_ : ∀ (f g_1 : α →ᵇ β), (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) (f + g_1) = (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) f + (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) g_1) } f [PROOFSTEP] ext [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : SeminormedAddCommGroup β f✝ g✝ : α →ᵇ β x : α C : ℝ inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedSpace 𝕜 β inst✝¹ : SeminormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g : β →L[𝕜] γ c : 𝕜 f : α →ᵇ β x✝ : α ⊢ ↑(AddHom.toFun { toFun := fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖), map_add' := (_ : ∀ (f g_1 : α →ᵇ β), (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) (f + g_1) = (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) f + (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) g_1) } (c • f)) x✝ = ↑(↑(RingHom.id 𝕜) c • AddHom.toFun { toFun := fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖), map_add' := (_ : ∀ (f g_1 : α →ᵇ β), (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) (f + g_1) = (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) f + (fun f => ofNormedAddCommGroup (↑g ∘ ↑f) (_ : Continuous (↑g ∘ ↑f)) (‖g‖ * ‖f‖) (_ : ∀ (x : α), ‖↑g (↑f x)‖ ≤ ‖g‖ * ‖f‖)) g_1) } f) x✝ [PROOFSTEP] simp [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁵ : TopologicalSpace α inst✝⁴ : SeminormedAddCommGroup β f✝ g✝ : α →ᵇ β x✝ : α C : ℝ inst✝³ : NontriviallyNormedField 𝕜 inst✝² : NormedSpace 𝕜 β inst✝¹ : SeminormedAddCommGroup γ inst✝ : NormedSpace 𝕜 γ g : β →L[𝕜] γ f : α →ᵇ β x : α ⊢ ‖(↑g ∘ ↑f) x‖ ≤ ‖g‖ * ‖f‖ [PROOFSTEP] exact g.le_op_norm_of_le (f.norm_coe_le_norm x) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α R : Type u_2 inst✝ : SeminormedRing R f : α →ᵇ R ⊢ ↑(npowRec 0 f) = ↑f ^ 0 [PROOFSTEP] rw [npowRec, pow_zero, coe_one] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α R : Type u_2 inst✝ : SeminormedRing R f : α →ᵇ R n : ℕ ⊢ ↑(npowRec (n + 1) f) = ↑f ^ (n + 1) [PROOFSTEP] rw [npowRec, pow_succ, coe_mul, coe_npowRec f n] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α R : Type u_2 inst✝ : SeminormedRing R f : α →ᵇ R n : ℕ ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (f.toContinuousMap ^ n) x) (ContinuousMap.toFun (f.toContinuousMap ^ n) y) ≤ C [PROOFSTEP] simpa [coe_npowRec] using (npowRec n f).map_bounded' [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : TopologicalSpace α inst✝³ : SeminormedAddCommGroup β inst✝² : NormedSpace 𝕜 β inst✝¹ : NormedRing γ inst✝ : NormedAlgebra 𝕜 γ f g : α →ᵇ γ x : α c k : 𝕜 a : α ⊢ ↑(↑(algebraMap 𝕜 (α →ᵇ γ)) k) a = k • 1 [PROOFSTEP] rw [Algebra.algebraMap_eq_smul_one] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : TopologicalSpace α inst✝³ : SeminormedAddCommGroup β inst✝² : NormedSpace 𝕜 β inst✝¹ : NormedRing γ inst✝ : NormedAlgebra 𝕜 γ f g : α →ᵇ γ x : α c k : 𝕜 a : α ⊢ ↑(k • 1) a = k • 1 [PROOFSTEP] rfl [GOAL] F : Type u_1 α✝ : Type u β : Type v γ : Type w α : Type u_2 inst✝ : TopologicalSpace α f : α →ᵇ ℝ≥0 x : α ⊢ ↑f x ≤ nndist f 0 [PROOFSTEP] have key : nndist (f x) ((0 : α →ᵇ ℝ≥0) x) ≤ nndist f 0 := @dist_coe_le_dist α ℝ≥0 _ _ f 0 x [GOAL] F : Type u_1 α✝ : Type u β : Type v γ : Type w α : Type u_2 inst✝ : TopologicalSpace α f : α →ᵇ ℝ≥0 x : α key : nndist (↑f x) (↑0 x) ≤ nndist f 0 ⊢ ↑f x ≤ nndist f 0 [PROOFSTEP] simp only [coe_zero, Pi.zero_apply] at key [GOAL] F : Type u_1 α✝ : Type u β : Type v γ : Type w α : Type u_2 inst✝ : TopologicalSpace α f : α →ᵇ ℝ≥0 x : α key : nndist (↑f x) 0 ≤ nndist f 0 ⊢ ↑f x ≤ nndist f 0 [PROOFSTEP] rwa [NNReal.nndist_zero_eq_val' (f x)] at key [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w 𝕜 : Type u_2 inst✝⁷ : NormedField 𝕜 inst✝⁶ : StarRing 𝕜 inst✝⁵ : TopologicalSpace α inst✝⁴ : SeminormedAddCommGroup β inst✝³ : StarAddMonoid β inst✝² : NormedStarGroup β inst✝¹ : NormedSpace 𝕜 β inst✝ : StarModule 𝕜 β f : α →ᵇ β ⊢ ‖star f‖ = ‖f‖ [PROOFSTEP] simp only [norm_eq, star_apply, norm_star] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β ⊢ ∀ {x : α →ᵇ β}, ‖star x * x‖ = ‖x‖ * ‖x‖ [PROOFSTEP] intro f [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β ⊢ ‖star f * f‖ = ‖f‖ * ‖f‖ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β ⊢ ‖star f * f‖ ≤ ‖f‖ * ‖f‖ [PROOFSTEP] rw [← sq, norm_le (sq_nonneg _)] [GOAL] case refine'_1 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β ⊢ ∀ (x : α), ‖↑(star f * f) x‖ ≤ ‖f‖ ^ 2 [PROOFSTEP] dsimp [star_apply] [GOAL] case refine'_1 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β ⊢ ∀ (x : α), ‖star (↑f x) * ↑f x‖ ≤ ‖f‖ ^ 2 [PROOFSTEP] intro x [GOAL] case refine'_1 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β x : α ⊢ ‖star (↑f x) * ↑f x‖ ≤ ‖f‖ ^ 2 [PROOFSTEP] rw [CstarRing.norm_star_mul_self, ← sq] [GOAL] case refine'_1 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β x : α ⊢ ‖↑f x‖ ^ 2 ≤ ‖f‖ ^ 2 [PROOFSTEP] refine' sq_le_sq' _ _ [GOAL] case refine'_1.refine'_1 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β x : α ⊢ -‖f‖ ≤ ‖↑f x‖ [PROOFSTEP] linarith [norm_nonneg (f x), norm_nonneg f] [GOAL] case refine'_1.refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β x : α ⊢ ‖↑f x‖ ≤ ‖f‖ [PROOFSTEP] exact norm_coe_le_norm f x [GOAL] case refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β ⊢ ‖f‖ * ‖f‖ ≤ ‖star f * f‖ [PROOFSTEP] rw [← sq, ← Real.le_sqrt (norm_nonneg _) (norm_nonneg _), norm_le (Real.sqrt_nonneg _)] [GOAL] case refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β ⊢ ∀ (x : α), ‖↑f x‖ ≤ Real.sqrt ‖star f * f‖ [PROOFSTEP] intro x [GOAL] case refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β x : α ⊢ ‖↑f x‖ ≤ Real.sqrt ‖star f * f‖ [PROOFSTEP] rw [Real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ← CstarRing.norm_star_mul_self] [GOAL] case refine'_2 F : Type u_1 α : Type u β : Type v γ : Type w inst✝³ : TopologicalSpace α inst✝² : NonUnitalNormedRing β inst✝¹ : StarRing β inst✝ : CstarRing β f : α →ᵇ β x : α ⊢ ‖star (↑f x) * ↑f x‖ ≤ ‖star f * f‖ [PROOFSTEP] exact norm_coe_le_norm (star f * f) x [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β ⊢ Injective fun f => f.toFun [PROOFSTEP] simp [Injective] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊓ ↑g t) x) (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊓ ↑g t) y) ≤ C [PROOFSTEP] obtain ⟨C₁, hf⟩ := f.bounded [GOAL] case intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β C₁ : ℝ hf : ∀ (x y : α), dist (↑f x) (↑f y) ≤ C₁ ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊓ ↑g t) x) (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊓ ↑g t) y) ≤ C [PROOFSTEP] obtain ⟨C₂, hg⟩ := g.bounded [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β C₁ : ℝ hf : ∀ (x y : α), dist (↑f x) (↑f y) ≤ C₁ C₂ : ℝ hg : ∀ (x y : α), dist (↑g x) (↑g y) ≤ C₂ ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊓ ↑g t) x) (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊓ ↑g t) y) ≤ C [PROOFSTEP] refine' ⟨C₁ + C₂, fun x y => _⟩ [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β C₁ : ℝ hf : ∀ (x y : α), dist (↑f x) (↑f y) ≤ C₁ C₂ : ℝ hg : ∀ (x y : α), dist (↑g x) (↑g y) ≤ C₂ x y : α ⊢ dist (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊓ ↑g t) x) (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊓ ↑g t) y) ≤ C₁ + C₂ [PROOFSTEP] simp_rw [NormedAddCommGroup.dist_eq] at hf hg ⊢ [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β C₁ C₂ : ℝ x y : α hf : ∀ (x y : α), ‖↑f x - ↑f y‖ ≤ C₁ hg : ∀ (x y : α), ‖↑g x - ↑g y‖ ≤ C₂ ⊢ ‖↑f x ⊓ ↑g x - ↑f y ⊓ ↑g y‖ ≤ C₁ + C₂ [PROOFSTEP] exact (norm_inf_sub_inf_le_add_norm _ _ _ _).trans (add_le_add (hf _ _) (hg _ _)) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊔ ↑g t) x) (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊔ ↑g t) y) ≤ C [PROOFSTEP] obtain ⟨C₁, hf⟩ := f.bounded [GOAL] case intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β C₁ : ℝ hf : ∀ (x y : α), dist (↑f x) (↑f y) ≤ C₁ ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊔ ↑g t) x) (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊔ ↑g t) y) ≤ C [PROOFSTEP] obtain ⟨C₂, hg⟩ := g.bounded [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β C₁ : ℝ hf : ∀ (x y : α), dist (↑f x) (↑f y) ≤ C₁ C₂ : ℝ hg : ∀ (x y : α), dist (↑g x) (↑g y) ≤ C₂ ⊢ ∃ C, ∀ (x y : α), dist (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊔ ↑g t) x) (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊔ ↑g t) y) ≤ C [PROOFSTEP] refine' ⟨C₁ + C₂, fun x y => _⟩ [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β C₁ : ℝ hf : ∀ (x y : α), dist (↑f x) (↑f y) ≤ C₁ C₂ : ℝ hg : ∀ (x y : α), dist (↑g x) (↑g y) ≤ C₂ x y : α ⊢ dist (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊔ ↑g t) x) (ContinuousMap.toFun (ContinuousMap.mk fun t => ↑f t ⊔ ↑g t) y) ≤ C₁ + C₂ [PROOFSTEP] simp_rw [NormedAddCommGroup.dist_eq] at hf hg ⊢ [GOAL] case intro.intro F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝ : PartialOrder (α →ᵇ β) := partialOrder f g : α →ᵇ β C₁ C₂ : ℝ x y : α hf : ∀ (x y : α), ‖↑f x - ↑f y‖ ≤ C₁ hg : ∀ (x y : α), ‖↑g x - ↑g y‖ ≤ C₂ ⊢ ‖↑f x ⊔ ↑g x - ↑f y ⊔ ↑g y‖ ≤ C₁ + C₂ [PROOFSTEP] exact (norm_sup_sub_sup_le_add_norm _ _ _ _).trans (add_le_add (hf _ _) (hg _ _)) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝¹ : Lattice (α →ᵇ β) := lattice src✝ : SeminormedAddCommGroup (α →ᵇ β) := seminormedAddCommGroup ⊢ ∀ ⦃x y : α →ᵇ β⦄, |x| ≤ |y| → ‖x‖ ≤ ‖y‖ [PROOFSTEP] intro f g h [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝¹ : Lattice (α →ᵇ β) := lattice src✝ : SeminormedAddCommGroup (α →ᵇ β) := seminormedAddCommGroup f g : α →ᵇ β h : |f| ≤ |g| ⊢ ‖f‖ ≤ ‖g‖ [PROOFSTEP] have i1 : ∀ t, ‖f t‖ ≤ ‖g t‖ := fun t => HasSolidNorm.solid (h t) [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝¹ : Lattice (α →ᵇ β) := lattice src✝ : SeminormedAddCommGroup (α →ᵇ β) := seminormedAddCommGroup f g : α →ᵇ β h : |f| ≤ |g| i1 : ∀ (t : α), ‖↑f t‖ ≤ ‖↑g t‖ ⊢ ‖f‖ ≤ ‖g‖ [PROOFSTEP] rw [norm_le (norm_nonneg _)] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝¹ : Lattice (α →ᵇ β) := lattice src✝ : SeminormedAddCommGroup (α →ᵇ β) := seminormedAddCommGroup f g : α →ᵇ β h : |f| ≤ |g| i1 : ∀ (t : α), ‖↑f t‖ ≤ ‖↑g t‖ ⊢ ∀ (x : α), ‖↑f x‖ ≤ ‖g‖ [PROOFSTEP] exact fun t => (i1 t).trans (norm_coe_le_norm g t) -- Porting note: Added a proof for `eq_of_dist_eq_zero` [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝¹ : Lattice (α →ᵇ β) := lattice src✝ : SeminormedAddCommGroup (α →ᵇ β) := seminormedAddCommGroup ⊢ ∀ (a b : α →ᵇ β), a ≤ b → ∀ (c : α →ᵇ β), c + a ≤ c + b [PROOFSTEP] intro f g h₁ h t [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝¹ : Lattice (α →ᵇ β) := lattice src✝ : SeminormedAddCommGroup (α →ᵇ β) := seminormedAddCommGroup f g : α →ᵇ β h₁ : f ≤ g h : α →ᵇ β t : α ⊢ (fun f => f.toFun) (h + f) t ≤ (fun f => f.toFun) (h + g) t [PROOFSTEP] simp only [coe_to_continuous_fun, Pi.add_apply, add_le_add_iff_left, coe_add, ContinuousMap.toFun_eq_coe] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝¹ : TopologicalSpace α inst✝ : NormedLatticeAddCommGroup β src✝¹ : Lattice (α →ᵇ β) := lattice src✝ : SeminormedAddCommGroup (α →ᵇ β) := seminormedAddCommGroup f g : α →ᵇ β h₁ : f ≤ g h : α →ᵇ β t : α ⊢ ↑f t ≤ ↑g t [PROOFSTEP] exact h₁ _ [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝ : TopologicalSpace α f : α →ᵇ ℝ ⊢ ↑f = toReal ∘ ↑(nnrealPart f) - toReal ∘ ↑(nnrealPart (-f)) [PROOFSTEP] funext x [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝ : TopologicalSpace α f : α →ᵇ ℝ x : α ⊢ ↑f x = (toReal ∘ ↑(nnrealPart f) - toReal ∘ ↑(nnrealPart (-f))) x [PROOFSTEP] dsimp [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝ : TopologicalSpace α f : α →ᵇ ℝ x : α ⊢ ↑f x = max (↑f x) 0 - max (-↑f x) 0 [PROOFSTEP] simp only [max_zero_sub_max_neg_zero_eq_self] [GOAL] F : Type u_1 α : Type u β : Type v γ : Type w inst✝ : TopologicalSpace α f : α →ᵇ ℝ ⊢ abs ∘ ↑f = toReal ∘ ↑(nnrealPart f) + toReal ∘ ↑(nnrealPart (-f)) [PROOFSTEP] funext x [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝ : TopologicalSpace α f : α →ᵇ ℝ x : α ⊢ (abs ∘ ↑f) x = (toReal ∘ ↑(nnrealPart f) + toReal ∘ ↑(nnrealPart (-f))) x [PROOFSTEP] dsimp [GOAL] case h F : Type u_1 α : Type u β : Type v γ : Type w inst✝ : TopologicalSpace α f : α →ᵇ ℝ x : α ⊢ |↑f x| = max (↑f x) 0 + max (-↑f x) 0 [PROOFSTEP] simp only [max_zero_add_max_neg_zero_eq_abs_self]
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.Bounded", "llama_tokens": 63976}
[GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ : ℕ x✝ : ∃ p k, Prime p ∧ 0 < k ∧ p ^ k = n p : R k : ℕ hp : Prime p hk : 0 < k hn : p ^ k = n ⊢ p ^ (?m.60081 x✝ p k hp hk hn + 1) = n [PROOFSTEP] rwa [Nat.sub_add_cancel hk] [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R n p : R k : ℕ inst✝ : NoZeroDivisors R ⊢ ¬IsPrimePow 0 [PROOFSTEP] simp only [isPrimePow_def, not_exists, not_and', and_imp] [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R n p : R k : ℕ inst✝ : NoZeroDivisors R ⊢ ∀ (x : R) (x_1 : ℕ), 0 < x_1 → x ^ x_1 = 0 → ¬Prime x [PROOFSTEP] intro x n _hn hx [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R n✝ p : R k : ℕ inst✝ : NoZeroDivisors R x : R n : ℕ _hn : 0 < n hx : x ^ n = 0 ⊢ ¬Prime x [PROOFSTEP] rw [pow_eq_zero hx] [GOAL] R : Type u_1 inst✝¹ : CommMonoidWithZero R n✝ p : R k : ℕ inst✝ : NoZeroDivisors R x : R n : ℕ _hn : 0 < n hx : x ^ n = 0 ⊢ ¬Prime 0 [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k : ℕ p : R hp : Prime p ⊢ p ^ 1 = p [PROOFSTEP] simp [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n✝ p✝ : R k✝ : ℕ n : R hn✝ : IsPrimePow n k : ℕ hk : k ≠ 0 p : R k' : ℕ hp : Prime p hk' : 0 < k' hn : p ^ k' = n ⊢ p ^ (k * k') = n ^ k [PROOFSTEP] rw [pow_mul', hn] [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ ⊢ IsPrimePow n ↔ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] simp only [isPrimePow_def, Nat.prime_iff] [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ ⊢ IsPrimePow n ↔ ∃ p, p ≤ n ∧ ∃ k, k ≤ n ∧ Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] rw [isPrimePow_nat_iff] [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ ⊢ (∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n) ↔ ∃ p, p ≤ n ∧ ∃ k, k ≤ n ∧ Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] refine' Iff.symm ⟨fun ⟨p, _, k, _, hp, hk, hn⟩ => ⟨p, k, hp, hk, hn⟩, _⟩ [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n✝ p : R k n : ℕ ⊢ (∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n) → ∃ p, p ≤ n ∧ ∃ k, k ≤ n ∧ Nat.Prime p ∧ 0 < k ∧ p ^ k = n [PROOFSTEP] rintro ⟨p, k, hp, hk, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p hk : 0 < k ⊢ ∃ p_1, p_1 ≤ p ^ k ∧ ∃ k_1, k_1 ≤ p ^ k ∧ Nat.Prime p_1 ∧ 0 < k_1 ∧ p_1 ^ k_1 = p ^ k [PROOFSTEP] refine' ⟨p, _, k, (Nat.lt_pow_self hp.one_lt _).le, hp, hk, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p hk : 0 < k ⊢ p ≤ p ^ k [PROOFSTEP] conv => {lhs; rw [← (pow_one p)]} [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p hk : 0 < k | p ≤ p ^ k [PROOFSTEP] {lhs; rw [← (pow_one p)]} [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p hk : 0 < k | p ≤ p ^ k [PROOFSTEP] {lhs; rw [← (pow_one p)]} [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p hk : 0 < k | p ≤ p ^ k [PROOFSTEP] lhs [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p hk : 0 < k | p [PROOFSTEP] rw [← (pow_one p)] [GOAL] case intro.intro.intro.intro R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p hk : 0 < k ⊢ p ^ 1 ≤ p ^ k [PROOFSTEP] exact (Nat.pow_le_iff_le_right hp.two_le).mpr hk [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n✝ p : R k n m : ℕ hn : IsPrimePow n hm : m ∣ n hm₁ : m ≠ 1 ⊢ IsPrimePow m [PROOFSTEP] rw [isPrimePow_nat_iff] at hn ⊢ [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n✝ p : R k n m : ℕ hn : ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = n hm : m ∣ n hm₁ : m ≠ 1 ⊢ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = m [PROOFSTEP] rcases hn with ⟨p, k, hp, _hk, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ m : ℕ hm₁ : m ≠ 1 p k : ℕ hp : Nat.Prime p _hk : 0 < k hm : m ∣ p ^ k ⊢ ∃ p k, Nat.Prime p ∧ 0 < k ∧ p ^ k = m [PROOFSTEP] obtain ⟨i, hik, rfl⟩ := (Nat.dvd_prime_pow hp).1 hm [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p _hk : 0 < k i : ℕ hik : i ≤ k hm₁ : p ^ i ≠ 1 hm : p ^ i ∣ p ^ k ⊢ ∃ p_1 k, Nat.Prime p_1 ∧ 0 < k ∧ p_1 ^ k = p ^ i [PROOFSTEP] refine' ⟨p, i, hp, _, rfl⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p _hk : 0 < k i : ℕ hik : i ≤ k hm₁ : p ^ i ≠ 1 hm : p ^ i ∣ p ^ k ⊢ 0 < i [PROOFSTEP] apply Nat.pos_of_ne_zero [GOAL] case intro.intro.intro.intro.intro.intro.a R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p _hk : 0 < k i : ℕ hik : i ≤ k hm₁ : p ^ i ≠ 1 hm : p ^ i ∣ p ^ k ⊢ i ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case intro.intro.intro.intro.intro.intro.a R : Type u_1 inst✝ : CommMonoidWithZero R n p✝ : R k✝ p k : ℕ hp : Nat.Prime p _hk : 0 < k hik : 0 ≤ k hm₁ : p ^ 0 ≠ 1 hm : p ^ 0 ∣ p ^ k ⊢ False [PROOFSTEP] simp only [pow_zero, ne_eq] at hm₁ [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n p : R k a b : ℕ hab : coprime a b ⊢ Disjoint (Finset.filter IsPrimePow (divisors a)) (Finset.filter IsPrimePow (divisors b)) [PROOFSTEP] simp only [Finset.disjoint_left, Finset.mem_filter, and_imp, Nat.mem_divisors, not_and] [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n p : R k a b : ℕ hab : coprime a b ⊢ ∀ ⦃a_1 : ℕ⦄, a_1 ∣ a → a ≠ 0 → IsPrimePow a_1 → a_1 ∣ b → b ≠ 0 → ¬IsPrimePow a_1 [PROOFSTEP] rintro n han _ha hn hbn _hb - [GOAL] R : Type u_1 inst✝ : CommMonoidWithZero R n✝ p : R k a b : ℕ hab : coprime a b n : ℕ han : n ∣ a _ha : a ≠ 0 hn : IsPrimePow n hbn : n ∣ b _hb : b ≠ 0 ⊢ False [PROOFSTEP] exact hn.ne_one (Nat.eq_one_of_dvd_coprimes hab han hbn)
{"mathlib_filename": "Mathlib.Algebra.IsPrimePow", "llama_tokens": 3297}
[GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N ⊢ Covariant N N (fun x x_1 => x * x_1) r ↔ Contravariant N N (fun x x_1 => x * x_1) r [PROOFSTEP] refine ⟨fun h a b c bc ↦ ?_, fun h a b c bc ↦ ?_⟩ [GOAL] case refine_1 M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N h : Covariant N N (fun x x_1 => x * x_1) r a b c : N bc : r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c) ⊢ r b c [PROOFSTEP] rw [← inv_mul_cancel_left a b, ← inv_mul_cancel_left a c] [GOAL] case refine_1 M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N h : Covariant N N (fun x x_1 => x * x_1) r a b c : N bc : r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c) ⊢ r (a⁻¹ * (a * b)) (a⁻¹ * (a * c)) [PROOFSTEP] exact h a⁻¹ bc [GOAL] case refine_2 M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N h : Contravariant N N (fun x x_1 => x * x_1) r a b c : N bc : r b c ⊢ r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c) [PROOFSTEP] rw [← inv_mul_cancel_left a b, ← inv_mul_cancel_left a c] at bc [GOAL] case refine_2 M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N h : Contravariant N N (fun x x_1 => x * x_1) r a b c : N bc : r (a⁻¹ * (a * b)) (a⁻¹ * (a * c)) ⊢ r ((fun x x_1 => x * x_1) a b) ((fun x x_1 => x * x_1) a c) [PROOFSTEP] exact h a⁻¹ bc [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N ⊢ Covariant N N (swap fun x x_1 => x * x_1) r ↔ Contravariant N N (swap fun x x_1 => x * x_1) r [PROOFSTEP] refine ⟨fun h a b c bc ↦ ?_, fun h a b c bc ↦ ?_⟩ [GOAL] case refine_1 M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N h : Covariant N N (swap fun x x_1 => x * x_1) r a b c : N bc : r (swap (fun x x_1 => x * x_1) a b) (swap (fun x x_1 => x * x_1) a c) ⊢ r b c [PROOFSTEP] rw [← mul_inv_cancel_right b a, ← mul_inv_cancel_right c a] [GOAL] case refine_1 M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N h : Covariant N N (swap fun x x_1 => x * x_1) r a b c : N bc : r (swap (fun x x_1 => x * x_1) a b) (swap (fun x x_1 => x * x_1) a c) ⊢ r (b * a * a⁻¹) (c * a * a⁻¹) [PROOFSTEP] exact h a⁻¹ bc [GOAL] case refine_2 M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N h : Contravariant N N (swap fun x x_1 => x * x_1) r a b c : N bc : r b c ⊢ r (swap (fun x x_1 => x * x_1) a b) (swap (fun x x_1 => x * x_1) a c) [PROOFSTEP] rw [← mul_inv_cancel_right b a, ← mul_inv_cancel_right c a] at bc [GOAL] case refine_2 M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝¹ : CovariantClass M N μ r inst✝ : Group N h : Contravariant N N (swap fun x x_1 => x * x_1) r a b c : N bc : r (b * a * a⁻¹) (c * a * a⁻¹) ⊢ r (swap (fun x x_1 => x * x_1) a b) (swap (fun x x_1 => x * x_1) a c) [PROOFSTEP] exact h a⁻¹ bc [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : PartialOrder N ⊢ (Covariant M N μ fun x x_1 => x < x_1) → Covariant M N μ fun x x_1 => x ≤ x_1 [PROOFSTEP] intro h a b c bc [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : PartialOrder N h : Covariant M N μ fun x x_1 => x < x_1 a : M b c : N bc : b ≤ c ⊢ μ a b ≤ μ a c [PROOFSTEP] rcases le_iff_eq_or_lt.mp bc with (rfl | bc) [GOAL] case inl M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : PartialOrder N h : Covariant M N μ fun x x_1 => x < x_1 a : M b : N bc : b ≤ b ⊢ μ a b ≤ μ a b [PROOFSTEP] exact rfl.le [GOAL] case inr M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : PartialOrder N h : Covariant M N μ fun x x_1 => x < x_1 a : M b c : N bc✝ : b ≤ c bc : b < c ⊢ μ a b ≤ μ a c [PROOFSTEP] exact (h _ bc).le [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : PartialOrder N ⊢ (Contravariant M N μ fun x x_1 => x ≤ x_1) → Contravariant M N μ fun x x_1 => x < x_1 [PROOFSTEP] refine fun h a b c bc ↦ lt_iff_le_and_ne.mpr ⟨h a bc.le, ?_⟩ [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : PartialOrder N h : Contravariant M N μ fun x x_1 => x ≤ x_1 a : M b c : N bc : (fun x x_1 => x < x_1) (μ a b) (μ a c) ⊢ b ≠ c [PROOFSTEP] rintro rfl [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : PartialOrder N h : Contravariant M N μ fun x x_1 => x ≤ x_1 a : M b : N bc : μ a b < μ a b ⊢ False [PROOFSTEP] exact lt_irrefl _ bc [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : CommSemigroup N ⊢ Covariant N N (flip fun x x_1 => x * x_1) r ↔ Covariant N N (fun x x_1 => x * x_1) r [PROOFSTEP] rw [flip_mul] [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝ : CommSemigroup N ⊢ Contravariant N N (flip fun x x_1 => x * x_1) r ↔ Contravariant N N (fun x x_1 => x * x_1) r [PROOFSTEP] rw [flip_mul] [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : LeftCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : CovariantClass N N (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : N bc : b < c ⊢ a * b < a * c [PROOFSTEP] cases' lt_iff_le_and_ne.mp bc with bc cb [GOAL] case intro M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : LeftCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : CovariantClass N N (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : N bc✝ : b < c bc : b ≤ c cb : b ≠ c ⊢ a * b < a * c [PROOFSTEP] exact lt_iff_le_and_ne.mpr ⟨CovariantClass.elim a bc, (mul_ne_mul_right a).mpr cb⟩ [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : RightCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : CovariantClass N N (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : N bc : b < c ⊢ swap (fun x x_1 => x * x_1) a b < swap (fun x x_1 => x * x_1) a c [PROOFSTEP] cases' lt_iff_le_and_ne.mp bc with bc cb [GOAL] case intro M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : RightCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : CovariantClass N N (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1 a b c : N bc✝ : b < c bc : b ≤ c cb : b ≠ c ⊢ swap (fun x x_1 => x * x_1) a b < swap (fun x x_1 => x * x_1) a c [PROOFSTEP] exact lt_iff_le_and_ne.mpr ⟨CovariantClass.elim a bc, (mul_ne_mul_left a).mpr cb⟩ [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : LeftCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : ContravariantClass N N (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : N bc : a * b ≤ a * c ⊢ b ≤ c [PROOFSTEP] cases' le_iff_eq_or_lt.mp bc with h h [GOAL] case inl M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : LeftCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : ContravariantClass N N (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : N bc : a * b ≤ a * c h : a * b = a * c ⊢ b ≤ c [PROOFSTEP] exact ((mul_right_inj a).mp h).le [GOAL] case inr M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : LeftCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : ContravariantClass N N (fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : N bc : a * b ≤ a * c h : a * b < a * c ⊢ b ≤ c [PROOFSTEP] exact (ContravariantClass.elim _ h).le [GOAL] M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : RightCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : ContravariantClass N N (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : N bc : swap (fun x x_1 => x * x_1) a b ≤ swap (fun x x_1 => x * x_1) a c ⊢ b ≤ c [PROOFSTEP] cases' le_iff_eq_or_lt.mp bc with h h [GOAL] case inl M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : RightCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : ContravariantClass N N (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : N bc : swap (fun x x_1 => x * x_1) a b ≤ swap (fun x x_1 => x * x_1) a c h : swap (fun x x_1 => x * x_1) a b = swap (fun x x_1 => x * x_1) a c ⊢ b ≤ c [PROOFSTEP] exact ((mul_left_inj a).mp h).le [GOAL] case inr M : Type u_1 N : Type u_2 μ : M → N → N r : N → N → Prop inst✝² : RightCancelSemigroup N inst✝¹ : PartialOrder N inst✝ : ContravariantClass N N (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1 a b c : N bc : swap (fun x x_1 => x * x_1) a b ≤ swap (fun x x_1 => x * x_1) a c h : swap (fun x x_1 => x * x_1) a b < swap (fun x x_1 => x * x_1) a c ⊢ b ≤ c [PROOFSTEP] exact (ContravariantClass.elim _ h).le
{"mathlib_filename": "Mathlib.Algebra.CovariantAndContravariant", "llama_tokens": 4460}
[GOAL] α : Type u inst✝ : Semiring α x : α n : ℕ ⊢ ∑ i in range (n + 1), x ^ i = x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] simp only [mul_sum, ← pow_succ, sum_range_succ', pow_zero] [GOAL] α : Type u inst✝ : Semiring α x : α ⊢ ∑ i in range 1, x ^ i = 1 [PROOFSTEP] simp [geom_sum_succ'] [GOAL] α : Type u inst✝ : Semiring α x : α ⊢ ∑ i in range 2, x ^ i = x + 1 [PROOFSTEP] simp [geom_sum_succ'] [GOAL] α : Type u inst✝ : Semiring α ⊢ ∑ i in range 0, 0 ^ i = if 0 = 0 then 0 else 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝ : Semiring α ⊢ ∑ i in range 1, 0 ^ i = if 1 = 0 then 0 else 1 [PROOFSTEP] simp [GOAL] α : Type u inst✝ : Semiring α n : ℕ ⊢ ∑ i in range (n + 2), 0 ^ i = if n + 2 = 0 then 0 else 1 [PROOFSTEP] rw [geom_sum_succ'] [GOAL] α : Type u inst✝ : Semiring α n : ℕ ⊢ 0 ^ (n + 1) + ∑ i in range (n + 1), 0 ^ i = if n + 2 = 0 then 0 else 1 [PROOFSTEP] simp [zero_geom_sum] [GOAL] α : Type u inst✝ : Semiring α n : ℕ ⊢ ∑ i in range n, 1 ^ i = ↑n [PROOFSTEP] simp [GOAL] α : Type u inst✝ : Semiring α x : α n : ℕ ⊢ op (∑ i in range n, x ^ i) = ∑ i in range n, op x ^ i [PROOFSTEP] simp [GOAL] α : Type u inst✝ : Semiring α x y : α n : ℕ ⊢ ∑ i in range n, op y ^ (n - 1 - i) * op x ^ i = ∑ i in range n, op y ^ i * op x ^ (n - 1 - i) [PROOFSTEP] rw [← sum_range_reflect] [GOAL] α : Type u inst✝ : Semiring α x y : α n : ℕ ⊢ ∑ j in range n, op y ^ (n - 1 - (n - 1 - j)) * op x ^ (n - 1 - j) = ∑ i in range n, op y ^ i * op x ^ (n - 1 - i) [PROOFSTEP] refine' sum_congr rfl fun j j_in => _ [GOAL] α : Type u inst✝ : Semiring α x y : α n j : ℕ j_in : j ∈ range n ⊢ op y ^ (n - 1 - (n - 1 - j)) * op x ^ (n - 1 - j) = op y ^ j * op x ^ (n - 1 - j) [PROOFSTEP] rw [mem_range, Nat.lt_iff_add_one_le] at j_in [GOAL] α : Type u inst✝ : Semiring α x y : α n j : ℕ j_in : j + 1 ≤ n ⊢ op y ^ (n - 1 - (n - 1 - j)) * op x ^ (n - 1 - j) = op y ^ j * op x ^ (n - 1 - j) [PROOFSTEP] congr [GOAL] case e_a.e_a α : Type u inst✝ : Semiring α x y : α n j : ℕ j_in : j + 1 ≤ n ⊢ n - 1 - (n - 1 - j) = j [PROOFSTEP] apply tsub_tsub_cancel_of_le [GOAL] case e_a.e_a.h α : Type u inst✝ : Semiring α x y : α n j : ℕ j_in : j + 1 ≤ n ⊢ j ≤ n - 1 [PROOFSTEP] exact le_tsub_of_add_le_right j_in [GOAL] α : Type u inst✝ : Semiring α x : α n i : ℕ x✝ : i ∈ range n ⊢ x ^ i * 1 ^ (n - 1 - i) = x ^ i [PROOFSTEP] rw [one_pow, mul_one] [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y n : ℕ ⊢ (∑ i in range n, (x + y) ^ i * y ^ (n - 1 - i)) * x + y ^ n = (x + y) ^ n [PROOFSTEP] let f : ℕ → ℕ → α := fun m i : ℕ => (x + y) ^ i * y ^ (m - 1 - i) -- porting note: adding `hf` here, because below in two places `dsimp [f]` didn't work [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y n : ℕ f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) ⊢ (∑ i in range n, (x + y) ^ i * y ^ (n - 1 - i)) * x + y ^ n = (x + y) ^ n [PROOFSTEP] have hf : ∀ m i : ℕ, f m i = (x + y) ^ i * y ^ (m - 1 - i) := by simp only [ge_iff_le, tsub_le_iff_right, forall_const] [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y n : ℕ f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) ⊢ ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) [PROOFSTEP] simp only [ge_iff_le, tsub_le_iff_right, forall_const] [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y n : ℕ f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) ⊢ (∑ i in range n, (x + y) ^ i * y ^ (n - 1 - i)) * x + y ^ n = (x + y) ^ n [PROOFSTEP] change (∑ i in range n, (f n) i) * x + y ^ n = (x + y) ^ n [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y n : ℕ f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) ⊢ (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) ⊢ (∑ i in range Nat.zero, f Nat.zero i) * x + y ^ Nat.zero = (x + y) ^ Nat.zero [PROOFSTEP] rw [range_zero, sum_empty, zero_mul, zero_add, pow_zero, pow_zero] [GOAL] case succ α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n ⊢ (∑ i in range (Nat.succ n), f (Nat.succ n) i) * x + y ^ Nat.succ n = (x + y) ^ Nat.succ n [PROOFSTEP] have f_last : f (n + 1) n = (x + y) ^ n := by rw [hf, ← tsub_add_eq_tsub_tsub, Nat.add_comm, tsub_self, pow_zero, mul_one] [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n ⊢ f (n + 1) n = (x + y) ^ n [PROOFSTEP] rw [hf, ← tsub_add_eq_tsub_tsub, Nat.add_comm, tsub_self, pow_zero, mul_one] [GOAL] case succ α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n ⊢ (∑ i in range (Nat.succ n), f (Nat.succ n) i) * x + y ^ Nat.succ n = (x + y) ^ Nat.succ n [PROOFSTEP] have f_succ : ∀ i, i ∈ range n → f (n + 1) i = y * f n i := fun i hi => by rw [hf] have : Commute y ((x + y) ^ i) := (h.symm.add_right (Commute.refl y)).pow_right i rw [← mul_assoc, this.eq, mul_assoc, ← pow_succ y (n - 1 - i)] congr 2 rw [add_tsub_cancel_right, ← tsub_add_eq_tsub_tsub, add_comm 1 i] have : i + 1 + (n - (i + 1)) = n := add_tsub_cancel_of_le (mem_range.mp hi) rw [add_comm (i + 1)] at this rw [← this, add_tsub_cancel_right, add_comm i 1, ← add_assoc, add_tsub_cancel_right] [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n i : ℕ hi : i ∈ range n ⊢ f (n + 1) i = y * f n i [PROOFSTEP] rw [hf] [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n i : ℕ hi : i ∈ range n ⊢ (x + y) ^ i * y ^ (n + 1 - 1 - i) = y * f n i [PROOFSTEP] have : Commute y ((x + y) ^ i) := (h.symm.add_right (Commute.refl y)).pow_right i [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n i : ℕ hi : i ∈ range n this : Commute y ((x + y) ^ i) ⊢ (x + y) ^ i * y ^ (n + 1 - 1 - i) = y * f n i [PROOFSTEP] rw [← mul_assoc, this.eq, mul_assoc, ← pow_succ y (n - 1 - i)] [GOAL] α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n i : ℕ hi : i ∈ range n this : Commute y ((x + y) ^ i) ⊢ (x + y) ^ i * y ^ (n + 1 - 1 - i) = (x + y) ^ i * y ^ (n - 1 - i + 1) [PROOFSTEP] congr 2 [GOAL] case e_a.e_a α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n i : ℕ hi : i ∈ range n this : Commute y ((x + y) ^ i) ⊢ n + 1 - 1 - i = n - 1 - i + 1 [PROOFSTEP] rw [add_tsub_cancel_right, ← tsub_add_eq_tsub_tsub, add_comm 1 i] [GOAL] case e_a.e_a α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n i : ℕ hi : i ∈ range n this : Commute y ((x + y) ^ i) ⊢ n - i = n - (i + 1) + 1 [PROOFSTEP] have : i + 1 + (n - (i + 1)) = n := add_tsub_cancel_of_le (mem_range.mp hi) [GOAL] case e_a.e_a α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n i : ℕ hi : i ∈ range n this✝ : Commute y ((x + y) ^ i) this : i + 1 + (n - (i + 1)) = n ⊢ n - i = n - (i + 1) + 1 [PROOFSTEP] rw [add_comm (i + 1)] at this [GOAL] case e_a.e_a α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n i : ℕ hi : i ∈ range n this✝ : Commute y ((x + y) ^ i) this : n - (i + 1) + (i + 1) = n ⊢ n - i = n - (i + 1) + 1 [PROOFSTEP] rw [← this, add_tsub_cancel_right, add_comm i 1, ← add_assoc, add_tsub_cancel_right] [GOAL] case succ α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n f_succ : ∀ (i : ℕ), i ∈ range n → f (n + 1) i = y * f n i ⊢ (∑ i in range (Nat.succ n), f (Nat.succ n) i) * x + y ^ Nat.succ n = (x + y) ^ Nat.succ n [PROOFSTEP] rw [pow_succ (x + y), add_mul, sum_range_succ_comm, add_mul, f_last, add_assoc] [GOAL] case succ α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n f_succ : ∀ (i : ℕ), i ∈ range n → f (n + 1) i = y * f n i ⊢ (x + y) ^ n * x + ((∑ x in range n, f (Nat.succ n) x) * x + y ^ Nat.succ n) = x * (x + y) ^ n + y * (x + y) ^ n [PROOFSTEP] rw [(((Commute.refl x).add_right h).pow_right n).eq] [GOAL] case succ α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n f_succ : ∀ (i : ℕ), i ∈ range n → f (n + 1) i = y * f n i ⊢ (x + y) ^ n * x + ((∑ x in range n, f (Nat.succ n) x) * x + y ^ Nat.succ n) = (x + y) ^ n * x + y * (x + y) ^ n [PROOFSTEP] congr 1 [GOAL] case succ.e_a α : Type u inst✝ : Semiring α x y : α h : Commute x y f : ℕ → ℕ → α := fun m i => (x + y) ^ i * y ^ (m - 1 - i) hf : ∀ (m i : ℕ), f m i = (x + y) ^ i * y ^ (m - 1 - i) n : ℕ ih : (∑ i in range n, f n i) * x + y ^ n = (x + y) ^ n f_last : f (n + 1) n = (x + y) ^ n f_succ : ∀ (i : ℕ), i ∈ range n → f (n + 1) i = y * f n i ⊢ (∑ x in range n, f (Nat.succ n) x) * x + y ^ Nat.succ n = y * (x + y) ^ n [PROOFSTEP] rw [sum_congr rfl f_succ, ← mul_sum, pow_succ y, mul_assoc, ← mul_add y, ih] [GOAL] α : Type u inst✝ : Ring α n : ℕ ⊢ ∑ i in range n, (-1) ^ i = if Even n then 0 else 1 [PROOFSTEP] induction' n with k hk [GOAL] case zero α : Type u inst✝ : Ring α ⊢ ∑ i in range Nat.zero, (-1) ^ i = if Even Nat.zero then 0 else 1 [PROOFSTEP] simp [GOAL] case succ α : Type u inst✝ : Ring α k : ℕ hk : ∑ i in range k, (-1) ^ i = if Even k then 0 else 1 ⊢ ∑ i in range (Nat.succ k), (-1) ^ i = if Even (Nat.succ k) then 0 else 1 [PROOFSTEP] simp only [geom_sum_succ', Nat.even_add_one, hk] [GOAL] case succ α : Type u inst✝ : Ring α k : ℕ hk : ∑ i in range k, (-1) ^ i = if Even k then 0 else 1 ⊢ ((-1) ^ k + if Even k then 0 else 1) = if ¬Even k then 0 else 1 [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u inst✝ : Ring α k : ℕ hk : ∑ i in range k, (-1) ^ i = if Even k then 0 else 1 h : Even k ⊢ (-1) ^ k + 0 = 1 [PROOFSTEP] rw [h.neg_one_pow, add_zero] [GOAL] case neg α : Type u inst✝ : Ring α k : ℕ hk : ∑ i in range k, (-1) ^ i = if Even k then 0 else 1 h : ¬Even k ⊢ (-1) ^ k + 1 = 0 [PROOFSTEP] rw [(Nat.odd_iff_not_even.2 h).neg_one_pow, neg_add_self] [GOAL] α✝ : Type u α : Type u_1 inst✝ : CommRing α x : α n : ℕ ⊢ ∑ i in range n, x ^ i * x ^ (n - 1 - i) = ∑ i in range n, x ^ (i + (n - 1 - i)) [PROOFSTEP] simp_rw [← pow_add] [GOAL] α✝ : Type u α : Type u_1 inst✝ : CommRing α x : α n : ℕ ⊢ card (range n) • x ^ (n - 1) = ↑n * x ^ (n - 1) [PROOFSTEP] rw [Finset.card_range, nsmul_eq_mul] [GOAL] α : Type u inst✝ : Semiring α x : α n : ℕ ⊢ (∑ i in range n, (x + 1) ^ i) * x + 1 = (x + 1) ^ n [PROOFSTEP] have := (Commute.one_right x).geom_sum₂_mul_add n [GOAL] α : Type u inst✝ : Semiring α x : α n : ℕ this : (∑ i in range n, (x + 1) ^ i * 1 ^ (n - 1 - i)) * x + 1 ^ n = (x + 1) ^ n ⊢ (∑ i in range n, (x + 1) ^ i) * x + 1 = (x + 1) ^ n [PROOFSTEP] rw [one_pow, geom_sum₂_with_one] at this [GOAL] α : Type u inst✝ : Semiring α x : α n : ℕ this : (∑ i in range n, (x + 1) ^ i) * x + 1 = (x + 1) ^ n ⊢ (∑ i in range n, (x + 1) ^ i) * x + 1 = (x + 1) ^ n [PROOFSTEP] exact this [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ ⊢ (∑ i in range n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ n [PROOFSTEP] have := (h.sub_left (Commute.refl y)).geom_sum₂_mul_add n [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ this : (∑ i in range n, (x - y + y) ^ i * y ^ (n - 1 - i)) * (x - y) + y ^ n = (x - y + y) ^ n ⊢ (∑ i in range n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ n [PROOFSTEP] rw [sub_add_cancel] at this [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ this : (∑ i in range n, x ^ i * y ^ (n - 1 - i)) * (x - y) + y ^ n = x ^ n ⊢ (∑ i in range n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ n [PROOFSTEP] rw [← this, add_sub_cancel] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ ⊢ (y - x) * ∑ i in range n, x ^ i * y ^ (n - 1 - i) = y ^ n - x ^ n [PROOFSTEP] apply op_injective [GOAL] case a α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ ⊢ MulOpposite.op ((y - x) * ∑ i in range n, x ^ i * y ^ (n - 1 - i)) = MulOpposite.op (y ^ n - x ^ n) [PROOFSTEP] simp only [op_mul, op_sub, op_geom_sum₂, op_pow] [GOAL] case a α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ ⊢ MulOpposite.op (∑ i in range n, x ^ i * y ^ (n - 1 - i)) * (MulOpposite.op y - MulOpposite.op x) = MulOpposite.op y ^ n - MulOpposite.op x ^ n [PROOFSTEP] simp [(Commute.op h.symm).geom_sum₂_mul n] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ ⊢ (x - y) * ∑ i in range n, x ^ i * y ^ (n - 1 - i) = x ^ n - y ^ n [PROOFSTEP] rw [← neg_sub (y ^ n), ← h.mul_neg_geom_sum₂, ← neg_mul, neg_sub] [GOAL] α : Type u x y n : ℕ ⊢ x - y ∣ x ^ n - y ^ n [PROOFSTEP] cases' le_or_lt y x with h h [GOAL] case inl α : Type u x y n : ℕ h : y ≤ x ⊢ x - y ∣ x ^ n - y ^ n [PROOFSTEP] have : y ^ n ≤ x ^ n := Nat.pow_le_pow_of_le_left h _ [GOAL] case inl α : Type u x y n : ℕ h : y ≤ x this : y ^ n ≤ x ^ n ⊢ x - y ∣ x ^ n - y ^ n [PROOFSTEP] exact_mod_cast sub_dvd_pow_sub_pow (x : ℤ) (↑y) n [GOAL] case inr α : Type u x y n : ℕ h : x < y ⊢ x - y ∣ x ^ n - y ^ n [PROOFSTEP] have : x ^ n ≤ y ^ n := Nat.pow_le_pow_of_le_left h.le _ [GOAL] case inr α : Type u x y n : ℕ h : x < y this : x ^ n ≤ y ^ n ⊢ x - y ∣ x ^ n - y ^ n [PROOFSTEP] exact (Nat.sub_eq_zero_of_le this).symm ▸ dvd_zero (x - y) [GOAL] α : Type u inst✝ : CommRing α x y : α n : ℕ h : Odd n ⊢ x + y ∣ x ^ n + y ^ n [PROOFSTEP] have h₁ := geom_sum₂_mul x (-y) n [GOAL] α : Type u inst✝ : CommRing α x y : α n : ℕ h : Odd n h₁ : (∑ i in range n, x ^ i * (-y) ^ (n - 1 - i)) * (x - -y) = x ^ n - (-y) ^ n ⊢ x + y ∣ x ^ n + y ^ n [PROOFSTEP] rw [Odd.neg_pow h y, sub_neg_eq_add, sub_neg_eq_add] at h₁ [GOAL] α : Type u inst✝ : CommRing α x y : α n : ℕ h : Odd n h₁ : (∑ i in range n, x ^ i * (-y) ^ (n - 1 - i)) * (x + y) = x ^ n + y ^ n ⊢ x + y ∣ x ^ n + y ^ n [PROOFSTEP] exact Dvd.intro_left _ h₁ [GOAL] α : Type u x y n : ℕ h : Odd n ⊢ x + y ∣ x ^ n + y ^ n [PROOFSTEP] exact_mod_cast Odd.add_dvd_pow_add_pow (x : ℤ) (↑y) h [GOAL] α : Type u inst✝ : Ring α x : α n : ℕ ⊢ (∑ i in range n, x ^ i) * (x - 1) = x ^ n - 1 [PROOFSTEP] have := (Commute.one_right x).geom_sum₂_mul n [GOAL] α : Type u inst✝ : Ring α x : α n : ℕ this : (∑ i in range n, x ^ i * 1 ^ (n - 1 - i)) * (x - 1) = x ^ n - 1 ^ n ⊢ (∑ i in range n, x ^ i) * (x - 1) = x ^ n - 1 [PROOFSTEP] rw [one_pow, geom_sum₂_with_one] at this [GOAL] α : Type u inst✝ : Ring α x : α n : ℕ this : (∑ i in range n, x ^ i) * (x - 1) = x ^ n - 1 ⊢ (∑ i in range n, x ^ i) * (x - 1) = x ^ n - 1 [PROOFSTEP] exact this [GOAL] α : Type u inst✝ : Ring α x : α n : ℕ ⊢ op ((x - 1) * ∑ i in range n, x ^ i) = op (x ^ n - 1) [PROOFSTEP] simpa using geom_sum_mul (op x) n [GOAL] α : Type u inst✝ : Ring α x : α n : ℕ ⊢ (∑ i in range n, x ^ i) * (1 - x) = 1 - x ^ n [PROOFSTEP] have := congr_arg Neg.neg (geom_sum_mul x n) [GOAL] α : Type u inst✝ : Ring α x : α n : ℕ this : -((∑ i in range n, x ^ i) * (x - 1)) = -(x ^ n - 1) ⊢ (∑ i in range n, x ^ i) * (1 - x) = 1 - x ^ n [PROOFSTEP] rw [neg_sub, ← mul_neg, neg_sub] at this [GOAL] α : Type u inst✝ : Ring α x : α n : ℕ this : (∑ i in range n, x ^ i) * (1 - x) = 1 - x ^ n ⊢ (∑ i in range n, x ^ i) * (1 - x) = 1 - x ^ n [PROOFSTEP] exact this [GOAL] α : Type u inst✝ : Ring α x : α n : ℕ ⊢ op ((1 - x) * ∑ i in range n, x ^ i) = op (1 - x ^ n) [PROOFSTEP] simpa using geom_sum_mul_neg (op x) n [GOAL] α✝ α : Type u inst✝ : Semiring α x y : α n : ℕ h : Commute x y ⊢ ∑ i in range n, x ^ i * y ^ (n - 1 - i) = ∑ i in range n, y ^ i * x ^ (n - 1 - i) [PROOFSTEP] cases n [GOAL] case zero α✝ α : Type u inst✝ : Semiring α x y : α h : Commute x y ⊢ ∑ i in range Nat.zero, x ^ i * y ^ (Nat.zero - 1 - i) = ∑ i in range Nat.zero, y ^ i * x ^ (Nat.zero - 1 - i) [PROOFSTEP] simp [GOAL] case succ α✝ α : Type u inst✝ : Semiring α x y : α h : Commute x y n✝ : ℕ ⊢ ∑ i in range (Nat.succ n✝), x ^ i * y ^ (Nat.succ n✝ - 1 - i) = ∑ i in range (Nat.succ n✝), y ^ i * x ^ (Nat.succ n✝ - 1 - i) [PROOFSTEP] simp only [Nat.succ_eq_add_one, Nat.add_sub_cancel] [GOAL] case succ α✝ α : Type u inst✝ : Semiring α x y : α h : Commute x y n✝ : ℕ ⊢ ∑ x_1 in range (n✝ + 1), x ^ x_1 * y ^ (n✝ - x_1) = ∑ x_1 in range (n✝ + 1), y ^ x_1 * x ^ (n✝ - x_1) [PROOFSTEP] rw [← Finset.sum_flip] [GOAL] case succ α✝ α : Type u inst✝ : Semiring α x y : α h : Commute x y n✝ : ℕ ⊢ ∑ r in range (n✝ + 1), x ^ (n✝ - r) * y ^ (n✝ - (n✝ - r)) = ∑ x_1 in range (n✝ + 1), y ^ x_1 * x ^ (n✝ - x_1) [PROOFSTEP] refine' Finset.sum_congr rfl fun i hi => _ [GOAL] case succ α✝ α : Type u inst✝ : Semiring α x y : α h : Commute x y n✝ i : ℕ hi : i ∈ range (n✝ + 1) ⊢ x ^ (n✝ - i) * y ^ (n✝ - (n✝ - i)) = y ^ i * x ^ (n✝ - i) [PROOFSTEP] simpa [Nat.sub_sub_self (Nat.succ_le_succ_iff.mp (Finset.mem_range.mp hi))] using h.pow_pow _ _ [GOAL] α : Type u inst✝ : DivisionRing α x y : α h' : Commute x y h : x ≠ y n : ℕ ⊢ ∑ i in range n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ n) / (x - y) [PROOFSTEP] have : x - y ≠ 0 := by simp_all [sub_eq_iff_eq_add] [GOAL] α : Type u inst✝ : DivisionRing α x y : α h' : Commute x y h : x ≠ y n : ℕ ⊢ x - y ≠ 0 [PROOFSTEP] simp_all [sub_eq_iff_eq_add] [GOAL] α : Type u inst✝ : DivisionRing α x y : α h' : Commute x y h : x ≠ y n : ℕ this : x - y ≠ 0 ⊢ ∑ i in range n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ n) / (x - y) [PROOFSTEP] rw [← h'.geom_sum₂_mul, mul_div_cancel _ this] [GOAL] α : Type u inst✝ : DivisionRing α x : α h : x ≠ 1 n : ℕ ⊢ ∑ i in range n, x ^ i = (x ^ n - 1) / (x - 1) [PROOFSTEP] have : x - 1 ≠ 0 := by simp_all [sub_eq_iff_eq_add] [GOAL] α : Type u inst✝ : DivisionRing α x : α h : x ≠ 1 n : ℕ ⊢ x - 1 ≠ 0 [PROOFSTEP] simp_all [sub_eq_iff_eq_add] [GOAL] α : Type u inst✝ : DivisionRing α x : α h : x ≠ 1 n : ℕ this : x - 1 ≠ 0 ⊢ ∑ i in range n, x ^ i = (x ^ n - 1) / (x - 1) [PROOFSTEP] rw [← geom_sum_mul, mul_div_cancel _ this] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n ⊢ (x - y) * ∑ i in Ico m n, x ^ i * y ^ (n - 1 - i) = x ^ n - x ^ m * y ^ (n - m) [PROOFSTEP] rw [sum_Ico_eq_sub _ hmn] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n ⊢ (x - y) * (∑ k in range n, x ^ k * y ^ (n - 1 - k) - ∑ k in range m, x ^ k * y ^ (n - 1 - k)) = x ^ n - x ^ m * y ^ (n - m) [PROOFSTEP] have : ∑ k in range m, x ^ k * y ^ (n - 1 - k) = ∑ k in range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k)) := by refine' sum_congr rfl fun j j_in => _ rw [← pow_add] congr rw [mem_range, Nat.lt_iff_add_one_le, add_comm] at j_in have h' : n - m + (m - (1 + j)) = n - (1 + j) := tsub_add_tsub_cancel hmn j_in rw [← tsub_add_eq_tsub_tsub m, h', ← tsub_add_eq_tsub_tsub] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n ⊢ ∑ k in range m, x ^ k * y ^ (n - 1 - k) = ∑ k in range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k)) [PROOFSTEP] refine' sum_congr rfl fun j j_in => _ [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n j : ℕ j_in : j ∈ range m ⊢ x ^ j * y ^ (n - 1 - j) = x ^ j * (y ^ (n - m) * y ^ (m - 1 - j)) [PROOFSTEP] rw [← pow_add] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n j : ℕ j_in : j ∈ range m ⊢ x ^ j * y ^ (n - 1 - j) = x ^ j * y ^ (n - m + (m - 1 - j)) [PROOFSTEP] congr [GOAL] case e_a.e_a α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n j : ℕ j_in : j ∈ range m ⊢ n - 1 - j = n - m + (m - 1 - j) [PROOFSTEP] rw [mem_range, Nat.lt_iff_add_one_le, add_comm] at j_in [GOAL] case e_a.e_a α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n j : ℕ j_in : 1 + j ≤ m ⊢ n - 1 - j = n - m + (m - 1 - j) [PROOFSTEP] have h' : n - m + (m - (1 + j)) = n - (1 + j) := tsub_add_tsub_cancel hmn j_in [GOAL] case e_a.e_a α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n j : ℕ j_in : 1 + j ≤ m h' : n - m + (m - (1 + j)) = n - (1 + j) ⊢ n - 1 - j = n - m + (m - 1 - j) [PROOFSTEP] rw [← tsub_add_eq_tsub_tsub m, h', ← tsub_add_eq_tsub_tsub] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n this : ∑ k in range m, x ^ k * y ^ (n - 1 - k) = ∑ k in range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k)) ⊢ (x - y) * (∑ k in range n, x ^ k * y ^ (n - 1 - k) - ∑ k in range m, x ^ k * y ^ (n - 1 - k)) = x ^ n - x ^ m * y ^ (n - m) [PROOFSTEP] rw [this] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n this : ∑ k in range m, x ^ k * y ^ (n - 1 - k) = ∑ k in range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k)) ⊢ (x - y) * (∑ k in range n, x ^ k * y ^ (n - 1 - k) - ∑ k in range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k))) = x ^ n - x ^ m * y ^ (n - m) [PROOFSTEP] simp_rw [pow_mul_comm y (n - m) _] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n this : ∑ k in range m, x ^ k * y ^ (n - 1 - k) = ∑ k in range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k)) ⊢ (x - y) * (∑ k in range n, x ^ k * y ^ (n - 1 - k) - ∑ x_1 in range m, x ^ x_1 * (y ^ (m - 1 - x_1) * y ^ (n - m))) = x ^ n - x ^ m * y ^ (n - m) [PROOFSTEP] simp_rw [← mul_assoc] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n this : ∑ k in range m, x ^ k * y ^ (n - 1 - k) = ∑ k in range m, x ^ k * (y ^ (n - m) * y ^ (m - 1 - k)) ⊢ (x - y) * (∑ k in range n, x ^ k * y ^ (n - 1 - k) - ∑ x_1 in range m, x ^ x_1 * y ^ (m - 1 - x_1) * y ^ (n - m)) = x ^ n - x ^ m * y ^ (n - m) [PROOFSTEP] rw [← sum_mul, mul_sub, h.mul_geom_sum₂, ← mul_assoc, h.mul_geom_sum₂, sub_mul, ← pow_add, add_tsub_cancel_of_le hmn, sub_sub_sub_cancel_right (x ^ n) (x ^ m * y ^ (n - m)) (y ^ n)] [GOAL] α✝ α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ ⊢ ∑ i in range (n + 1), x ^ i * y ^ (n - i) = x ^ n + y * ∑ i in range n, x ^ i * y ^ (n - 1 - i) [PROOFSTEP] simp_rw [mul_sum, sum_range_succ_comm, tsub_self, pow_zero, mul_one, add_right_inj, ← mul_assoc, (h.symm.pow_right _).eq, mul_assoc, ← pow_succ] [GOAL] α✝ α : Type u inst✝ : Ring α x y : α h : Commute x y n : ℕ ⊢ ∑ i in range n, x ^ i * y ^ (n - i) = ∑ x_1 in range n, x ^ x_1 * y ^ (n - 1 - x_1 + 1) [PROOFSTEP] refine' sum_congr rfl fun i hi => _ [GOAL] α✝ α : Type u inst✝ : Ring α x y : α h : Commute x y n i : ℕ hi : i ∈ range n ⊢ x ^ i * y ^ (n - i) = x ^ i * y ^ (n - 1 - i + 1) [PROOFSTEP] suffices n - 1 - i + 1 = n - i by rw [this] [GOAL] α✝ α : Type u inst✝ : Ring α x y : α h : Commute x y n i : ℕ hi : i ∈ range n this : n - 1 - i + 1 = n - i ⊢ x ^ i * y ^ (n - i) = x ^ i * y ^ (n - 1 - i + 1) [PROOFSTEP] rw [this] [GOAL] α✝ α : Type u inst✝ : Ring α x y : α h : Commute x y n i : ℕ hi : i ∈ range n ⊢ n - 1 - i + 1 = n - i [PROOFSTEP] cases' n with n [GOAL] case zero α✝ α : Type u inst✝ : Ring α x y : α h : Commute x y i : ℕ hi : i ∈ range Nat.zero ⊢ Nat.zero - 1 - i + 1 = Nat.zero - i [PROOFSTEP] exact absurd (List.mem_range.mp hi) i.not_lt_zero [GOAL] case succ α✝ α : Type u inst✝ : Ring α x y : α h : Commute x y i n : ℕ hi : i ∈ range (Nat.succ n) ⊢ Nat.succ n - 1 - i + 1 = Nat.succ n - i [PROOFSTEP] rw [tsub_add_eq_add_tsub (Nat.le_pred_of_lt (List.mem_range.mp hi)), tsub_add_cancel_of_le (Nat.succ_le_iff.mpr n.succ_pos)] [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n ⊢ (∑ i in Ico m n, x ^ i * y ^ (n - 1 - i)) * (x - y) = x ^ n - y ^ (n - m) * x ^ m [PROOFSTEP] apply op_injective [GOAL] case a α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n ⊢ MulOpposite.op ((∑ i in Ico m n, x ^ i * y ^ (n - 1 - i)) * (x - y)) = MulOpposite.op (x ^ n - y ^ (n - m) * x ^ m) [PROOFSTEP] simp only [op_sub, op_mul, op_pow, op_sum] [GOAL] case a α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n ⊢ (MulOpposite.op x - MulOpposite.op y) * ∑ x_1 in Ico m n, MulOpposite.op y ^ (n - 1 - x_1) * MulOpposite.op x ^ x_1 = MulOpposite.op x ^ n - MulOpposite.op x ^ m * MulOpposite.op y ^ (n - m) [PROOFSTEP] have : (∑ k in Ico m n, MulOpposite.op y ^ (n - 1 - k) * MulOpposite.op x ^ k) = ∑ k in Ico m n, MulOpposite.op x ^ k * MulOpposite.op y ^ (n - 1 - k) := by refine' sum_congr rfl fun k _ => _ have hp := Commute.pow_pow (Commute.op h.symm) (n - 1 - k) k simpa [Commute, SemiconjBy] using hp [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n ⊢ ∑ k in Ico m n, MulOpposite.op y ^ (n - 1 - k) * MulOpposite.op x ^ k = ∑ k in Ico m n, MulOpposite.op x ^ k * MulOpposite.op y ^ (n - 1 - k) [PROOFSTEP] refine' sum_congr rfl fun k _ => _ [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n k : ℕ x✝ : k ∈ Ico m n ⊢ MulOpposite.op y ^ (n - 1 - k) * MulOpposite.op x ^ k = MulOpposite.op x ^ k * MulOpposite.op y ^ (n - 1 - k) [PROOFSTEP] have hp := Commute.pow_pow (Commute.op h.symm) (n - 1 - k) k [GOAL] α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n k : ℕ x✝ : k ∈ Ico m n hp : Commute (MulOpposite.op y ^ (n - 1 - k)) (MulOpposite.op x ^ k) ⊢ MulOpposite.op y ^ (n - 1 - k) * MulOpposite.op x ^ k = MulOpposite.op x ^ k * MulOpposite.op y ^ (n - 1 - k) [PROOFSTEP] simpa [Commute, SemiconjBy] using hp [GOAL] case a α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n this : ∑ k in Ico m n, MulOpposite.op y ^ (n - 1 - k) * MulOpposite.op x ^ k = ∑ k in Ico m n, MulOpposite.op x ^ k * MulOpposite.op y ^ (n - 1 - k) ⊢ (MulOpposite.op x - MulOpposite.op y) * ∑ x_1 in Ico m n, MulOpposite.op y ^ (n - 1 - x_1) * MulOpposite.op x ^ x_1 = MulOpposite.op x ^ n - MulOpposite.op x ^ m * MulOpposite.op y ^ (n - m) [PROOFSTEP] simp only [this] -- porting note: gives deterministic timeout without this intermediate `have` [GOAL] case a α : Type u inst✝ : Ring α x y : α h : Commute x y m n : ℕ hmn : m ≤ n this : ∑ k in Ico m n, MulOpposite.op y ^ (n - 1 - k) * MulOpposite.op x ^ k = ∑ k in Ico m n, MulOpposite.op x ^ k * MulOpposite.op y ^ (n - 1 - k) ⊢ (MulOpposite.op x - MulOpposite.op y) * ∑ k in Ico m n, MulOpposite.op x ^ k * MulOpposite.op y ^ (n - 1 - k) = MulOpposite.op x ^ n - MulOpposite.op x ^ m * MulOpposite.op y ^ (n - m) [PROOFSTEP] convert (Commute.op h).mul_geom_sum₂_Ico hmn [GOAL] α : Type u inst✝ : Ring α x : α m n : ℕ hmn : m ≤ n ⊢ (∑ i in Ico m n, x ^ i) * (x - 1) = x ^ n - x ^ m [PROOFSTEP] rw [sum_Ico_eq_sub _ hmn, sub_mul, geom_sum_mul, geom_sum_mul, sub_sub_sub_cancel_right] [GOAL] α : Type u inst✝ : Ring α x : α m n : ℕ hmn : m ≤ n ⊢ (∑ i in Ico m n, x ^ i) * (1 - x) = x ^ m - x ^ n [PROOFSTEP] rw [sum_Ico_eq_sub _ hmn, sub_mul, geom_sum_mul_neg, geom_sum_mul_neg, sub_sub_sub_cancel_left] [GOAL] α : Type u inst✝ : DivisionRing α x y : α h : Commute x y hxy : x ≠ y m n : ℕ hmn : m ≤ n ⊢ ∑ i in Ico m n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ (n - m) * x ^ m) / (x - y) [PROOFSTEP] have : x - y ≠ 0 := by simp_all [sub_eq_iff_eq_add] [GOAL] α : Type u inst✝ : DivisionRing α x y : α h : Commute x y hxy : x ≠ y m n : ℕ hmn : m ≤ n ⊢ x - y ≠ 0 [PROOFSTEP] simp_all [sub_eq_iff_eq_add] [GOAL] α : Type u inst✝ : DivisionRing α x y : α h : Commute x y hxy : x ≠ y m n : ℕ hmn : m ≤ n this : x - y ≠ 0 ⊢ ∑ i in Ico m n, x ^ i * y ^ (n - 1 - i) = (x ^ n - y ^ (n - m) * x ^ m) / (x - y) [PROOFSTEP] rw [← h.geom_sum₂_Ico_mul hmn, mul_div_cancel _ this] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx : x ≠ 1 m n : ℕ hmn : m ≤ n ⊢ ∑ i in Ico m n, x ^ i = (x ^ n - x ^ m) / (x - 1) [PROOFSTEP] simp only [sum_Ico_eq_sub _ hmn, geom_sum_eq hx, div_sub_div_same, sub_sub_sub_cancel_right] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx : x ≠ 1 m n : ℕ hmn : m ≤ n ⊢ ∑ i in Ico m n, x ^ i = (x ^ m - x ^ n) / (1 - x) [PROOFSTEP] simp only [geom_sum_Ico hx hmn] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx : x ≠ 1 m n : ℕ hmn : m ≤ n ⊢ (x ^ n - x ^ m) / (x - 1) = (x ^ m - x ^ n) / (1 - x) [PROOFSTEP] convert neg_div_neg_eq (x ^ m - x ^ n) (1 - x) using 2 [GOAL] case h.e'_2.h.e'_5 α : Type u inst✝ : DivisionRing α x : α hx : x ≠ 1 m n : ℕ hmn : m ≤ n ⊢ x ^ n - x ^ m = -(x ^ m - x ^ n) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_5 α : Type u inst✝ : DivisionRing α x : α hx : x ≠ 1 m n : ℕ hmn : m ≤ n ⊢ x ^ n - x ^ m = -(x ^ m - x ^ n) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6 α : Type u inst✝ : DivisionRing α x : α hx : x ≠ 1 m n : ℕ hmn : m ≤ n ⊢ x - 1 = -(1 - x) [PROOFSTEP] abel [GOAL] case h.e'_2.h.e'_6 α : Type u inst✝ : DivisionRing α x : α hx : x ≠ 1 m n : ℕ hmn : m ≤ n ⊢ x - 1 = -(1 - x) [PROOFSTEP] abel [GOAL] α : Type u inst✝ : LinearOrderedField α x : α hx : 0 ≤ x h'x : x < 1 m n : ℕ ⊢ ∑ i in Ico m n, x ^ i ≤ x ^ m / (1 - x) [PROOFSTEP] rcases le_or_lt m n with (hmn | hmn) [GOAL] case inl α : Type u inst✝ : LinearOrderedField α x : α hx : 0 ≤ x h'x : x < 1 m n : ℕ hmn : m ≤ n ⊢ ∑ i in Ico m n, x ^ i ≤ x ^ m / (1 - x) [PROOFSTEP] rw [geom_sum_Ico' h'x.ne hmn] [GOAL] case inl α : Type u inst✝ : LinearOrderedField α x : α hx : 0 ≤ x h'x : x < 1 m n : ℕ hmn : m ≤ n ⊢ (x ^ m - x ^ n) / (1 - x) ≤ x ^ m / (1 - x) [PROOFSTEP] apply div_le_div (pow_nonneg hx _) _ (sub_pos.2 h'x) le_rfl [GOAL] α : Type u inst✝ : LinearOrderedField α x : α hx : 0 ≤ x h'x : x < 1 m n : ℕ hmn : m ≤ n ⊢ x ^ m - x ^ n ≤ x ^ m [PROOFSTEP] simpa using pow_nonneg hx _ [GOAL] case inr α : Type u inst✝ : LinearOrderedField α x : α hx : 0 ≤ x h'x : x < 1 m n : ℕ hmn : n < m ⊢ ∑ i in Ico m n, x ^ i ≤ x ^ m / (1 - x) [PROOFSTEP] rw [Ico_eq_empty, sum_empty] [GOAL] case inr α : Type u inst✝ : LinearOrderedField α x : α hx : 0 ≤ x h'x : x < 1 m n : ℕ hmn : n < m ⊢ 0 ≤ x ^ m / (1 - x) [PROOFSTEP] apply div_nonneg (pow_nonneg hx _) [GOAL] case inr α : Type u inst✝ : LinearOrderedField α x : α hx : 0 ≤ x h'x : x < 1 m n : ℕ hmn : n < m ⊢ 0 ≤ 1 - x [PROOFSTEP] simpa using h'x.le [GOAL] case inr α : Type u inst✝ : LinearOrderedField α x : α hx : 0 ≤ x h'x : x < 1 m n : ℕ hmn : n < m ⊢ ¬m < n [PROOFSTEP] simpa using hmn.le [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ ⊢ ∑ i in range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x) [PROOFSTEP] have h₁ : x⁻¹ ≠ 1 := by rwa [inv_eq_one_div, Ne.def, div_eq_iff_mul_eq hx0, one_mul] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ ⊢ x⁻¹ ≠ 1 [PROOFSTEP] rwa [inv_eq_one_div, Ne.def, div_eq_iff_mul_eq hx0, one_mul] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ h₁ : x⁻¹ ≠ 1 ⊢ ∑ i in range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x) [PROOFSTEP] have h₂ : x⁻¹ - 1 ≠ 0 := mt sub_eq_zero.1 h₁ [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ h₁ : x⁻¹ ≠ 1 h₂ : x⁻¹ - 1 ≠ 0 ⊢ ∑ i in range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x) [PROOFSTEP] have h₃ : x - 1 ≠ 0 := mt sub_eq_zero.1 hx1 [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ h₁ : x⁻¹ ≠ 1 h₂ : x⁻¹ - 1 ≠ 0 h₃ : x - 1 ≠ 0 ⊢ ∑ i in range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x) [PROOFSTEP] have h₄ : x * (x ^ n)⁻¹ = (x ^ n)⁻¹ * x := Nat.recOn n (by simp) fun n h => by rw [pow_succ, mul_inv_rev, ← mul_assoc, h, mul_assoc, mul_inv_cancel hx0, mul_assoc, inv_mul_cancel hx0] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ h₁ : x⁻¹ ≠ 1 h₂ : x⁻¹ - 1 ≠ 0 h₃ : x - 1 ≠ 0 ⊢ x * (x ^ Nat.zero)⁻¹ = (x ^ Nat.zero)⁻¹ * x [PROOFSTEP] simp [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n✝ : ℕ h₁ : x⁻¹ ≠ 1 h₂ : x⁻¹ - 1 ≠ 0 h₃ : x - 1 ≠ 0 n : ℕ h : x * (x ^ n)⁻¹ = (x ^ n)⁻¹ * x ⊢ x * (x ^ Nat.succ n)⁻¹ = (x ^ Nat.succ n)⁻¹ * x [PROOFSTEP] rw [pow_succ, mul_inv_rev, ← mul_assoc, h, mul_assoc, mul_inv_cancel hx0, mul_assoc, inv_mul_cancel hx0] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ h₁ : x⁻¹ ≠ 1 h₂ : x⁻¹ - 1 ≠ 0 h₃ : x - 1 ≠ 0 h₄ : x * (x ^ n)⁻¹ = (x ^ n)⁻¹ * x ⊢ ∑ i in range n, x⁻¹ ^ i = (x - 1)⁻¹ * (x - x⁻¹ ^ n * x) [PROOFSTEP] rw [geom_sum_eq h₁, div_eq_iff_mul_eq h₂, ← mul_right_inj' h₃, ← mul_assoc, ← mul_assoc, mul_inv_cancel h₃] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ h₁ : x⁻¹ ≠ 1 h₂ : x⁻¹ - 1 ≠ 0 h₃ : x - 1 ≠ 0 h₄ : x * (x ^ n)⁻¹ = (x ^ n)⁻¹ * x ⊢ 1 * (x - x⁻¹ ^ n * x) * (x⁻¹ - 1) = (x - 1) * (x⁻¹ ^ n - 1) [PROOFSTEP] simp [mul_add, add_mul, mul_inv_cancel hx0, mul_assoc, h₄, sub_eq_add_neg, add_comm, add_left_comm] [GOAL] α : Type u inst✝ : DivisionRing α x : α hx1 : x ≠ 1 hx0 : x ≠ 0 n : ℕ h₁ : x⁻¹ ≠ 1 h₂ : x⁻¹ - 1 ≠ 0 h₃ : x - 1 ≠ 0 h₄ : x * (x ^ n)⁻¹ = (x ^ n)⁻¹ * x ⊢ (x ^ n)⁻¹ * x + -x + (-(x ^ n)⁻¹ + 1) = -x + ((x ^ n)⁻¹ * x + -(x ^ n)⁻¹ + 1) [PROOFSTEP] rw [add_comm _ (-x), add_assoc, add_assoc _ _ 1] [GOAL] α : Type u β : Type u_1 inst✝¹ : Semiring α inst✝ : Semiring β x : α n : ℕ f : α →+* β ⊢ ↑f (∑ i in range n, x ^ i) = ∑ i in range n, ↑f x ^ i [PROOFSTEP] simp [f.map_sum] [GOAL] α : Type u β : Type u_1 inst✝¹ : Semiring α inst✝ : Semiring β x y : α n : ℕ f : α →+* β ⊢ ↑f (∑ i in range n, x ^ i * y ^ (n - 1 - i)) = ∑ i in range n, ↑f x ^ i * ↑f y ^ (n - 1 - i) [PROOFSTEP] simp [f.map_sum] [GOAL] α : Type u β : Type u_1 a b n : ℕ ⊢ (b - 1) * ∑ i in range (succ n), a / b ^ i = ∑ i in range n, a / b ^ (i + 1) * b + a * b - (∑ i in range n, a / b ^ i + a / b ^ n) [PROOFSTEP] rw [tsub_mul, mul_comm, sum_mul, one_mul, sum_range_succ', sum_range_succ, pow_zero, Nat.div_one] [GOAL] α : Type u β : Type u_1 a b n : ℕ ⊢ ∑ i in range n, a / b ^ (i + 1) * b + a * b - (∑ i in range n, a / b ^ i + a / b ^ n) ≤ ∑ i in range n, a / b ^ i + a * b - (∑ i in range n, a / b ^ i + a / b ^ n) [PROOFSTEP] refine' tsub_le_tsub_right (add_le_add_right (sum_le_sum fun i _ => _) _) _ [GOAL] α : Type u β : Type u_1 a b n i : ℕ x✝ : i ∈ range n ⊢ a / b ^ (i + 1) * b ≤ a / b ^ i [PROOFSTEP] rw [pow_succ', mul_comm b] [GOAL] α : Type u β : Type u_1 a b n i : ℕ x✝ : i ∈ range n ⊢ a / (b ^ i * b) * b ≤ a / b ^ i [PROOFSTEP] rw [← Nat.div_div_eq_div_mul] [GOAL] α : Type u β : Type u_1 a b n i : ℕ x✝ : i ∈ range n ⊢ a / b ^ i / b * b ≤ a / b ^ i [PROOFSTEP] exact Nat.div_mul_le_self _ _ [GOAL] α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ ∑ i in range n, a / b ^ i ≤ a * b / (b - 1) [PROOFSTEP] refine' (Nat.le_div_iff_mul_le <| tsub_pos_of_lt hb).2 _ [GOAL] α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ (∑ i in range n, a / b ^ i) * (b - 1) ≤ a * b [PROOFSTEP] cases' n with n [GOAL] case zero α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a : ℕ ⊢ (∑ i in range zero, a / b ^ i) * (b - 1) ≤ a * b [PROOFSTEP] rw [sum_range_zero, zero_mul] [GOAL] case zero α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a : ℕ ⊢ 0 ≤ a * b [PROOFSTEP] exact Nat.zero_le _ [GOAL] case succ α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ (∑ i in range (succ n), a / b ^ i) * (b - 1) ≤ a * b [PROOFSTEP] rw [mul_comm] [GOAL] case succ α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ (b - 1) * ∑ i in range (succ n), a / b ^ i ≤ a * b [PROOFSTEP] exact (Nat.pred_mul_geom_sum_le a b n).trans tsub_le_self [GOAL] α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ ∑ i in Ico 1 n, a / b ^ i ≤ a / (b - 1) [PROOFSTEP] cases' n with n [GOAL] case zero α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a : ℕ ⊢ ∑ i in Ico 1 zero, a / b ^ i ≤ a / (b - 1) [PROOFSTEP] rw [zero_eq, Ico_eq_empty_of_le (zero_le_one' ℕ), sum_empty] [GOAL] case zero α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a : ℕ ⊢ 0 ≤ a / (b - 1) [PROOFSTEP] exact Nat.zero_le _ [GOAL] case succ α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ ∑ i in Ico 1 (succ n), a / b ^ i ≤ a / (b - 1) [PROOFSTEP] rw [← add_le_add_iff_left a] [GOAL] case succ α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ a + ∑ i in Ico 1 (succ n), a / b ^ i ≤ a + a / (b - 1) [PROOFSTEP] calc (a + ∑ i : ℕ in Ico 1 n.succ, a / b ^ i) = a / b ^ 0 + ∑ i : ℕ in Ico 1 n.succ, a / b ^ i := by rw [pow_zero, Nat.div_one] _ = ∑ i in range n.succ, a / b ^ i := by rw [range_eq_Ico, ← Nat.Ico_insert_succ_left (Nat.succ_pos _), sum_insert] exact fun h => zero_lt_one.not_le (mem_Ico.1 h).1 _ ≤ a * b / (b - 1) := (Nat.geom_sum_le hb a _) _ = (a * 1 + a * (b - 1)) / (b - 1) := by rw [← mul_add, add_tsub_cancel_of_le (one_le_two.trans hb)] _ = a + a / (b - 1) := by rw [mul_one, Nat.add_mul_div_right _ _ (tsub_pos_of_lt hb), add_comm] [GOAL] α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ a + ∑ i in Ico 1 (succ n), a / b ^ i = a / b ^ 0 + ∑ i in Ico 1 (succ n), a / b ^ i [PROOFSTEP] rw [pow_zero, Nat.div_one] [GOAL] α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ a / b ^ 0 + ∑ i in Ico 1 (succ n), a / b ^ i = ∑ i in range (succ n), a / b ^ i [PROOFSTEP] rw [range_eq_Ico, ← Nat.Ico_insert_succ_left (Nat.succ_pos _), sum_insert] [GOAL] α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ ¬0 ∈ Ico (succ 0) (succ n) [PROOFSTEP] exact fun h => zero_lt_one.not_le (mem_Ico.1 h).1 [GOAL] α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ a * b / (b - 1) = (a * 1 + a * (b - 1)) / (b - 1) [PROOFSTEP] rw [← mul_add, add_tsub_cancel_of_le (one_le_two.trans hb)] [GOAL] α : Type u β : Type u_1 b : ℕ hb : 2 ≤ b a n : ℕ ⊢ (a * 1 + a * (b - 1)) / (b - 1) = a + a / (b - 1) [PROOFSTEP] rw [mul_one, Nat.add_mul_div_right _ _ (tsub_pos_of_lt hb), add_comm] [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedSemiring α hx : 0 ≤ x hn : n ≠ 0 ⊢ 0 < x ^ 0 [PROOFSTEP] simp [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x < 0 hx' : 0 < x + 1 hn : 1 < n ⊢ 0 < ∑ i in range n, x ^ i ∧ ∑ i in range n, x ^ i < 1 [PROOFSTEP] refine' Nat.le_induction _ _ n (show 2 ≤ n from hn) [GOAL] case refine'_1 α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x < 0 hx' : 0 < x + 1 hn : 1 < n ⊢ 0 < ∑ i in range 2, x ^ i ∧ ∑ i in range 2, x ^ i < 1 [PROOFSTEP] rw [geom_sum_two] [GOAL] case refine'_1 α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x < 0 hx' : 0 < x + 1 hn : 1 < n ⊢ 0 < x + 1 ∧ x + 1 < 1 [PROOFSTEP] exact ⟨hx', (add_lt_iff_neg_right _).2 hx⟩ [GOAL] case refine'_2 α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x < 0 hx' : 0 < x + 1 hn : 1 < n ⊢ ∀ (n : ℕ), 2 ≤ n → 0 < ∑ i in range n, x ^ i ∧ ∑ i in range n, x ^ i < 1 → 0 < ∑ i in range (n + 1), x ^ i ∧ ∑ i in range (n + 1), x ^ i < 1 [PROOFSTEP] clear hn [GOAL] case refine'_2 α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x < 0 hx' : 0 < x + 1 ⊢ ∀ (n : ℕ), 2 ≤ n → 0 < ∑ i in range n, x ^ i ∧ ∑ i in range n, x ^ i < 1 → 0 < ∑ i in range (n + 1), x ^ i ∧ ∑ i in range (n + 1), x ^ i < 1 [PROOFSTEP] intro n _ ihn [GOAL] case refine'_2 α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x < 0 hx' : 0 < x + 1 n : ℕ hn✝ : 2 ≤ n ihn : 0 < ∑ i in range n, x ^ i ∧ ∑ i in range n, x ^ i < 1 ⊢ 0 < ∑ i in range (n + 1), x ^ i ∧ ∑ i in range (n + 1), x ^ i < 1 [PROOFSTEP] rw [geom_sum_succ, add_lt_iff_neg_right, ← neg_lt_iff_pos_add', neg_mul_eq_neg_mul] [GOAL] case refine'_2 α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x < 0 hx' : 0 < x + 1 n : ℕ hn✝ : 2 ≤ n ihn : 0 < ∑ i in range n, x ^ i ∧ ∑ i in range n, x ^ i < 1 ⊢ -x * ∑ i in range n, x ^ i < 1 ∧ x * ∑ i in range n, x ^ i < 0 [PROOFSTEP] exact ⟨mul_lt_one_of_nonneg_of_lt_one_left (neg_nonneg.2 hx.le) (neg_lt_iff_pos_add'.2 hx') ihn.2.le, mul_neg_of_neg_of_pos hx ihn.1⟩ [GOAL] α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 n : ℕ ⊢ if Even n then ∑ i in range n, x ^ i ≤ 0 else 1 ≤ ∑ i in range n, x ^ i [PROOFSTEP] have hx0 : x ≤ 0 := (le_add_of_nonneg_right zero_le_one).trans hx [GOAL] α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 n : ℕ hx0 : x ≤ 0 ⊢ if Even n then ∑ i in range n, x ^ i ≤ 0 else 1 ≤ ∑ i in range n, x ^ i [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 ⊢ if Even Nat.zero then ∑ i in range Nat.zero, x ^ i ≤ 0 else 1 ≤ ∑ i in range Nat.zero, x ^ i [PROOFSTEP] simp only [Nat.zero_eq, range_zero, sum_empty, le_refl, ite_true] [GOAL] case succ α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 n : ℕ ih : if Even n then ∑ i in range n, x ^ i ≤ 0 else 1 ≤ ∑ i in range n, x ^ i ⊢ if Even (Nat.succ n) then ∑ i in range (Nat.succ n), x ^ i ≤ 0 else 1 ≤ ∑ i in range (Nat.succ n), x ^ i [PROOFSTEP] simp only [Nat.even_add_one, geom_sum_succ] [GOAL] case succ α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 n : ℕ ih : if Even n then ∑ i in range n, x ^ i ≤ 0 else 1 ≤ ∑ i in range n, x ^ i ⊢ if ¬Even n then x * ∑ i in range n, x ^ i + 1 ≤ 0 else 1 ≤ x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] split_ifs at ih with h [GOAL] case pos α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 n : ℕ h : Even n ih : ∑ i in range n, x ^ i ≤ 0 ⊢ if ¬Even n then x * ∑ i in range n, x ^ i + 1 ≤ 0 else 1 ≤ x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] rw [if_neg (not_not_intro h), le_add_iff_nonneg_left] [GOAL] case pos α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 n : ℕ h : Even n ih : ∑ i in range n, x ^ i ≤ 0 ⊢ 0 ≤ x * ∑ i in range n, x ^ i [PROOFSTEP] exact mul_nonneg_of_nonpos_of_nonpos hx0 ih [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 n : ℕ h : ¬Even n ih : 1 ≤ ∑ i in range n, x ^ i ⊢ if ¬Even n then x * ∑ i in range n, x ^ i + 1 ≤ 0 else 1 ≤ x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] rw [if_pos h] [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 n : ℕ h : ¬Even n ih : 1 ≤ ∑ i in range n, x ^ i ⊢ x * ∑ i in range n, x ^ i + 1 ≤ 0 [PROOFSTEP] refine' (add_le_add_right _ _).trans hx [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 ≤ 0 hx0 : x ≤ 0 n : ℕ h : ¬Even n ih : 1 ≤ ∑ i in range n, x ^ i ⊢ x * ∑ i in range n, x ^ i ≤ x [PROOFSTEP] simpa only [mul_one] using mul_le_mul_of_nonpos_left ih hx0 [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hn : 1 < n ⊢ if Even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i [PROOFSTEP] have hx0 : x < 0 := ((le_add_iff_nonneg_right _).2 zero_le_one).trans_lt hx [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hn : 1 < n hx0 : x < 0 ⊢ if Even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i [PROOFSTEP] refine' Nat.le_induction _ _ n (show 2 ≤ n from hn) [GOAL] case refine'_1 α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hn : 1 < n hx0 : x < 0 ⊢ if Even 2 then ∑ i in range 2, x ^ i < 0 else 1 < ∑ i in range 2, x ^ i [PROOFSTEP] simp only [geom_sum_two, lt_add_iff_pos_left, ite_true, gt_iff_lt, hx] [GOAL] case refine'_2 α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hn : 1 < n hx0 : x < 0 ⊢ ∀ (n : ℕ), 2 ≤ n → (if Even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i) → if Even (n + 1) then ∑ i in range (n + 1), x ^ i < 0 else 1 < ∑ i in range (n + 1), x ^ i [PROOFSTEP] clear hn [GOAL] case refine'_2 α : Type u β : Type u_1 n : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 ⊢ ∀ (n : ℕ), 2 ≤ n → (if Even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i) → if Even (n + 1) then ∑ i in range (n + 1), x ^ i < 0 else 1 < ∑ i in range (n + 1), x ^ i [PROOFSTEP] intro n _ ihn [GOAL] case refine'_2 α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : if Even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i ⊢ if Even (n + 1) then ∑ i in range (n + 1), x ^ i < 0 else 1 < ∑ i in range (n + 1), x ^ i [PROOFSTEP] simp only [Nat.even_add_one, geom_sum_succ] [GOAL] case refine'_2 α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : if Even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i ⊢ if ¬Even n then x * ∑ i in range n, x ^ i + 1 < 0 else 1 < x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] by_cases hn' : Even n [GOAL] case pos α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : if Even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i hn' : Even n ⊢ if ¬Even n then x * ∑ i in range n, x ^ i + 1 < 0 else 1 < x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] rw [if_pos hn'] at ihn [GOAL] case pos α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : ∑ i in range n, x ^ i < 0 hn' : Even n ⊢ if ¬Even n then x * ∑ i in range n, x ^ i + 1 < 0 else 1 < x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] rw [if_neg, lt_add_iff_pos_left] [GOAL] case pos α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : ∑ i in range n, x ^ i < 0 hn' : Even n ⊢ 0 < x * ∑ i in range n, x ^ i case pos.hnc α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : ∑ i in range n, x ^ i < 0 hn' : Even n ⊢ ¬¬Even n [PROOFSTEP] exact mul_pos_of_neg_of_neg hx0 ihn [GOAL] case pos.hnc α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : ∑ i in range n, x ^ i < 0 hn' : Even n ⊢ ¬¬Even n [PROOFSTEP] exact not_not_intro hn' [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : if Even n then ∑ i in range n, x ^ i < 0 else 1 < ∑ i in range n, x ^ i hn' : ¬Even n ⊢ if ¬Even n then x * ∑ i in range n, x ^ i + 1 < 0 else 1 < x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] rw [if_neg hn'] at ihn [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : 1 < ∑ i in range n, x ^ i hn' : ¬Even n ⊢ if ¬Even n then x * ∑ i in range n, x ^ i + 1 < 0 else 1 < x * ∑ i in range n, x ^ i + 1 [PROOFSTEP] rw [if_pos] [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : 1 < ∑ i in range n, x ^ i hn' : ¬Even n ⊢ x * ∑ i in range n, x ^ i + 1 < 0 case neg.hc α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : 1 < ∑ i in range n, x ^ i hn' : ¬Even n ⊢ ¬Even n [PROOFSTEP] swap [GOAL] case neg.hc α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : 1 < ∑ i in range n, x ^ i hn' : ¬Even n ⊢ ¬Even n [PROOFSTEP] exact hn' [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : 1 < ∑ i in range n, x ^ i hn' : ¬Even n ⊢ x * ∑ i in range n, x ^ i + 1 < 0 [PROOFSTEP] have := add_lt_add_right (mul_lt_mul_of_neg_left ihn hx0) 1 [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : 1 < ∑ i in range n, x ^ i hn' : ¬Even n this : x * ∑ i in range n, x ^ i + 1 < x * 1 + 1 ⊢ x * ∑ i in range n, x ^ i + 1 < 0 [PROOFSTEP] rw [mul_one] at this [GOAL] case neg α : Type u β : Type u_1 n✝ : ℕ x : α inst✝ : StrictOrderedRing α hx : x + 1 < 0 hx0 : x < 0 n : ℕ hn✝ : 2 ≤ n ihn : 1 < ∑ i in range n, x ^ i hn' : ¬Even n this : x * ∑ i in range n, x ^ i + 1 < x + 1 ⊢ x * ∑ i in range n, x ^ i + 1 < 0 [PROOFSTEP] exact this.trans hx [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hx : 0 < x + 1 hn : n ≠ 0 ⊢ 0 < ∑ i in range n, x ^ i [PROOFSTEP] obtain _ | _ | n := n [GOAL] case zero α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : 0 < x + 1 hn : Nat.zero ≠ 0 ⊢ 0 < ∑ i in range Nat.zero, x ^ i [PROOFSTEP] cases hn rfl [GOAL] case succ.zero α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : 0 < x + 1 hn : Nat.succ Nat.zero ≠ 0 ⊢ 0 < ∑ i in range (Nat.succ Nat.zero), x ^ i [PROOFSTEP] simp only [Nat.zero_eq, ← Nat.one_eq_succ_zero, range_one, sum_singleton, pow_zero, zero_lt_one] [GOAL] case succ.succ α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : 0 < x + 1 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ n)), x ^ i [PROOFSTEP] obtain hx' | hx' := lt_or_le x 0 [GOAL] case succ.succ.inl α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : 0 < x + 1 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 hx' : x < 0 ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ n)), x ^ i [PROOFSTEP] exact (geom_sum_pos_and_lt_one hx' hx n.one_lt_succ_succ).1 [GOAL] case succ.succ.inr α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : 0 < x + 1 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 hx' : 0 ≤ x ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ n)), x ^ i [PROOFSTEP] exact geom_sum_pos hx' (by simp only [Nat.succ_ne_zero, Ne.def, not_false_iff]) [GOAL] α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : 0 < x + 1 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 hx' : 0 ≤ x ⊢ Nat.succ (Nat.succ n) ≠ 0 [PROOFSTEP] simp only [Nat.succ_ne_zero, Ne.def, not_false_iff] [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α h : Odd n ⊢ 0 < ∑ i in range n, x ^ i [PROOFSTEP] rcases n with (_ | _ | k) [GOAL] case zero α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α h : Odd Nat.zero ⊢ 0 < ∑ i in range Nat.zero, x ^ i [PROOFSTEP] exact ((show ¬Odd 0 by decide) h).elim [GOAL] α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α h : Odd Nat.zero ⊢ ¬Odd 0 [PROOFSTEP] decide [GOAL] case succ.zero α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α h : Odd (Nat.succ Nat.zero) ⊢ 0 < ∑ i in range (Nat.succ Nat.zero), x ^ i [PROOFSTEP] simp only [Nat.zero_eq, ← Nat.one_eq_succ_zero, geom_sum_one, zero_lt_one] [GOAL] case succ.succ α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α k : ℕ h : Odd (Nat.succ (Nat.succ k)) ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i [PROOFSTEP] rw [Nat.odd_iff_not_even] at h [GOAL] case succ.succ α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α k : ℕ h : ¬Even (Nat.succ (Nat.succ k)) ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i [PROOFSTEP] rcases lt_trichotomy (x + 1) 0 with (hx | hx | hx) [GOAL] case succ.succ.inl α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α k : ℕ h : ¬Even (Nat.succ (Nat.succ k)) hx : x + 1 < 0 ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i [PROOFSTEP] have := geom_sum_alternating_of_lt_neg_one hx k.one_lt_succ_succ [GOAL] case succ.succ.inl α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α k : ℕ h : ¬Even (Nat.succ (Nat.succ k)) hx : x + 1 < 0 this : if Even (Nat.succ (Nat.succ k)) then ∑ i in range (Nat.succ (Nat.succ k)), x ^ i < 0 else 1 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i [PROOFSTEP] simp only [h, if_false] at this [GOAL] case succ.succ.inl α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α k : ℕ h : ¬Even (Nat.succ (Nat.succ k)) hx : x + 1 < 0 this : 1 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i [PROOFSTEP] exact zero_lt_one.trans this [GOAL] case succ.succ.inr.inl α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α k : ℕ h : ¬Even (Nat.succ (Nat.succ k)) hx : x + 1 = 0 ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i [PROOFSTEP] simp only [eq_neg_of_add_eq_zero_left hx, h, neg_one_geom_sum, if_false, zero_lt_one] [GOAL] case succ.succ.inr.inr α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α k : ℕ h : ¬Even (Nat.succ (Nat.succ k)) hx : 0 < x + 1 ⊢ 0 < ∑ i in range (Nat.succ (Nat.succ k)), x ^ i [PROOFSTEP] exact geom_sum_pos' hx k.succ.succ_ne_zero [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 ⊢ 0 < ∑ i in range n, x ^ i ↔ Odd n ∨ 0 < x + 1 [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case refine'_1 α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : 0 < ∑ i in range n, x ^ i ⊢ Odd n ∨ 0 < x + 1 [PROOFSTEP] rw [or_iff_not_imp_left, ← not_le, ← Nat.even_iff_not_odd] [GOAL] case refine'_1 α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : 0 < ∑ i in range n, x ^ i ⊢ Even n → ¬x + 1 ≤ 0 [PROOFSTEP] refine' fun hn hx => h.not_le _ [GOAL] case refine'_1 α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn✝ : n ≠ 0 h : 0 < ∑ i in range n, x ^ i hn : Even n hx : x + 1 ≤ 0 ⊢ ∑ i in range n, x ^ i ≤ 0 [PROOFSTEP] simpa [if_pos hn] using geom_sum_alternating_of_le_neg_one hx n [GOAL] case refine'_2 α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 ⊢ Odd n ∨ 0 < x + 1 → 0 < ∑ i in range n, x ^ i [PROOFSTEP] rintro (hn | hx') [GOAL] case refine'_2.inl α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn✝ : n ≠ 0 hn : Odd n ⊢ 0 < ∑ i in range n, x ^ i [PROOFSTEP] exact hn.geom_sum_pos [GOAL] case refine'_2.inr α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 hx' : 0 < x + 1 ⊢ 0 < ∑ i in range n, x ^ i [PROOFSTEP] exact geom_sum_pos' hx' hn [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hx : x ≠ -1 hn : n ≠ 0 ⊢ ∑ i in range n, x ^ i ≠ 0 [PROOFSTEP] obtain _ | _ | n := n [GOAL] case zero α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x ≠ -1 hn : Nat.zero ≠ 0 ⊢ ∑ i in range Nat.zero, x ^ i ≠ 0 [PROOFSTEP] cases hn rfl [GOAL] case succ.zero α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x ≠ -1 hn : Nat.succ Nat.zero ≠ 0 ⊢ ∑ i in range (Nat.succ Nat.zero), x ^ i ≠ 0 [PROOFSTEP] simp only [Nat.zero_eq, ← Nat.one_eq_succ_zero, range_one, sum_singleton, pow_zero, ne_eq, one_ne_zero, not_false_iff] [GOAL] case succ.succ α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x ≠ -1 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 ⊢ ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ≠ 0 [PROOFSTEP] rw [Ne.def, eq_neg_iff_add_eq_zero, ← Ne.def] at hx [GOAL] case succ.succ α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x + 1 ≠ 0 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 ⊢ ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ≠ 0 [PROOFSTEP] obtain h | h := hx.lt_or_lt [GOAL] case succ.succ.inl α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x + 1 ≠ 0 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 h : x + 1 < 0 ⊢ ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ≠ 0 [PROOFSTEP] have := geom_sum_alternating_of_lt_neg_one h n.one_lt_succ_succ [GOAL] case succ.succ.inl α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x + 1 ≠ 0 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 h : x + 1 < 0 this : if Even (Nat.succ (Nat.succ n)) then ∑ i in range (Nat.succ (Nat.succ n)), x ^ i < 0 else 1 < ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ⊢ ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ≠ 0 [PROOFSTEP] split_ifs at this [GOAL] case pos α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x + 1 ≠ 0 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 h : x + 1 < 0 h✝ : Even (Nat.succ (Nat.succ n)) this : ∑ i in range (Nat.succ (Nat.succ n)), x ^ i < 0 ⊢ ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ≠ 0 [PROOFSTEP] exact this.ne [GOAL] case neg α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x + 1 ≠ 0 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 h : x + 1 < 0 h✝ : ¬Even (Nat.succ (Nat.succ n)) this : 1 < ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ⊢ ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ≠ 0 [PROOFSTEP] exact (zero_lt_one.trans this).ne' [GOAL] case succ.succ.inr α : Type u β : Type u_1 x : α inst✝ : LinearOrderedRing α hx : x + 1 ≠ 0 n : ℕ hn : Nat.succ (Nat.succ n) ≠ 0 h : 0 < x + 1 ⊢ ∑ i in range (Nat.succ (Nat.succ n)), x ^ i ≠ 0 [PROOFSTEP] exact (geom_sum_pos' h n.succ.succ_ne_zero).ne' [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 ⊢ ∑ i in range n, x ^ i = 0 ↔ x = -1 ∧ Even n [PROOFSTEP] refine' ⟨fun h => _, @fun ⟨h, hn⟩ => by simp only [h, hn, neg_one_geom_sum, if_true]⟩ [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn✝ : n ≠ 0 x✝ : x = -1 ∧ Even n h : x = -1 hn : Even n ⊢ ∑ i in range n, x ^ i = 0 [PROOFSTEP] simp only [h, hn, neg_one_geom_sum, if_true] [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : ∑ i in range n, x ^ i = 0 ⊢ x = -1 ∧ Even n [PROOFSTEP] contrapose! h [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n ⊢ ∑ i in range n, x ^ i ≠ 0 [PROOFSTEP] have hx := eq_or_ne x (-1) [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x = -1 ∨ x ≠ -1 ⊢ ∑ i in range n, x ^ i ≠ 0 [PROOFSTEP] cases' hx with hx hx [GOAL] case inl α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x = -1 ⊢ ∑ i in range n, x ^ i ≠ 0 [PROOFSTEP] rw [hx, neg_one_geom_sum] [GOAL] case inl α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x = -1 ⊢ (if Even n then 0 else 1) ≠ 0 [PROOFSTEP] simp only [h hx, ne_eq, ite_eq_left_iff, one_ne_zero, not_forall, exists_prop, and_true] [GOAL] case inr α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 h : x = -1 → ¬Even n hx : x ≠ -1 ⊢ ∑ i in range n, x ^ i ≠ 0 [PROOFSTEP] exact geom_sum_ne_zero hx hn [GOAL] α : Type u β : Type u_1 n : ℕ x : α inst✝ : LinearOrderedRing α hn : n ≠ 0 ⊢ ∑ i in range n, x ^ i < 0 ↔ Even n ∧ x + 1 < 0 [PROOFSTEP] rw [← not_iff_not, not_lt, le_iff_lt_or_eq, eq_comm, or_congr (geom_sum_pos_iff hn) (geom_sum_eq_zero_iff_neg_one hn), Nat.odd_iff_not_even, ← add_eq_zero_iff_eq_neg, not_and, not_lt, le_iff_lt_or_eq, eq_comm, ← imp_iff_not_or, or_comm, and_comm, Decidable.and_or_imp, or_comm]
{"mathlib_filename": "Mathlib.Algebra.GeomSum", "llama_tokens": 33088}
{"mathlib_filename": "Mathlib.Algebra.Abs", "llama_tokens": 0}
[GOAL] α : Type u_1 inst✝⁴ : Add α inst✝³ : Mul α inst✝² : One α inst✝¹ : OfNat α 2 inst✝ : Invertible 2 a b : αˢʸᵐ ⊢ a * b = ↑sym (⅟2 * (↑unsym a * ↑unsym b + ↑unsym b * ↑unsym a)) [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝⁴ : Mul α inst✝³ : Add α inst✝² : One α inst✝¹ : OfNat α 2 inst✝ : Invertible 2 a b : αˢʸᵐ ⊢ ↑unsym (a * b) = ⅟2 * (↑unsym a * ↑unsym b + ↑unsym b * ↑unsym a) [PROOFSTEP] rfl [GOAL] α : Type u_1 inst✝³ : Mul α inst✝² : AddMonoidWithOne α inst✝¹ : Invertible 2 a : α inst✝ : Invertible a ⊢ ↑sym ⅟a * ↑sym a = 1 [PROOFSTEP] rw [sym_mul_sym, mul_invOf_self, invOf_mul_self, one_add_one_eq_two, invOf_mul_self, sym_one] [GOAL] α : Type u_1 inst✝³ : Mul α inst✝² : AddMonoidWithOne α inst✝¹ : Invertible 2 a : α inst✝ : Invertible a ⊢ ↑sym a * ↑sym ⅟a = 1 [PROOFSTEP] rw [sym_mul_sym, mul_invOf_self, invOf_mul_self, one_add_one_eq_two, invOf_mul_self, sym_one] [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ a * (b + c) = a * b + a * c [PROOFSTEP] rw [mul_def, mul_def, mul_def, ← sym_add, ← mul_add, unsym_add, add_mul] [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ ↑sym (⅟2 * (↑unsym a * (↑unsym b + ↑unsym c) + (↑unsym b * ↑unsym a + ↑unsym c * ↑unsym a))) = ↑sym (⅟2 * (↑unsym a * ↑unsym b + ↑unsym b * ↑unsym a + (↑unsym a * ↑unsym c + ↑unsym c * ↑unsym a))) [PROOFSTEP] congr 2 [GOAL] case h.e_6.h.e_a α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ ↑unsym a * (↑unsym b + ↑unsym c) + (↑unsym b * ↑unsym a + ↑unsym c * ↑unsym a) = ↑unsym a * ↑unsym b + ↑unsym b * ↑unsym a + (↑unsym a * ↑unsym c + ↑unsym c * ↑unsym a) [PROOFSTEP] rw [mul_add] [GOAL] case h.e_6.h.e_a α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ ↑unsym a * ↑unsym b + ↑unsym a * ↑unsym c + (↑unsym b * ↑unsym a + ↑unsym c * ↑unsym a) = ↑unsym a * ↑unsym b + ↑unsym b * ↑unsym a + (↑unsym a * ↑unsym c + ↑unsym c * ↑unsym a) [PROOFSTEP] abel [GOAL] case h.e_6.h.e_a α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ ↑unsym a * ↑unsym b + ↑unsym a * ↑unsym c + (↑unsym b * ↑unsym a + ↑unsym c * ↑unsym a) = ↑unsym a * ↑unsym b + ↑unsym b * ↑unsym a + (↑unsym a * ↑unsym c + ↑unsym c * ↑unsym a) [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ (a + b) * c = a * c + b * c [PROOFSTEP] rw [mul_def, mul_def, mul_def, ← sym_add, ← mul_add, unsym_add, add_mul] [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ ↑sym (⅟2 * (↑unsym a * ↑unsym c + ↑unsym b * ↑unsym c + ↑unsym c * (↑unsym a + ↑unsym b))) = ↑sym (⅟2 * (↑unsym a * ↑unsym c + ↑unsym c * ↑unsym a + (↑unsym b * ↑unsym c + ↑unsym c * ↑unsym b))) [PROOFSTEP] congr 2 [GOAL] case h.e_6.h.e_a α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ ↑unsym a * ↑unsym c + ↑unsym b * ↑unsym c + ↑unsym c * (↑unsym a + ↑unsym b) = ↑unsym a * ↑unsym c + ↑unsym c * ↑unsym a + (↑unsym b * ↑unsym c + ↑unsym c * ↑unsym b) [PROOFSTEP] rw [mul_add] [GOAL] case h.e_6.h.e_a α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ ↑unsym a * ↑unsym c + ↑unsym b * ↑unsym c + (↑unsym c * ↑unsym a + ↑unsym c * ↑unsym b) = ↑unsym a * ↑unsym c + ↑unsym c * ↑unsym a + (↑unsym b * ↑unsym c + ↑unsym c * ↑unsym b) [PROOFSTEP] abel [GOAL] case h.e_6.h.e_a α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid a b c : αˢʸᵐ ⊢ ↑unsym a * ↑unsym c + ↑unsym b * ↑unsym c + (↑unsym c * ↑unsym a + ↑unsym c * ↑unsym b) = ↑unsym a * ↑unsym c + ↑unsym c * ↑unsym a + (↑unsym b * ↑unsym c + ↑unsym c * ↑unsym b) [PROOFSTEP] abel [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid x✝ : αˢʸᵐ ⊢ 0 * x✝ = 0 [PROOFSTEP] rw [mul_def, unsym_zero, zero_mul, mul_zero, add_zero, mul_zero, sym_zero] [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid x✝ : αˢʸᵐ ⊢ x✝ * 0 = 0 [PROOFSTEP] rw [mul_def, unsym_zero, zero_mul, mul_zero, add_zero, mul_zero, sym_zero] [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid x✝ : αˢʸᵐ ⊢ 1 * x✝ = x✝ [PROOFSTEP] rw [mul_def, unsym_one, mul_one, one_mul, ← two_mul, invOf_mul_self_assoc, sym_unsym] [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 src✝ : AddCommMonoid αˢʸᵐ := addCommMonoid x✝ : αˢʸᵐ ⊢ x✝ * 1 = x✝ [PROOFSTEP] rw [mul_def, unsym_one, mul_one, one_mul, ← two_mul, invOf_mul_self_assoc, sym_unsym] [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 a : αˢʸᵐ ⊢ ↑unsym (a * a) = ↑unsym a * ↑unsym a [PROOFSTEP] rw [mul_def, unsym_sym, ← two_mul, invOf_mul_self_assoc] [GOAL] α : Type u_1 inst✝¹ : Semiring α inst✝ : Invertible 2 a : α ⊢ ↑sym (a * a) = ↑sym a * ↑sym a [PROOFSTEP] rw [sym_mul_sym, ← two_mul, invOf_mul_self_assoc] [GOAL] α : Type u_1 inst✝⁴ : Mul α inst✝³ : AddCommSemigroup α inst✝² : One α inst✝¹ : OfNat α 2 inst✝ : Invertible 2 a b : αˢʸᵐ ⊢ a * b = b * a [PROOFSTEP] rw [mul_def, mul_def, add_comm] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ ⊢ a * b * (a * a) = a * (b * (a * a)) [PROOFSTEP] have commute_half_left := fun a : α => by -- Porting note: mathlib3 used `bit0_left` have := (Commute.one_left a).add_left (Commute.one_left a) rw [one_add_one_eq_two] at this exact this.invOf_left.eq [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a✝ b : αˢʸᵐ a : α ⊢ ?m.76920 a [PROOFSTEP] have := (Commute.one_left a).add_left (Commute.one_left a) [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a✝ b : αˢʸᵐ a : α this : Commute (1 + 1) a ⊢ ?m.76920 a [PROOFSTEP] rw [one_add_one_eq_two] at this [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a✝ b : αˢʸᵐ a : α this : Commute 2 a ⊢ ?m.76920 a [PROOFSTEP] exact this.invOf_left.eq [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ a * b * (a * a) = a * (b * (a * a)) [PROOFSTEP] calc a * b * (a * a) _ = sym (⅟2 * ⅟2 * (unsym a * unsym b * unsym (a * a) + unsym b * unsym a * unsym (a * a) + unsym (a * a) * unsym a * unsym b + unsym (a * a) * unsym b * unsym a)) := ?_ _ = sym (⅟2 * (unsym a * unsym (sym (⅟2 * (unsym b * unsym (a * a) + unsym (a * a) * unsym b))) + unsym (sym (⅟2 * (unsym b * unsym (a * a) + unsym (a * a) * unsym b))) * unsym a)) := ?_ _ = a * (b * (a * a)) := ?_ -- Rearrange LHS [GOAL] case calc_1 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ a * b * (a * a) = ↑sym (⅟2 * ⅟2 * (↑unsym a * ↑unsym b * ↑unsym (a * a) + ↑unsym b * ↑unsym a * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym a * ↑unsym b + ↑unsym (a * a) * ↑unsym b * ↑unsym a)) [PROOFSTEP] rw [mul_def, mul_def a b, unsym_sym, ← mul_assoc, ← commute_half_left (unsym (a * a)), mul_assoc, mul_assoc, ← mul_add, ← mul_assoc, add_mul, mul_add (unsym (a * a)), ← add_assoc, ← mul_assoc, ← mul_assoc] [GOAL] case calc_2 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ ↑sym (⅟2 * ⅟2 * (↑unsym a * ↑unsym b * ↑unsym (a * a) + ↑unsym b * ↑unsym a * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym a * ↑unsym b + ↑unsym (a * a) * ↑unsym b * ↑unsym a)) = ↑sym (⅟2 * (↑unsym a * ↑unsym (↑sym (⅟2 * (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b))) + ↑unsym (↑sym (⅟2 * (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b))) * ↑unsym a)) [PROOFSTEP] rw [unsym_sym, sym_inj, ← mul_assoc, ← commute_half_left (unsym a), mul_assoc (⅟2) (unsym a), mul_assoc (⅟2) _ (unsym a), ← mul_add, ← mul_assoc] [GOAL] case calc_2 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ ⅟2 * ⅟2 * (↑unsym a * ↑unsym b * ↑unsym (a * a) + ↑unsym b * ↑unsym a * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym a * ↑unsym b + ↑unsym (a * a) * ↑unsym b * ↑unsym a) = ⅟2 * ⅟2 * (↑unsym a * (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) + (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) * ↑unsym a) [PROOFSTEP] conv_rhs => rw [mul_add (unsym a)] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 | ⅟2 * ⅟2 * (↑unsym a * (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) + (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) * ↑unsym a) [PROOFSTEP] rw [mul_add (unsym a)] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 | ⅟2 * ⅟2 * (↑unsym a * (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) + (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) * ↑unsym a) [PROOFSTEP] rw [mul_add (unsym a)] [GOAL] α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 | ⅟2 * ⅟2 * (↑unsym a * (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) + (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) * ↑unsym a) [PROOFSTEP] rw [mul_add (unsym a)] [GOAL] case calc_2 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ ⅟2 * ⅟2 * (↑unsym a * ↑unsym b * ↑unsym (a * a) + ↑unsym b * ↑unsym a * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym a * ↑unsym b + ↑unsym (a * a) * ↑unsym b * ↑unsym a) = ⅟2 * ⅟2 * (↑unsym a * (↑unsym b * ↑unsym (a * a)) + ↑unsym a * (↑unsym (a * a) * ↑unsym b) + (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b) * ↑unsym a) [PROOFSTEP] rw [add_mul, ← add_assoc, ← mul_assoc, ← mul_assoc] [GOAL] case calc_2 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ ⅟2 * ⅟2 * (↑unsym a * ↑unsym b * ↑unsym (a * a) + ↑unsym b * ↑unsym a * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym a * ↑unsym b + ↑unsym (a * a) * ↑unsym b * ↑unsym a) = ⅟2 * ⅟2 * (↑unsym a * ↑unsym b * ↑unsym (a * a) + ↑unsym a * ↑unsym (a * a) * ↑unsym b + ↑unsym b * ↑unsym (a * a) * ↑unsym a + ↑unsym (a * a) * ↑unsym b * ↑unsym a) [PROOFSTEP] rw [unsym_mul_self] [GOAL] case calc_2 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ ⅟2 * ⅟2 * (↑unsym a * ↑unsym b * (↑unsym a * ↑unsym a) + ↑unsym b * ↑unsym a * (↑unsym a * ↑unsym a) + ↑unsym a * ↑unsym a * ↑unsym a * ↑unsym b + ↑unsym a * ↑unsym a * ↑unsym b * ↑unsym a) = ⅟2 * ⅟2 * (↑unsym a * ↑unsym b * (↑unsym a * ↑unsym a) + ↑unsym a * (↑unsym a * ↑unsym a) * ↑unsym b + ↑unsym b * (↑unsym a * ↑unsym a) * ↑unsym a + ↑unsym a * ↑unsym a * ↑unsym b * ↑unsym a) [PROOFSTEP] rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← sub_eq_zero, ← mul_sub] [GOAL] case calc_2 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ ⅟2 * ⅟2 * (↑unsym a * ↑unsym b * ↑unsym a * ↑unsym a + ↑unsym b * ↑unsym a * ↑unsym a * ↑unsym a + ↑unsym a * ↑unsym a * ↑unsym a * ↑unsym b + ↑unsym a * ↑unsym a * ↑unsym b * ↑unsym a - (↑unsym a * ↑unsym b * ↑unsym a * ↑unsym a + ↑unsym a * ↑unsym a * ↑unsym a * ↑unsym b + ↑unsym b * ↑unsym a * ↑unsym a * ↑unsym a + ↑unsym a * ↑unsym a * ↑unsym b * ↑unsym a)) = 0 [PROOFSTEP] convert mul_zero (⅟(2 : α) * ⅟(2 : α)) [GOAL] case h.e'_2.h.e'_6 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ ↑unsym a * ↑unsym b * ↑unsym a * ↑unsym a + ↑unsym b * ↑unsym a * ↑unsym a * ↑unsym a + ↑unsym a * ↑unsym a * ↑unsym a * ↑unsym b + ↑unsym a * ↑unsym a * ↑unsym b * ↑unsym a - (↑unsym a * ↑unsym b * ↑unsym a * ↑unsym a + ↑unsym a * ↑unsym a * ↑unsym a * ↑unsym b + ↑unsym b * ↑unsym a * ↑unsym a * ↑unsym a + ↑unsym a * ↑unsym a * ↑unsym b * ↑unsym a) = 0 [PROOFSTEP] rw [add_sub_add_right_eq_sub, add_assoc, add_assoc, add_sub_add_left_eq_sub, add_comm, add_sub_add_right_eq_sub, sub_eq_zero] -- Rearrange RHS [GOAL] case calc_3 α : Type u_1 inst✝¹ : Ring α inst✝ : Invertible 2 a b : αˢʸᵐ commute_half_left : ∀ (a : α), ⅟2 * a = a * ⅟2 ⊢ ↑sym (⅟2 * (↑unsym a * ↑unsym (↑sym (⅟2 * (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b))) + ↑unsym (↑sym (⅟2 * (↑unsym b * ↑unsym (a * a) + ↑unsym (a * a) * ↑unsym b))) * ↑unsym a)) = a * (b * (a * a)) [PROOFSTEP] rw [← mul_def, ← mul_def]
{"mathlib_filename": "Mathlib.Algebra.Symmetrized", "llama_tokens": 7387}
{"mathlib_filename": "Mathlib.Algebra.Opposites", "llama_tokens": 0}
[GOAL] α : Type u β : Type v inst✝ : Mul β f g : FreeMagma α →ₙ* β h : ↑f ∘ of = ↑g ∘ of x : FreeMagma α ⊢ ∀ (x y : FreeMagma α), ↑f x = ↑g x → ↑f y = ↑g y → ↑f (x * y) = ↑g (x * y) [PROOFSTEP] intros [GOAL] α : Type u β : Type v inst✝ : Mul β f g : FreeMagma α →ₙ* β h : ↑f ∘ of = ↑g ∘ of x x✝ y✝ : FreeMagma α a✝¹ : ↑f x✝ = ↑g x✝ a✝ : ↑f y✝ = ↑g y✝ ⊢ ↑f (x✝ * y✝) = ↑g (x✝ * y✝) [PROOFSTEP] simp only [map_mul, *] [GOAL] α : Type u β : Type v inst✝ : Mul β f✝ f : α → β ⊢ (fun F => ↑F ∘ of) ((fun f => { toFun := liftAux f, map_mul' := (_ : ∀ (x y : FreeMagma α), liftAux f (x * y) = liftAux f (x * y)) }) f) = f [PROOFSTEP] rfl [GOAL] α : Type u β : Type v inst✝ : Mul β f : α → β F : FreeMagma α →ₙ* β ⊢ (fun f => { toFun := liftAux f, map_mul' := (_ : ∀ (x y : FreeMagma α), liftAux f (x * y) = liftAux f (x * y)) }) ((fun F => ↑F ∘ of) F) = F [PROOFSTEP] ext [GOAL] case h.h α : Type u β : Type v inst✝ : Mul β f : α → β F : FreeMagma α →ₙ* β x✝ : α ⊢ (↑((fun f => { toFun := liftAux f, map_mul' := (_ : ∀ (x y : FreeMagma α), liftAux f (x * y) = liftAux f (x * y)) }) ((fun F => ↑F ∘ of) F)) ∘ of) x✝ = (↑F ∘ of) x✝ [PROOFSTEP] rfl [GOAL] α β α✝ : Type u x✝ x y : FreeMagma α✝ ih1 : id <$> x = x ih2 : id <$> y = y ⊢ id <$> (x * y) = x * y [PROOFSTEP] rw [map_mul', ih1, ih2] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeMagma α✝ f : α✝ → FreeMagma β✝ g : β✝ → FreeMagma γ✝ x y : FreeMagma α✝ ih1 : x >>= f >>= g = x >>= fun x => f x >>= g ih2 : y >>= f >>= g = y >>= fun x => f x >>= g ⊢ x * y >>= f >>= g = x * y >>= fun x => f x >>= g [PROOFSTEP] rw [mul_bind, mul_bind, mul_bind, ih1, ih2] [GOAL] α β : Type u m : Type u → Type u inst✝ : Applicative m F : α → m β src✝ : LawfulMonad FreeMagma := instLawfulMonadFreeMagma α✝ : Type u x✝ x y : FreeMagma α✝ ih1 : traverse pure x = x ih2 : traverse pure y = y ⊢ traverse pure (x * y) = x * y [PROOFSTEP] rw [traverse_mul, ih1, ih2, mul_map_seq] [GOAL] α β : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α → m β src✝ : LawfulMonad FreeMagma := instLawfulMonadFreeMagma F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f : β✝ → F✝ γ✝ g : α✝ → G✝ β✝ x✝ : FreeMagma α✝ x : α✝ ⊢ traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (pure x) = Functor.Comp.mk (traverse f <$> traverse g (pure x)) [PROOFSTEP] simp only [(· ∘ ·), traverse_pure, traverse_pure', functor_norm] [GOAL] α β : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α → m β src✝ : LawfulMonad FreeMagma := instLawfulMonadFreeMagma F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f : β✝ → F✝ γ✝ g : α✝ → G✝ β✝ x✝ x y : FreeMagma α✝ ih1 : traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) x = Functor.Comp.mk (traverse f <$> traverse g x) ih2 : traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) y = Functor.Comp.mk (traverse f <$> traverse g y) ⊢ traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (x * y) = Functor.Comp.mk (traverse f <$> traverse g (x * y)) [PROOFSTEP] rw [traverse_mul, ih1, ih2, traverse_mul] [GOAL] α β : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α → m β src✝ : LawfulMonad FreeMagma := instLawfulMonadFreeMagma F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f : β✝ → F✝ γ✝ g : α✝ → G✝ β✝ x✝ x y : FreeMagma α✝ ih1 : traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) x = Functor.Comp.mk (traverse f <$> traverse g x) ih2 : traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) y = Functor.Comp.mk (traverse f <$> traverse g y) ⊢ (Seq.seq ((fun x x_1 => x * x_1) <$> Functor.Comp.mk (traverse f <$> traverse g x)) fun x => Functor.Comp.mk (traverse f <$> traverse g y)) = Functor.Comp.mk (traverse f <$> Seq.seq ((fun x x_1 => x * x_1) <$> traverse g x) fun x => traverse g y) [PROOFSTEP] simp [Functor.Comp.map_mk, Functor.map_map, (· ∘ ·), Comp.seq_mk, seq_map_assoc, map_seq, traverse_mul] [GOAL] α β : Type u m : Type u → Type u inst✝ : Applicative m F : α → m β src✝ : LawfulMonad FreeMagma := instLawfulMonadFreeMagma α✝ β✝ : Type u f : α✝ → β✝ x✝ x y : FreeMagma α✝ ih1 : traverse (pure ∘ f) x = id.mk (f <$> x) ih2 : traverse (pure ∘ f) y = id.mk (f <$> y) ⊢ traverse (pure ∘ f) (x * y) = id.mk (f <$> (x * y)) [PROOFSTEP] rw [traverse_mul, ih1, ih2, map_mul', mul_map_seq] [GOAL] α β : Type u m : Type u → Type u inst✝ : Applicative m F : α → m β src✝ : LawfulMonad FreeMagma := instLawfulMonadFreeMagma α✝ β✝ : Type u f : α✝ → β✝ x✝ x y : FreeMagma α✝ ih1 : traverse (pure ∘ f) x = id.mk (f <$> x) ih2 : traverse (pure ∘ f) y = id.mk (f <$> y) ⊢ id.mk (f <$> x) * id.mk (f <$> y) = id.mk (f <$> x * f <$> y) [PROOFSTEP] rfl [GOAL] α✝ β✝ : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α✝ → m β✝ src✝ : LawfulMonad FreeMagma := instLawfulMonadFreeMagma F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η : ApplicativeTransformation F✝ G✝ α β : Type u f : α → F✝ β x✝ : FreeMagma α x : α ⊢ (fun {α} => ApplicativeTransformation.app η α) (traverse f (pure x)) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (pure x) [PROOFSTEP] simp only [traverse_pure, functor_norm, Function.comp_apply] [GOAL] α✝ β✝ : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α✝ → m β✝ src✝ : LawfulMonad FreeMagma := instLawfulMonadFreeMagma F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η : ApplicativeTransformation F✝ G✝ α β : Type u f : α → F✝ β x✝ x y : FreeMagma α ih1 : (fun {α} => ApplicativeTransformation.app η α) (traverse f x) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) x ih2 : (fun {α} => ApplicativeTransformation.app η α) (traverse f y) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) y ⊢ (fun {α} => ApplicativeTransformation.app η α) (traverse f (x * y)) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (x * y) [PROOFSTEP] simp only [traverse_mul, functor_norm, ih1, ih2] [GOAL] α : Type u inst✝ : Mul α x y : AssocQuotient α ⊢ AssocQuotient α [PROOFSTEP] refine' Quot.liftOn₂ x y (fun x y ↦ Quot.mk _ (x * y)) _ _ [GOAL] case refine'_1 α : Type u inst✝ : Mul α x y : AssocQuotient α ⊢ ∀ (a b₁ b₂ : α), AssocRel α b₁ b₂ → (fun x y => Quot.mk (AssocRel α) (x * y)) a b₁ = (fun x y => Quot.mk (AssocRel α) (x * y)) a b₂ [PROOFSTEP] rintro a b₁ b₂ (⟨c, d, e⟩ | ⟨c, d, e, f⟩) [GOAL] case refine'_1.intro α : Type u inst✝ : Mul α x y : AssocQuotient α a c d e : α ⊢ (fun x y => Quot.mk (AssocRel α) (x * y)) a (c * d * e) = (fun x y => Quot.mk (AssocRel α) (x * y)) a (c * (d * e)) [PROOFSTEP] simp only [GOAL] case refine'_1.left α : Type u inst✝ : Mul α x y : AssocQuotient α a c d e f : α ⊢ (fun x y => Quot.mk (AssocRel α) (x * y)) a (c * (d * e * f)) = (fun x y => Quot.mk (AssocRel α) (x * y)) a (c * (d * (e * f))) [PROOFSTEP] simp only [GOAL] case refine'_1.intro α : Type u inst✝ : Mul α x y : AssocQuotient α a c d e : α ⊢ Quot.mk (AssocRel α) (a * (c * d * e)) = Quot.mk (AssocRel α) (a * (c * (d * e))) [PROOFSTEP] exact quot_mk_assoc_left _ _ _ _ [GOAL] case refine'_1.left α : Type u inst✝ : Mul α x y : AssocQuotient α a c d e f : α ⊢ Quot.mk (AssocRel α) (a * (c * (d * e * f))) = Quot.mk (AssocRel α) (a * (c * (d * (e * f)))) [PROOFSTEP] rw [← quot_mk_assoc, quot_mk_assoc_left, quot_mk_assoc] [GOAL] case refine'_2 α : Type u inst✝ : Mul α x y : AssocQuotient α ⊢ ∀ (a₁ a₂ b : α), AssocRel α a₁ a₂ → (fun x y => Quot.mk (AssocRel α) (x * y)) a₁ b = (fun x y => Quot.mk (AssocRel α) (x * y)) a₂ b [PROOFSTEP] rintro a₁ a₂ b (⟨c, d, e⟩ | ⟨c, d, e, f⟩) [GOAL] case refine'_2.intro α : Type u inst✝ : Mul α x y : AssocQuotient α b c d e : α ⊢ (fun x y => Quot.mk (AssocRel α) (x * y)) (c * d * e) b = (fun x y => Quot.mk (AssocRel α) (x * y)) (c * (d * e)) b [PROOFSTEP] simp only [GOAL] case refine'_2.left α : Type u inst✝ : Mul α x y : AssocQuotient α b c d e f : α ⊢ (fun x y => Quot.mk (AssocRel α) (x * y)) (c * (d * e * f)) b = (fun x y => Quot.mk (AssocRel α) (x * y)) (c * (d * (e * f))) b [PROOFSTEP] simp only [GOAL] case refine'_2.intro α : Type u inst✝ : Mul α x y : AssocQuotient α b c d e : α ⊢ Quot.mk (AssocRel α) (c * d * e * b) = Quot.mk (AssocRel α) (c * (d * e) * b) [PROOFSTEP] simp only [quot_mk_assoc, quot_mk_assoc_left] [GOAL] case refine'_2.left α : Type u inst✝ : Mul α x y : AssocQuotient α b c d e f : α ⊢ Quot.mk (AssocRel α) (c * (d * e * f) * b) = Quot.mk (AssocRel α) (c * (d * (e * f)) * b) [PROOFSTEP] rw [quot_mk_assoc, quot_mk_assoc, quot_mk_assoc_left, quot_mk_assoc_left, quot_mk_assoc_left, ← quot_mk_assoc c d, ← quot_mk_assoc c d, quot_mk_assoc_left] [GOAL] α : Type u inst✝¹ : Mul α β : Type v inst✝ : Semigroup β f✝ f : α →ₙ* β x : AssocQuotient α ⊢ ∀ (a b : α), AssocRel α a b → ↑f a = ↑f b [PROOFSTEP] rintro a b (⟨c, d, e⟩ | ⟨c, d, e, f⟩) [GOAL] case intro α : Type u inst✝¹ : Mul α β : Type v inst✝ : Semigroup β f✝ f : α →ₙ* β x : AssocQuotient α c d e : α ⊢ ↑f (c * d * e) = ↑f (c * (d * e)) [PROOFSTEP] simp only [map_mul, mul_assoc] [GOAL] case left α : Type u inst✝¹ : Mul α β : Type v inst✝ : Semigroup β f✝¹ f✝ : α →ₙ* β x : AssocQuotient α c d e f : α ⊢ ↑f✝ (c * (d * e * f)) = ↑f✝ (c * (d * (e * f))) [PROOFSTEP] simp only [map_mul, mul_assoc] [GOAL] α : Type u x y : FreeSemigroup α ⊢ length (x * y) = length x + length y [PROOFSTEP] simp [length, ← add_assoc, add_right_comm, List.length, List.length_append] [GOAL] α : Type u β : Type v inst✝ : Mul β f g : FreeSemigroup α →ₙ* β h : ↑f ∘ of = ↑g ∘ of x✝ : FreeSemigroup α x : α y : FreeSemigroup α hx : ↑f (of x) = ↑g (of x) hy : ↑f y = ↑g y ⊢ ↑f (of x * y) = ↑g (of x * y) [PROOFSTEP] simp only [map_mul, *] [GOAL] α : Type u β : Type v inst✝ : Semigroup β f✝ f : α → β x y : FreeSemigroup α ⊢ (fun x => List.foldl (fun a b => a * f b) (f x.head) x.tail) (x * y) = (fun x => List.foldl (fun a b => a * f b) (f x.head) x.tail) x * (fun x => List.foldl (fun a b => a * f b) (f x.head) x.tail) y [PROOFSTEP] simp only [head_mul, tail_mul, ← List.foldl_map f, List.foldl_append, List.foldl_cons, List.foldl_assoc] [GOAL] α : Type u β : Type v inst✝ : Semigroup β f : α → β x : α y : FreeSemigroup α ⊢ ↑(↑lift f) (of x * y) = f x * ↑(↑lift f) y [PROOFSTEP] rw [map_mul, lift_of] [GOAL] α : Type u β : Type v f : α → β x✝ : FreeSemigroup α x : α y : FreeSemigroup α hx : length (↑(map f) (of x)) = length (of x) hy : length (↑(map f) y) = length y ⊢ length (↑(map f) (of x * y)) = length (of x * y) [PROOFSTEP] simp only [map_mul, length_mul, *] [GOAL] α β α✝ : Type u x✝ : FreeSemigroup α✝ x : α✝ y : FreeSemigroup α✝ ih1 : id <$> pure x = pure x ih2 : id <$> y = y ⊢ id <$> (pure x * y) = pure x * y [PROOFSTEP] rw [map_mul', ih1, ih2] [GOAL] α β α✝ β✝ γ✝ : Type u x✝ : FreeSemigroup α✝ g : α✝ → FreeSemigroup β✝ f : β✝ → FreeSemigroup γ✝ x : α✝ y : FreeSemigroup α✝ ih1 : pure x >>= g >>= f = pure x >>= fun x => g x >>= f ih2 : y >>= g >>= f = y >>= fun x => g x >>= f ⊢ pure x * y >>= g >>= f = pure x * y >>= fun x => g x >>= f [PROOFSTEP] rw [mul_bind, mul_bind, mul_bind, ih1, ih2] [GOAL] α β : Type u m : Type u → Type u inst✝¹ : Applicative m F : α → m β inst✝ : LawfulApplicative m x✝¹ y✝ : FreeSemigroup α x✝ : α L1 : List α y : α L2 : List α hd : α tl : List α ih : ∀ (x : α), traverse F ({ head := x, tail := tl } * { head := y, tail := L2 }) = Seq.seq ((fun x x_1 => x * x_1) <$> traverse F { head := x, tail := tl }) fun x => traverse F { head := y, tail := L2 } x : α ⊢ (Seq.seq ((fun x x_1 => x * x_1) <$> pure <$> F x) fun x => traverse F ({ head := hd, tail := tl } * { head := y, tail := L2 })) = Seq.seq ((fun x x_1 => x * x_1) <$> Seq.seq ((fun x x_1 => x * x_1) <$> pure <$> F x) fun x => traverse F { head := hd, tail := tl }) fun x => traverse F { head := y, tail := L2 } [PROOFSTEP] rw [ih] [GOAL] α β : Type u m : Type u → Type u inst✝¹ : Applicative m F : α → m β inst✝ : LawfulApplicative m x✝¹ y✝ : FreeSemigroup α x✝ : α L1 : List α y : α L2 : List α hd : α tl : List α ih : ∀ (x : α), traverse F ({ head := x, tail := tl } * { head := y, tail := L2 }) = Seq.seq ((fun x x_1 => x * x_1) <$> traverse F { head := x, tail := tl }) fun x => traverse F { head := y, tail := L2 } x : α ⊢ (Seq.seq ((fun x x_1 => x * x_1) <$> pure <$> F x) fun x => Seq.seq ((fun x x_1 => x * x_1) <$> traverse F { head := hd, tail := tl }) fun x => traverse F { head := y, tail := L2 }) = Seq.seq ((fun x x_1 => x * x_1) <$> Seq.seq ((fun x x_1 => x * x_1) <$> pure <$> F x) fun x => traverse F { head := hd, tail := tl }) fun x => traverse F { head := y, tail := L2 } [PROOFSTEP] simp only [(· ∘ ·), (mul_assoc _ _ _).symm, functor_norm] [GOAL] α β : Type u m : Type u → Type u inst✝ : Applicative m F : α → m β src✝ : LawfulMonad FreeSemigroup := instLawfulMonadFreeSemigroup α✝ : Type u x✝ : FreeSemigroup α✝ x : α✝ y : FreeSemigroup α✝ ih1 : traverse pure (of x) = of x ih2 : traverse pure y = y ⊢ traverse pure (of x * y) = of x * y [PROOFSTEP] rw [traverse_mul, ih1, ih2, mul_map_seq] [GOAL] α β : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α → m β src✝ : LawfulMonad FreeSemigroup := instLawfulMonadFreeSemigroup F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f : β✝ → F✝ γ✝ g : α✝ → G✝ β✝ x✝ : FreeSemigroup α✝ x : α✝ ⊢ traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (pure x) = Functor.Comp.mk (traverse f <$> traverse g (pure x)) [PROOFSTEP] simp only [traverse_pure, functor_norm, (· ∘ ·)] [GOAL] α β : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α → m β src✝ : LawfulMonad FreeSemigroup := instLawfulMonadFreeSemigroup F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f : β✝ → F✝ γ✝ g : α✝ → G✝ β✝ x✝ : FreeSemigroup α✝ x : α✝ y : FreeSemigroup α✝ ih1 : traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (pure x) = Functor.Comp.mk (traverse f <$> traverse g (pure x)) ih2 : traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) y = Functor.Comp.mk (traverse f <$> traverse g y) ⊢ traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (pure x * y) = Functor.Comp.mk (traverse f <$> traverse g (pure x * y)) [PROOFSTEP] rw [traverse_mul, ih1, ih2, traverse_mul, Functor.Comp.map_mk] [GOAL] α β : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α → m β src✝ : LawfulMonad FreeSemigroup := instLawfulMonadFreeSemigroup F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ α✝ β✝ γ✝ : Type u f : β✝ → F✝ γ✝ g : α✝ → G✝ β✝ x✝ : FreeSemigroup α✝ x : α✝ y : FreeSemigroup α✝ ih1 : traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) (pure x) = Functor.Comp.mk (traverse f <$> traverse g (pure x)) ih2 : traverse (Functor.Comp.mk ∘ Functor.map f ∘ g) y = Functor.Comp.mk (traverse f <$> traverse g y) ⊢ (Seq.seq (Functor.Comp.mk (((fun x x_1 => x <$> x_1) fun x x_1 => x * x_1) <$> traverse f <$> traverse g (pure x))) fun x => Functor.Comp.mk (traverse f <$> traverse g y)) = Functor.Comp.mk (traverse f <$> Seq.seq ((fun x x_1 => x * x_1) <$> traverse g (pure x)) fun x => traverse g y) [PROOFSTEP] simp only [Function.comp, functor_norm, traverse_mul] [GOAL] α β : Type u m : Type u → Type u inst✝ : Applicative m F : α → m β src✝ : LawfulMonad FreeSemigroup := instLawfulMonadFreeSemigroup α✝ β✝ : Type u f : α✝ → β✝ x✝ : FreeSemigroup α✝ x : α✝ y : FreeSemigroup α✝ ih1 : traverse (pure ∘ f) (of x) = id.mk (f <$> of x) ih2 : traverse (pure ∘ f) y = id.mk (f <$> y) ⊢ traverse (pure ∘ f) (of x * y) = id.mk (f <$> (of x * y)) [PROOFSTEP] rw [traverse_mul, ih1, ih2, map_mul', mul_map_seq] [GOAL] α β : Type u m : Type u → Type u inst✝ : Applicative m F : α → m β src✝ : LawfulMonad FreeSemigroup := instLawfulMonadFreeSemigroup α✝ β✝ : Type u f : α✝ → β✝ x✝ : FreeSemigroup α✝ x : α✝ y : FreeSemigroup α✝ ih1 : traverse (pure ∘ f) (of x) = id.mk (f <$> of x) ih2 : traverse (pure ∘ f) y = id.mk (f <$> y) ⊢ id.mk (f <$> of x) * id.mk (f <$> y) = id.mk (f <$> of x * f <$> y) [PROOFSTEP] rfl [GOAL] α✝ β✝ : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α✝ → m β✝ src✝ : LawfulMonad FreeSemigroup := instLawfulMonadFreeSemigroup F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η : ApplicativeTransformation F✝ G✝ α β : Type u f : α → F✝ β x✝ : FreeSemigroup α x : α ⊢ (fun {α} => ApplicativeTransformation.app η α) (traverse f (pure x)) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (pure x) [PROOFSTEP] simp only [traverse_pure, functor_norm, Function.comp] [GOAL] α✝ β✝ : Type u m : Type u → Type u inst✝⁴ : Applicative m F : α✝ → m β✝ src✝ : LawfulMonad FreeSemigroup := instLawfulMonadFreeSemigroup F✝ G✝ : Type u → Type u inst✝³ : Applicative F✝ inst✝² : Applicative G✝ inst✝¹ : LawfulApplicative F✝ inst✝ : LawfulApplicative G✝ η : ApplicativeTransformation F✝ G✝ α β : Type u f : α → F✝ β x✝ : FreeSemigroup α x : α y : FreeSemigroup α ih1 : (fun {α} => ApplicativeTransformation.app η α) (traverse f (pure x)) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (pure x) ih2 : (fun {α} => ApplicativeTransformation.app η α) (traverse f y) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) y ⊢ (fun {α} => ApplicativeTransformation.app η α) (traverse f (pure x * y)) = traverse ((fun {α} => ApplicativeTransformation.app η α) ∘ f) (pure x * y) [PROOFSTEP] simp only [traverse_mul, functor_norm, ih1, ih2] [GOAL] α : Type u β : Type v f : α → β ⊢ MulHom.comp toFreeSemigroup (map f) = MulHom.comp (FreeSemigroup.map f) toFreeSemigroup [PROOFSTEP] ext1 [GOAL] case h α : Type u β : Type v f : α → β ⊢ ↑(MulHom.comp toFreeSemigroup (map f)) ∘ of = ↑(MulHom.comp (FreeSemigroup.map f) toFreeSemigroup) ∘ of [PROOFSTEP] rfl [GOAL] α : Type u β : Type v x✝ x y : FreeMagma α hx : FreeSemigroup.length (↑toFreeSemigroup x) = length x hy : FreeSemigroup.length (↑toFreeSemigroup y) = length y ⊢ FreeSemigroup.length (↑toFreeSemigroup (x * y)) = length (x * y) [PROOFSTEP] rw [map_mul, FreeSemigroup.length_mul, hx, hy] [GOAL] α : Type u β : Type v x✝ x y : FreeMagma α hx : FreeSemigroup.length (↑toFreeSemigroup x) = length x hy : FreeSemigroup.length (↑toFreeSemigroup y) = length y ⊢ length x + length y = length (x * y) [PROOFSTEP] rfl [GOAL] α : Type u ⊢ MulHom.comp (↑FreeSemigroup.lift (↑Magma.AssocQuotient.of ∘ FreeMagma.of)) (↑Magma.AssocQuotient.lift FreeMagma.toFreeSemigroup) = MulHom.id (Magma.AssocQuotient (FreeMagma α)) [PROOFSTEP] ext [GOAL] case h.h.h α : Type u x✝ : α ⊢ (↑(MulHom.comp (MulHom.comp (↑FreeSemigroup.lift (↑Magma.AssocQuotient.of ∘ FreeMagma.of)) (↑Magma.AssocQuotient.lift FreeMagma.toFreeSemigroup)) Magma.AssocQuotient.of) ∘ FreeMagma.of) x✝ = (↑(MulHom.comp (MulHom.id (Magma.AssocQuotient (FreeMagma α))) Magma.AssocQuotient.of) ∘ FreeMagma.of) x✝ [PROOFSTEP] rfl [GOAL] α : Type u ⊢ MulHom.comp (↑Magma.AssocQuotient.lift FreeMagma.toFreeSemigroup) (↑FreeSemigroup.lift (↑Magma.AssocQuotient.of ∘ FreeMagma.of)) = MulHom.id (FreeSemigroup α) [PROOFSTEP] ext1 [GOAL] case h α : Type u ⊢ ↑(MulHom.comp (↑Magma.AssocQuotient.lift FreeMagma.toFreeSemigroup) (↑FreeSemigroup.lift (↑Magma.AssocQuotient.of ∘ FreeMagma.of))) ∘ FreeSemigroup.of = ↑(MulHom.id (FreeSemigroup α)) ∘ FreeSemigroup.of [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Algebra.Free", "llama_tokens": 9993}
[GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } g : ℝ[X] ⊢ comp (Polynomial.toContinuousMapOn g (Set.Icc (-‖f‖) ‖f‖)) (attachBound ↑f) = ↑(↑(Polynomial.aeval f) g) [PROOFSTEP] ext [GOAL] case h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } g : ℝ[X] a✝ : X ⊢ ↑(comp (Polynomial.toContinuousMapOn g (Set.Icc (-‖f‖) ‖f‖)) (attachBound ↑f)) a✝ = ↑↑(↑(Polynomial.aeval f) g) a✝ [PROOFSTEP] simp only [ContinuousMap.coe_comp, Function.comp_apply, ContinuousMap.attachBound_apply_coe, Polynomial.toContinuousMapOn_apply, Polynomial.aeval_subalgebra_coe, Polynomial.aeval_continuousMap_apply, Polynomial.toContinuousMap_apply] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } g : ℝ[X] ⊢ comp (Polynomial.toContinuousMapOn g (Set.Icc (-‖f‖) ‖f‖)) (attachBound ↑f) ∈ A [PROOFSTEP] rw [polynomial_comp_attachBound] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } g : ℝ[X] ⊢ ↑(↑(Polynomial.aeval f) g) ∈ A [PROOFSTEP] apply SetLike.coe_mem [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } p : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) ⊢ comp p (attachBound ↑f) ∈ Subalgebra.topologicalClosure A [PROOFSTEP] have mem_closure : p ∈ (polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)).topologicalClosure := continuousMap_mem_polynomialFunctions_closure _ _ p [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } p : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) mem_closure : p ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) ⊢ comp p (attachBound ↑f) ∈ Subalgebra.topologicalClosure A [PROOFSTEP] have frequently_mem_polynomials := mem_closure_iff_frequently.mp mem_closure [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } p : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) mem_closure : p ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) frequently_mem_polynomials : ∃ᶠ (x : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ)) in nhds p, x ∈ ↑(polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) ⊢ comp p (attachBound ↑f) ∈ Subalgebra.topologicalClosure A [PROOFSTEP] apply mem_closure_iff_frequently.mpr [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } p : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) mem_closure : p ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) frequently_mem_polynomials : ∃ᶠ (x : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ)) in nhds p, x ∈ ↑(polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) ⊢ ∃ᶠ (x : C(X, ℝ)) in nhds (comp p (attachBound ↑f)), x ∈ ↑A [PROOFSTEP] refine' ((compRightContinuousMap ℝ (attachBound (f : C(X, ℝ)))).continuousAt p).tendsto.frequently_map _ _ frequently_mem_polynomials [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } p : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) mem_closure : p ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) frequently_mem_polynomials : ∃ᶠ (x : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ)) in nhds p, x ∈ ↑(polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) ⊢ ∀ (x : C(↑(Set.Icc (-‖↑f‖) ‖↑f‖), ℝ)), x ∈ ↑(polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) → ↑(compRightContinuousMap ℝ (attachBound ↑f)) x ∈ ↑A [PROOFSTEP] rintro _ ⟨g, ⟨-, rfl⟩⟩ [GOAL] case intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } p : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) mem_closure : p ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) frequently_mem_polynomials : ∃ᶠ (x : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ)) in nhds p, x ∈ ↑(polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) g : ℝ[X] ⊢ ↑(compRightContinuousMap ℝ (attachBound ↑f)) (↑↑(Polynomial.toContinuousMapOnAlgHom (Set.Icc (-‖f‖) ‖f‖)) g) ∈ ↑A [PROOFSTEP] simp only [SetLike.mem_coe, AlgHom.coe_toRingHom, compRightContinuousMap_apply, Polynomial.toContinuousMapOnAlgHom_apply] [GOAL] case intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } p : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) mem_closure : p ∈ Subalgebra.topologicalClosure (polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) frequently_mem_polynomials : ∃ᶠ (x : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ)) in nhds p, x ∈ ↑(polynomialFunctions (Set.Icc (-‖f‖) ‖f‖)) g : ℝ[X] ⊢ comp (Polynomial.toContinuousMapOn g (Set.Icc (-‖f‖) ‖f‖)) (attachBound ↑f) ∈ A [PROOFSTEP] apply polynomial_comp_attachBound_mem [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } ⊢ abs ↑f ∈ Subalgebra.topologicalClosure A [PROOFSTEP] let f' := attachBound (f : C(X, ℝ)) [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } f' : C(X, ↑(Set.Icc (-‖↑f‖) ‖↑f‖)) := attachBound ↑f ⊢ abs ↑f ∈ Subalgebra.topologicalClosure A [PROOFSTEP] let abs : C(Set.Icc (-‖f‖) ‖f‖, ℝ) := { toFun := fun x : Set.Icc (-‖f‖) ‖f‖ => |(x : ℝ)| } [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } f' : C(X, ↑(Set.Icc (-‖↑f‖) ‖↑f‖)) := attachBound ↑f abs : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) := mk fun x => |↑x| ⊢ ContinuousMap.abs ↑f ∈ Subalgebra.topologicalClosure A [PROOFSTEP] change abs.comp f' ∈ A.topologicalClosure [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f : { x // x ∈ A } f' : C(X, ↑(Set.Icc (-‖↑f‖) ‖↑f‖)) := attachBound ↑f abs : C(↑(Set.Icc (-‖f‖) ‖f‖), ℝ) := mk fun x => |↑x| ⊢ comp abs f' ∈ Subalgebra.topologicalClosure A [PROOFSTEP] apply comp_attachBound_mem_closure [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f g : { x // x ∈ A } ⊢ ↑f ⊓ ↑g ∈ Subalgebra.topologicalClosure A [PROOFSTEP] rw [inf_eq_half_smul_add_sub_abs_sub' ℝ] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f g : { x // x ∈ A } ⊢ 2⁻¹ • (↑f + ↑g - |↑g - ↑f|) ∈ Subalgebra.topologicalClosure A [PROOFSTEP] refine' A.topologicalClosure.smul_mem (A.topologicalClosure.sub_mem (A.topologicalClosure.add_mem (A.le_topologicalClosure f.property) (A.le_topologicalClosure g.property)) _) _ [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f g : { x // x ∈ A } ⊢ |↑g - ↑f| ∈ Subalgebra.topologicalClosure A [PROOFSTEP] exact_mod_cast abs_mem_subalgebra_closure A _ [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ ↑f ⊓ ↑g ∈ A [PROOFSTEP] convert inf_mem_subalgebra_closure A f g [GOAL] case h.e'_5 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ A = Subalgebra.topologicalClosure A [PROOFSTEP] apply SetLike.ext' [GOAL] case h.e'_5.h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ ↑A = ↑(Subalgebra.topologicalClosure A) [PROOFSTEP] symm [GOAL] case h.e'_5.h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ ↑(Subalgebra.topologicalClosure A) = ↑A [PROOFSTEP] erw [closure_eq_iff_isClosed] [GOAL] case h.e'_5.h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ IsClosed ↑A [PROOFSTEP] exact h [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f g : { x // x ∈ A } ⊢ ↑f ⊔ ↑g ∈ Subalgebra.topologicalClosure A [PROOFSTEP] rw [sup_eq_half_smul_add_add_abs_sub' ℝ] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f g : { x // x ∈ A } ⊢ 2⁻¹ • (↑f + ↑g + |↑g - ↑f|) ∈ Subalgebra.topologicalClosure A [PROOFSTEP] refine' A.topologicalClosure.smul_mem (A.topologicalClosure.add_mem (A.topologicalClosure.add_mem (A.le_topologicalClosure f.property) (A.le_topologicalClosure g.property)) _) _ [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) f g : { x // x ∈ A } ⊢ |↑g - ↑f| ∈ Subalgebra.topologicalClosure A [PROOFSTEP] exact_mod_cast abs_mem_subalgebra_closure A _ [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ ↑f ⊔ ↑g ∈ A [PROOFSTEP] convert sup_mem_subalgebra_closure A f g [GOAL] case h.e'_5 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ A = Subalgebra.topologicalClosure A [PROOFSTEP] apply SetLike.ext' [GOAL] case h.e'_5.h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ ↑A = ↑(Subalgebra.topologicalClosure A) [PROOFSTEP] symm [GOAL] case h.e'_5.h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ ↑(Subalgebra.topologicalClosure A) = ↑A [PROOFSTEP] erw [closure_eq_iff_isClosed] [GOAL] case h.e'_5.h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) h : IsClosed ↑A f g : { x // x ∈ A } ⊢ IsClosed ↑A [PROOFSTEP] exact h [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L ⊢ closure L = ⊤ [PROOFSTEP] apply eq_top_iff.mpr [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L ⊢ ⊤ ≤ closure L [PROOFSTEP] rintro f - [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L f : C(X, ℝ) ⊢ f ∈ closure L [PROOFSTEP] refine' Filter.Frequently.mem_closure ((Filter.HasBasis.frequently_iff Metric.nhds_basis_ball).mpr fun ε pos => _) [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L f : C(X, ℝ) ε : ℝ pos : 0 < ε ⊢ ∃ x, x ∈ Metric.ball f ε ∧ x ∈ L [PROOFSTEP] simp only [exists_prop, Metric.mem_ball] -- It will be helpful to assume `X` is nonempty later, -- so we get that out of the way here. [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L f : C(X, ℝ) ε : ℝ pos : 0 < ε ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] by_cases nX : Nonempty X [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X ⊢ ∃ x, dist x f < ε ∧ x ∈ L case neg X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : ¬Nonempty X ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] swap [GOAL] case neg X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : ¬Nonempty X ⊢ ∃ x, dist x f < ε ∧ x ∈ L case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] exact ⟨nA.some, (dist_lt_iff pos).mpr fun x => False.elim (nX ⟨x⟩), nA.choose_spec⟩ /- The strategy now is to pick a family of continuous functions `g x y` in `A` with the property that `g x y x = f x` and `g x y y = f y` (this is immediate from `h : SeparatesPointsStrongly`) then use continuity to see that `g x y` is close to `f` near both `x` and `y`, and finally using compactness to produce the desired function `h` as a maximum over finitely many `x` of a minimum over finitely many `y` of the `g x y`. -/ [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : Set.SeparatesPointsStrongly L f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] dsimp only [Set.SeparatesPointsStrongly] at sep [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] choose g hg w₁ w₂ using sep f [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] let U : X → X → Set X := fun x y => {z | f z - ε < g x y z} [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] have U_nhd_y : ∀ x y, U x y ∈ 𝓝 y := by intro x y refine' IsOpen.mem_nhds _ _ · apply isOpen_lt <;> continuity · rw [Set.mem_setOf_eq, w₂] exact sub_lt_self _ pos [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} ⊢ ∀ (x y : X), U x y ∈ 𝓝 y [PROOFSTEP] intro x y [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} x y : X ⊢ U x y ∈ 𝓝 y [PROOFSTEP] refine' IsOpen.mem_nhds _ _ [GOAL] case refine'_1 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} x y : X ⊢ IsOpen (U x y) [PROOFSTEP] apply isOpen_lt [GOAL] case refine'_1.hf X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} x y : X ⊢ Continuous fun b => ↑f b - ε [PROOFSTEP] continuity [GOAL] case refine'_1.hg X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} x y : X ⊢ Continuous fun b => ↑(g x y) b [PROOFSTEP] continuity [GOAL] case refine'_2 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} x y : X ⊢ y ∈ U x y [PROOFSTEP] rw [Set.mem_setOf_eq, w₂] [GOAL] case refine'_2 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} x y : X ⊢ ↑f y - ε < ↑f y [PROOFSTEP] exact sub_lt_self _ pos [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] let ys : ∀ _, Finset X := fun x => (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)).choose [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] let ys_w : ∀ x, ⋃ y ∈ ys x, U x y = ⊤ := fun x => (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)).choose_spec [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] have ys_nonempty : ∀ x, (ys x).Nonempty := fun x => Set.nonempty_of_union_eq_top_of_nonempty _ _ nX (ys_w x) -- Thus for each `x` we have the desired `h x : A` so `f z - ε < h x z` everywhere -- and `h x x = f x`. [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] let h : ∀ _, L := fun x => ⟨(ys x).sup' (ys_nonempty x) fun y => (g x y : C(X, ℝ)), Finset.sup'_mem _ sup_mem _ _ _ fun y _ => hg x y⟩ [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] have lt_h : ∀ x z, f z - ε < (h x : X → ℝ) z := by intro x z obtain ⟨y, ym, zm⟩ := Set.exists_set_mem_of_union_eq_top _ _ (ys_w x) z dsimp simp only [Subtype.coe_mk, sup'_coe, Finset.sup'_apply, Finset.lt_sup'_iff] exact ⟨y, ym, zm⟩ [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } ⊢ ∀ (x z : X), ↑f z - ε < ↑↑(h x) z [PROOFSTEP] intro x z [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } x z : X ⊢ ↑f z - ε < ↑↑(h x) z [PROOFSTEP] obtain ⟨y, ym, zm⟩ := Set.exists_set_mem_of_union_eq_top _ _ (ys_w x) z [GOAL] case intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } x z y : X ym : y ∈ fun i => i ∈ (ys x).val zm : z ∈ U x y ⊢ ↑f z - ε < ↑↑(h x) z [PROOFSTEP] dsimp [GOAL] case intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } x z y : X ym : y ∈ fun i => i ∈ (ys x).val zm : z ∈ U x y ⊢ ↑f z - ε < ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) z [PROOFSTEP] simp only [Subtype.coe_mk, sup'_coe, Finset.sup'_apply, Finset.lt_sup'_iff] [GOAL] case intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } x z y : X ym : y ∈ fun i => i ∈ (ys x).val zm : z ∈ U x y ⊢ ∃ b, b ∈ Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤) ∧ ↑f z - ε < ↑(g x b) z [PROOFSTEP] exact ⟨y, ym, zm⟩ [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] have h_eq : ∀ x, (h x : X → ℝ) x = f x := by intro x; simp [w₁] -- For each `x`, we define `W x` to be `{z | h x z < f z + ε}`, [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z ⊢ ∀ (x : X), ↑↑(h x) x = ↑f x [PROOFSTEP] intro x [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z x : X ⊢ ↑↑(h x) x = ↑f x [PROOFSTEP] simp [w₁] -- For each `x`, we define `W x` to be `{z | h x z < f z + ε}`, [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] let W : ∀ _, Set X := fun x => {z | (h x : X → ℝ) z < f z + ε} -- This is still a neighbourhood of `x`. [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] have W_nhd : ∀ x, W x ∈ 𝓝 x := by intro x refine' IsOpen.mem_nhds _ _ · -- Porting note: mathlib3 `continuity` found `continuous_set_coe` apply isOpen_lt (continuous_set_coe _ _) continuity · dsimp only [Set.mem_setOf_eq] rw [h_eq] exact lt_add_of_pos_right _ pos [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} ⊢ ∀ (x : X), W x ∈ 𝓝 x [PROOFSTEP] intro x [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} x : X ⊢ W x ∈ 𝓝 x [PROOFSTEP] refine' IsOpen.mem_nhds _ _ [GOAL] case refine'_1 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} x : X ⊢ IsOpen (W x) [PROOFSTEP] apply isOpen_lt (continuous_set_coe _ _) [GOAL] case refine'_1 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} x : X ⊢ Continuous fun b => ↑f b + ε [PROOFSTEP] continuity [GOAL] case refine'_2 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} x : X ⊢ x ∈ W x [PROOFSTEP] dsimp only [Set.mem_setOf_eq] [GOAL] case refine'_2 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} x : X ⊢ ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) x < ↑f x + ε [PROOFSTEP] rw [h_eq] [GOAL] case refine'_2 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} x : X ⊢ ↑f x < ↑f x + ε [PROOFSTEP] exact lt_add_of_pos_right _ pos [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] let xs : Finset X := (CompactSpace.elim_nhds_subcover W W_nhd).choose [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] let xs_w : ⋃ x ∈ xs, W x = ⊤ := (CompactSpace.elim_nhds_subcover W W_nhd).choose_spec [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] have xs_nonempty : xs.Nonempty := Set.nonempty_of_union_eq_top_of_nonempty _ _ nX xs_w [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] let k : (L : Type _) := ⟨xs.inf' xs_nonempty fun x => (h x : C(X, ℝ)), Finset.inf'_mem _ inf_mem _ _ _ fun x _ => (h x).2⟩ [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } ⊢ ∃ x, dist x f < ε ∧ x ∈ L [PROOFSTEP] refine' ⟨k.1, _, k.2⟩ -- We just need to verify the bound, which we do pointwise. [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } ⊢ dist (↑k) f < ε [PROOFSTEP] rw [dist_lt_iff pos] [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } ⊢ ∀ (x : X), dist (↑↑k x) (↑f x) < ε [PROOFSTEP] intro z [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ dist (↑↑k z) (↑f z) < ε [PROOFSTEP] rw [show ∀ a b ε : ℝ, dist a b < ε ↔ a < b + ε ∧ b - ε < a by intros; simp only [← Metric.mem_ball, Real.ball_eq_Ioo, Set.mem_Ioo, and_comm]] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ ∀ (a b ε : ℝ), dist a b < ε ↔ a < b + ε ∧ b - ε < a [PROOFSTEP] intros [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X a✝ b✝ ε✝ : ℝ ⊢ dist a✝ b✝ < ε✝ ↔ a✝ < b✝ + ε✝ ∧ b✝ - ε✝ < a✝ [PROOFSTEP] simp only [← Metric.mem_ball, Real.ball_eq_Ioo, Set.mem_Ioo, and_comm] [GOAL] case pos X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ ↑↑k z < ↑f z + ε ∧ ↑f z - ε < ↑↑k z [PROOFSTEP] fconstructor [GOAL] case pos.left X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ ↑↑k z < ↑f z + ε [PROOFSTEP] dsimp [GOAL] case pos.left X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ ↑(Finset.inf' (Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), {z | ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) z < ↑f z + ε} = ⊤)) xs_nonempty fun x => Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) z < ↑f z + ε [PROOFSTEP] simp only [Finset.inf'_lt_iff, ContinuousMap.inf'_apply] [GOAL] case pos.left X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ ∃ i, i ∈ Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), {z | ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) z < ↑f z + ε} = ⊤) ∧ ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), {z | ↑f z - ε < ↑(g i x) z} = ⊤)) (_ : Finset.Nonempty (ys i)) fun y => g i y) z < ↑f z + ε [PROOFSTEP] exact Set.exists_set_mem_of_union_eq_top _ _ xs_w z [GOAL] case pos.right X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ ↑f z - ε < ↑↑k z [PROOFSTEP] dsimp [GOAL] case pos.right X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ ↑f z - ε < ↑(Finset.inf' (Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), {z | ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) z < ↑f z + ε} = ⊤)) xs_nonempty fun x => Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) z [PROOFSTEP] simp only [Finset.lt_inf'_iff, ContinuousMap.inf'_apply] [GOAL] case pos.right X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z : X ⊢ ∀ (i : X), i ∈ Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), {z | ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) z < ↑f z + ε} = ⊤) → ↑f z - ε < ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), {z | ↑f z - ε < ↑(g i x) z} = ⊤)) (_ : Finset.Nonempty (ys i)) fun y => g i y) z [PROOFSTEP] rintro x - [GOAL] case pos.right X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X L : Set C(X, ℝ) nA : Set.Nonempty L inf_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊓ g ∈ L sup_mem : ∀ (f : C(X, ℝ)), f ∈ L → ∀ (g : C(X, ℝ)), g ∈ L → f ⊔ g ∈ L sep : ∀ (v : X → ℝ) (x y : X), ∃ f, f ∈ L ∧ ↑f x = v x ∧ ↑f y = v y f : C(X, ℝ) ε : ℝ pos : 0 < ε nX : Nonempty X g : X → X → C(X, ℝ) hg : ∀ (x y : X), g x y ∈ L w₁ : ∀ (x y : X), ↑(g x y) x = ↑f x w₂ : ∀ (x y : X), ↑(g x y) y = ↑f y U : X → X → Set X := fun x y => {z | ↑f z - ε < ↑(g x y) z} U_nhd_y : ∀ (x y : X), U x y ∈ 𝓝 y ys : X → Finset X := fun x => Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), U x x_1 = ⊤) ys_w : ∀ (x : X), ⋃ (y : X) (_ : y ∈ ys x), U x y = ⊤ := fun x => Exists.choose_spec (CompactSpace.elim_nhds_subcover (U x) (U_nhd_y x)) ys_nonempty : ∀ (x : X), Finset.Nonempty (ys x) h : X → ↑L := fun x => { val := Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y, property := (_ : (Finset.sup' (ys x) (_ : Finset.Nonempty (ys x)) fun y => g x y) ∈ L) } lt_h : ∀ (x z : X), ↑f z - ε < ↑↑(h x) z h_eq : ∀ (x : X), ↑↑(h x) x = ↑f x W : X → Set X := fun x => {z | ↑↑(h x) z < ↑f z + ε} W_nhd : ∀ (x : X), W x ∈ 𝓝 x xs : Finset X := Exists.choose (_ : ∃ t, ⋃ (x : X) (_ : x ∈ t), W x = ⊤) xs_w : ⋃ (x : X) (_ : x ∈ xs), W x = ⊤ := Exists.choose_spec (CompactSpace.elim_nhds_subcover W W_nhd) xs_nonempty : Finset.Nonempty xs k : ↑L := { val := Finset.inf' xs xs_nonempty fun x => ↑(h x), property := (_ : (Finset.inf' xs xs_nonempty fun x => ↑(h x)) ∈ L) } z x : X ⊢ ↑f z - ε < ↑(Finset.sup' (Exists.choose (_ : ∃ t, ⋃ (x_1 : X) (_ : x_1 ∈ t), {z | ↑f z - ε < ↑(g x x_1) z} = ⊤)) (_ : Finset.Nonempty (ys x)) fun y => g x y) z [PROOFSTEP] apply lt_h [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A ⊢ Subalgebra.topologicalClosure A = ⊤ [PROOFSTEP] apply SetLike.ext' [GOAL] case h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A ⊢ ↑(Subalgebra.topologicalClosure A) = ↑⊤ [PROOFSTEP] let L := A.topologicalClosure [GOAL] case h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A L : Subalgebra ℝ C(X, ℝ) := Subalgebra.topologicalClosure A ⊢ ↑(Subalgebra.topologicalClosure A) = ↑⊤ [PROOFSTEP] have n : Set.Nonempty (L : Set C(X, ℝ)) := ⟨(1 : C(X, ℝ)), A.le_topologicalClosure A.one_mem⟩ [GOAL] case h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A L : Subalgebra ℝ C(X, ℝ) := Subalgebra.topologicalClosure A n : Set.Nonempty ↑L ⊢ ↑(Subalgebra.topologicalClosure A) = ↑⊤ [PROOFSTEP] convert sublattice_closure_eq_top (L : Set C(X, ℝ)) n (fun f fm g gm => inf_mem_closed_subalgebra L A.isClosed_topologicalClosure ⟨f, fm⟩ ⟨g, gm⟩) (fun f fm g gm => sup_mem_closed_subalgebra L A.isClosed_topologicalClosure ⟨f, fm⟩ ⟨g, gm⟩) (Subalgebra.SeparatesPoints.strongly (Subalgebra.separatesPoints_monotone A.le_topologicalClosure w)) [GOAL] case h.e'_2 X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A L : Subalgebra ℝ C(X, ℝ) := Subalgebra.topologicalClosure A n : Set.Nonempty ↑L ⊢ ↑(Subalgebra.topologicalClosure A) = closure ↑L [PROOFSTEP] simp [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A f : C(X, ℝ) ⊢ f ∈ Subalgebra.topologicalClosure A [PROOFSTEP] rw [subalgebra_topologicalClosure_eq_top_of_separatesPoints A w] [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A f : C(X, ℝ) ⊢ f ∈ ⊤ [PROOFSTEP] simp [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A f : C(X, ℝ) ε : ℝ pos : 0 < ε ⊢ ∃ g, ‖↑g - f‖ < ε [PROOFSTEP] have w := mem_closure_iff_frequently.mp (continuousMap_mem_subalgebra_closure_of_separatesPoints A w f) [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w✝ : Subalgebra.SeparatesPoints A f : C(X, ℝ) ε : ℝ pos : 0 < ε w : ∃ᶠ (x : C(X, ℝ)) in 𝓝 f, x ∈ ↑A ⊢ ∃ g, ‖↑g - f‖ < ε [PROOFSTEP] rw [Metric.nhds_basis_ball.frequently_iff] at w [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w✝ : Subalgebra.SeparatesPoints A f : C(X, ℝ) ε : ℝ pos : 0 < ε w : ∀ (i : ℝ), 0 < i → ∃ x, x ∈ Metric.ball f i ∧ x ∈ ↑A ⊢ ∃ g, ‖↑g - f‖ < ε [PROOFSTEP] obtain ⟨g, H, m⟩ := w ε pos [GOAL] case intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w✝ : Subalgebra.SeparatesPoints A f : C(X, ℝ) ε : ℝ pos : 0 < ε w : ∀ (i : ℝ), 0 < i → ∃ x, x ∈ Metric.ball f i ∧ x ∈ ↑A g : C(X, ℝ) H : g ∈ Metric.ball f ε m : g ∈ ↑A ⊢ ∃ g, ‖↑g - f‖ < ε [PROOFSTEP] rw [Metric.mem_ball, dist_eq_norm] at H [GOAL] case intro.intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w✝ : Subalgebra.SeparatesPoints A f : C(X, ℝ) ε : ℝ pos : 0 < ε w : ∀ (i : ℝ), 0 < i → ∃ x, x ∈ Metric.ball f i ∧ x ∈ ↑A g : C(X, ℝ) H : ‖g - f‖ < ε m : g ∈ ↑A ⊢ ∃ g, ‖↑g - f‖ < ε [PROOFSTEP] exact ⟨⟨g, m⟩, H⟩ [GOAL] X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A f : X → ℝ c : Continuous f ε : ℝ pos : 0 < ε ⊢ ∃ g, ∀ (x : X), ‖↑↑g x - f x‖ < ε [PROOFSTEP] obtain ⟨g, b⟩ := exists_mem_subalgebra_near_continuousMap_of_separatesPoints A w ⟨f, c⟩ ε pos [GOAL] case intro X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A f : X → ℝ c : Continuous f ε : ℝ pos : 0 < ε g : { x // x ∈ A } b : ‖↑g - mk f‖ < ε ⊢ ∃ g, ∀ (x : X), ‖↑↑g x - f x‖ < ε [PROOFSTEP] use g [GOAL] case h X : Type u_1 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : Subalgebra ℝ C(X, ℝ) w : Subalgebra.SeparatesPoints A f : X → ℝ c : Continuous f ε : ℝ pos : 0 < ε g : { x // x ∈ A } b : ‖↑g - mk f‖ < ε ⊢ ∀ (x : X), ‖↑↑g x - f x‖ < ε [PROOFSTEP] rwa [norm_lt_iff _ pos] at b [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra ⊢ SeparatesPoints (comap (AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (restrictScalars ℝ A.toSubalgebra)) [PROOFSTEP] intro x₁ x₂ hx [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ ⊢ ∃ f, f ∈ (fun f => ↑f) '' ↑(comap (AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (restrictScalars ℝ A.toSubalgebra)) ∧ f x₁ ≠ f x₂ [PROOFSTEP] obtain ⟨_, ⟨f, hfA, rfl⟩, hf⟩ := hA hx [GOAL] case intro.intro.intro.intro 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ ⊢ ∃ f, f ∈ (fun f => ↑f) '' ↑(comap (AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (restrictScalars ℝ A.toSubalgebra)) ∧ f x₁ ≠ f x₂ [PROOFSTEP] let F : C(X, 𝕜) := f - const _ (f x₂) -- Subtract the constant `f x₂` from `f`; this is still an element of the subalgebra [GOAL] case intro.intro.intro.intro 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) ⊢ ∃ f, f ∈ (fun f => ↑f) '' ↑(comap (AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (restrictScalars ℝ A.toSubalgebra)) ∧ f x₁ ≠ f x₂ [PROOFSTEP] have hFA : F ∈ A := by refine' A.sub_mem hfA (@Eq.subst _ (· ∈ A) _ _ _ <| A.smul_mem A.one_mem <| f x₂) ext1 simp only [coe_smul, coe_one, smul_apply, one_apply, Algebra.id.smul_eq_mul, mul_one, const_apply] -- Consider now the function `fun x ↦ |f x - f x₂| ^ 2` [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) ⊢ F ∈ A [PROOFSTEP] refine' A.sub_mem hfA (@Eq.subst _ (· ∈ A) _ _ _ <| A.smul_mem A.one_mem <| f x₂) [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) ⊢ ↑f x₂ • 1 = const X (↑f x₂) [PROOFSTEP] ext1 [GOAL] case h 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) a✝ : X ⊢ ↑(↑f x₂ • 1) a✝ = ↑(const X (↑f x₂)) a✝ [PROOFSTEP] simp only [coe_smul, coe_one, smul_apply, one_apply, Algebra.id.smul_eq_mul, mul_one, const_apply] -- Consider now the function `fun x ↦ |f x - f x₂| ^ 2` [GOAL] case intro.intro.intro.intro 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) hFA : F ∈ A ⊢ ∃ f, f ∈ (fun f => ↑f) '' ↑(comap (AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (restrictScalars ℝ A.toSubalgebra)) ∧ f x₁ ≠ f x₂ [PROOFSTEP] refine' ⟨_, ⟨(⟨IsROrC.normSq, continuous_normSq⟩ : C(𝕜, ℝ)).comp F, _, rfl⟩, _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) hFA : F ∈ A ⊢ comp (ContinuousMap.mk ↑normSq) F ∈ ↑(comap (AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (restrictScalars ℝ A.toSubalgebra)) [PROOFSTEP] rw [SetLike.mem_coe, Subalgebra.mem_comap] [GOAL] case intro.intro.intro.intro.refine'_1 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) hFA : F ∈ A ⊢ ↑(AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (comp (ContinuousMap.mk ↑normSq) F) ∈ restrictScalars ℝ A.toSubalgebra [PROOFSTEP] convert (A.restrictScalars ℝ).mul_mem hFA (star_mem hFA : star F ∈ A) [GOAL] case h.e'_4 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) hFA : F ∈ A ⊢ ↑(AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (comp (ContinuousMap.mk ↑normSq) F) = F * star F [PROOFSTEP] ext1 [GOAL] case h.e'_4.h 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) hFA : F ∈ A a✝ : X ⊢ ↑(↑(AlgHom.compLeftContinuous ℝ ofRealAm (_ : Continuous ofReal)) (comp (ContinuousMap.mk ↑normSq) F)) a✝ = ↑(F * star F) a✝ [PROOFSTEP] exact (IsROrC.mul_conj (K := 𝕜) _).symm [GOAL] case intro.intro.intro.intro.refine'_2 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) hFA : F ∈ A ⊢ (fun f => ↑f) (comp (ContinuousMap.mk ↑normSq) F) x₁ ≠ (fun f => ↑f) (comp (ContinuousMap.mk ↑normSq) F) x₂ [PROOFSTEP] have : f x₁ - f x₂ ≠ 0 := sub_ne_zero.mpr hf [GOAL] case intro.intro.intro.intro.refine'_2 𝕜 : Type u_2 X : Type u_1 inst✝¹ : IsROrC 𝕜 inst✝ : TopologicalSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : SeparatesPoints A.toSubalgebra x₁ x₂ : X hx : x₁ ≠ x₂ f : C(X, 𝕜) hfA : f ∈ ↑A.toSubalgebra hf : (fun f => ↑f) f x₁ ≠ (fun f => ↑f) f x₂ F : C(X, 𝕜) := f - const X (↑f x₂) hFA : F ∈ A this : ↑f x₁ - ↑f x₂ ≠ 0 ⊢ (fun f => ↑f) (comp (ContinuousMap.mk ↑normSq) F) x₁ ≠ (fun f => ↑f) (comp (ContinuousMap.mk ↑normSq) F) x₂ [PROOFSTEP] simpa only [comp_apply, coe_sub, coe_const, sub_apply, coe_mk, sub_self, map_zero, Ne.def, normSq_eq_zero, const_apply] using this [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra ⊢ StarSubalgebra.topologicalClosure A = ⊤ [PROOFSTEP] rw [StarSubalgebra.eq_top_iff] -- Let `I` be the natural inclusion of `C(X, ℝ)` into `C(X, 𝕜)` [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra ⊢ ∀ (x : C(X, 𝕜)), x ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] let I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ofRealClm.compLeftContinuous ℝ X [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm ⊢ ∀ (x : C(X, 𝕜)), x ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] have key : LinearMap.range I ≤ (A.toSubmodule.restrictScalars ℝ).topologicalClosure := by -- Let `A₀` be the subalgebra of `C(X, ℝ)` consisting of `A`'s purely real elements; it is the -- preimage of `A` under `I`. In this argument we only need its submodule structure. let A₀ : Submodule ℝ C(X, ℝ) := (A.toSubmodule.restrictScalars ℝ).comap I have SW : A₀.topologicalClosure = ⊤ := haveI := subalgebra_topologicalClosure_eq_top_of_separatesPoints _ hA.isROrC_to_real congr_arg Subalgebra.toSubmodule this rw [← Submodule.map_top, ← SW] -- So it suffices to prove that the image under `I` of the closure of `A₀` is contained in the -- closure of `A`, which follows by abstract nonsense have h₁ := A₀.topologicalClosure_map ((@ofRealClm 𝕜 _).compLeftContinuousCompact X) have h₂ := (A.toSubmodule.restrictScalars ℝ).map_comap_le I exact h₁.trans (Submodule.topologicalClosure_mono h₂) -- In particular, for a function `f` in `C(X, 𝕜)`, the real and imaginary parts of `f` are in the -- closure of `A` [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm ⊢ LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) [PROOFSTEP] let A₀ : Submodule ℝ C(X, ℝ) := (A.toSubmodule.restrictScalars ℝ).comap I [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm A₀ : Submodule ℝ C(X, ℝ) := Submodule.comap I (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) ⊢ LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) [PROOFSTEP] have SW : A₀.topologicalClosure = ⊤ := haveI := subalgebra_topologicalClosure_eq_top_of_separatesPoints _ hA.isROrC_to_real congr_arg Subalgebra.toSubmodule this [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm A₀ : Submodule ℝ C(X, ℝ) := Submodule.comap I (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) SW : Submodule.topologicalClosure A₀ = ⊤ ⊢ LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) [PROOFSTEP] rw [← Submodule.map_top, ← SW] -- So it suffices to prove that the image under `I` of the closure of `A₀` is contained in the -- closure of `A`, which follows by abstract nonsense [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm A₀ : Submodule ℝ C(X, ℝ) := Submodule.comap I (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) SW : Submodule.topologicalClosure A₀ = ⊤ ⊢ Submodule.map I (Submodule.topologicalClosure A₀) ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) [PROOFSTEP] have h₁ := A₀.topologicalClosure_map ((@ofRealClm 𝕜 _).compLeftContinuousCompact X) [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm A₀ : Submodule ℝ C(X, ℝ) := Submodule.comap I (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) SW : Submodule.topologicalClosure A₀ = ⊤ h₁ : Submodule.map (↑(ContinuousLinearMap.compLeftContinuousCompact X ofRealClm)) (Submodule.topologicalClosure A₀) ≤ Submodule.topologicalClosure (Submodule.map (↑(ContinuousLinearMap.compLeftContinuousCompact X ofRealClm)) A₀) ⊢ Submodule.map I (Submodule.topologicalClosure A₀) ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) [PROOFSTEP] have h₂ := (A.toSubmodule.restrictScalars ℝ).map_comap_le I [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm A₀ : Submodule ℝ C(X, ℝ) := Submodule.comap I (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) SW : Submodule.topologicalClosure A₀ = ⊤ h₁ : Submodule.map (↑(ContinuousLinearMap.compLeftContinuousCompact X ofRealClm)) (Submodule.topologicalClosure A₀) ≤ Submodule.topologicalClosure (Submodule.map (↑(ContinuousLinearMap.compLeftContinuousCompact X ofRealClm)) A₀) h₂ : Submodule.map I (Submodule.comap I (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra))) ≤ Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra) ⊢ Submodule.map I (Submodule.topologicalClosure A₀) ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) [PROOFSTEP] exact h₁.trans (Submodule.topologicalClosure_mono h₂) -- In particular, for a function `f` in `C(X, 𝕜)`, the real and imaginary parts of `f` are in the -- closure of `A` [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) ⊢ ∀ (x : C(X, 𝕜)), x ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] intro f [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) ⊢ f ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] let f_re : C(X, ℝ) := (⟨IsROrC.re, IsROrC.reClm.continuous⟩ : C(𝕜, ℝ)).comp f [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f ⊢ f ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] let f_im : C(X, ℝ) := (⟨IsROrC.im, IsROrC.imClm.continuous⟩ : C(𝕜, ℝ)).comp f [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f f_im : C(X, ℝ) := comp (mk ↑im) f ⊢ f ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] have h_f_re : I f_re ∈ A.topologicalClosure := key ⟨f_re, rfl⟩ [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f f_im : C(X, ℝ) := comp (mk ↑im) f h_f_re : ↑I f_re ∈ StarSubalgebra.topologicalClosure A ⊢ f ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] have h_f_im : I f_im ∈ A.topologicalClosure := key ⟨f_im, rfl⟩ -- So `f_re + I • f_im` is in the closure of `A` [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f f_im : C(X, ℝ) := comp (mk ↑im) f h_f_re : ↑I f_re ∈ StarSubalgebra.topologicalClosure A h_f_im : ↑I f_im ∈ StarSubalgebra.topologicalClosure A ⊢ f ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] have := A.topologicalClosure.add_mem h_f_re (A.topologicalClosure.smul_mem h_f_im IsROrC.I) [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f f_im : C(X, ℝ) := comp (mk ↑im) f h_f_re : ↑I f_re ∈ StarSubalgebra.topologicalClosure A h_f_im : ↑I f_im ∈ StarSubalgebra.topologicalClosure A this : ↑I f_re + IsROrC.I • ↑I f_im ∈ (StarSubalgebra.topologicalClosure A).toSubalgebra ⊢ f ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] rw [StarSubalgebra.mem_toSubalgebra] at this [GOAL] 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f f_im : C(X, ℝ) := comp (mk ↑im) f h_f_re : ↑I f_re ∈ StarSubalgebra.topologicalClosure A h_f_im : ↑I f_im ∈ StarSubalgebra.topologicalClosure A this : ↑I f_re + IsROrC.I • ↑I f_im ∈ StarSubalgebra.topologicalClosure A ⊢ f ∈ StarSubalgebra.topologicalClosure A [PROOFSTEP] convert this [GOAL] case h.e'_4 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f f_im : C(X, ℝ) := comp (mk ↑im) f h_f_re : ↑I f_re ∈ StarSubalgebra.topologicalClosure A h_f_im : ↑I f_im ∈ StarSubalgebra.topologicalClosure A this : ↑I f_re + IsROrC.I • ↑I f_im ∈ StarSubalgebra.topologicalClosure A ⊢ f = ↑I f_re + IsROrC.I • ↑I f_im [PROOFSTEP] ext [GOAL] case h.e'_4.h 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f f_im : C(X, ℝ) := comp (mk ↑im) f h_f_re : ↑I f_re ∈ StarSubalgebra.topologicalClosure A h_f_im : ↑I f_im ∈ StarSubalgebra.topologicalClosure A this : ↑I f_re + IsROrC.I • ↑I f_im ∈ StarSubalgebra.topologicalClosure A a✝ : X ⊢ ↑f a✝ = ↑(↑I f_re + IsROrC.I • ↑I f_im) a✝ [PROOFSTEP] apply Eq.symm [GOAL] case h.e'_4.h.h 𝕜 : Type u_2 X : Type u_1 inst✝² : IsROrC 𝕜 inst✝¹ : TopologicalSpace X inst✝ : CompactSpace X A : StarSubalgebra 𝕜 C(X, 𝕜) hA : Subalgebra.SeparatesPoints A.toSubalgebra I : C(X, ℝ) →ₗ[ℝ] C(X, 𝕜) := ContinuousLinearMap.compLeftContinuous ℝ X ofRealClm key : LinearMap.range I ≤ Submodule.topologicalClosure (Submodule.restrictScalars ℝ (↑Subalgebra.toSubmodule A.toSubalgebra)) f : C(X, 𝕜) f_re : C(X, ℝ) := comp (mk ↑re) f f_im : C(X, ℝ) := comp (mk ↑im) f h_f_re : ↑I f_re ∈ StarSubalgebra.topologicalClosure A h_f_im : ↑I f_im ∈ StarSubalgebra.topologicalClosure A this : ↑I f_re + IsROrC.I • ↑I f_im ∈ StarSubalgebra.topologicalClosure A a✝ : X ⊢ ↑(↑I f_re + IsROrC.I • ↑I f_im) a✝ = ↑f a✝ [PROOFSTEP] simp [mul_comm IsROrC.I _] [GOAL] A : Type u_1 inst✝⁴ : Ring A inst✝³ : Algebra ℝ A inst✝² : TopologicalSpace A inst✝¹ : T2Space A s : Set ℝ inst✝ : CompactSpace ↑s φ ψ : C(↑s, ℝ) →ₐ[ℝ] A hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ φ = ψ [PROOFSTEP] suffices (⊤ : Subalgebra ℝ C(s, ℝ)) ≤ AlgHom.equalizer φ ψ from AlgHom.ext fun x => this (by trivial) [GOAL] A : Type u_1 inst✝⁴ : Ring A inst✝³ : Algebra ℝ A inst✝² : TopologicalSpace A inst✝¹ : T2Space A s : Set ℝ inst✝ : CompactSpace ↑s φ ψ : C(↑s, ℝ) →ₐ[ℝ] A hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) this : ⊤ ≤ AlgHom.equalizer φ ψ x : C(↑s, ℝ) ⊢ x ∈ ⊤ [PROOFSTEP] trivial [GOAL] A : Type u_1 inst✝⁴ : Ring A inst✝³ : Algebra ℝ A inst✝² : TopologicalSpace A inst✝¹ : T2Space A s : Set ℝ inst✝ : CompactSpace ↑s φ ψ : C(↑s, ℝ) →ₐ[ℝ] A hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ ⊤ ≤ AlgHom.equalizer φ ψ [PROOFSTEP] rw [← polynomialFunctions.topologicalClosure s] [GOAL] A : Type u_1 inst✝⁴ : Ring A inst✝³ : Algebra ℝ A inst✝² : TopologicalSpace A inst✝¹ : T2Space A s : Set ℝ inst✝ : CompactSpace ↑s φ ψ : C(↑s, ℝ) →ₐ[ℝ] A hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ Subalgebra.topologicalClosure (polynomialFunctions s) ≤ AlgHom.equalizer φ ψ [PROOFSTEP] exact Subalgebra.topologicalClosure_minimal (polynomialFunctions s) (polynomialFunctions.le_equalizer s φ ψ h) (isClosed_eq hφ hψ) [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : Ring A inst✝⁴ : StarRing A inst✝³ : Algebra 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : T2Space A s : Set 𝕜 inst✝ : CompactSpace ↑s φ ψ : C(↑s, 𝕜) →⋆ₐ[𝕜] A hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ φ = ψ [PROOFSTEP] suffices (⊤ : StarSubalgebra 𝕜 C(s, 𝕜)) ≤ StarAlgHom.equalizer φ ψ from StarAlgHom.ext fun x => this mem_top [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : Ring A inst✝⁴ : StarRing A inst✝³ : Algebra 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : T2Space A s : Set 𝕜 inst✝ : CompactSpace ↑s φ ψ : C(↑s, 𝕜) →⋆ₐ[𝕜] A hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ ⊤ ≤ StarAlgHom.equalizer φ ψ [PROOFSTEP] rw [← polynomialFunctions.starClosure_topologicalClosure s] [GOAL] 𝕜 : Type u_1 A : Type u_2 inst✝⁶ : IsROrC 𝕜 inst✝⁵ : Ring A inst✝⁴ : StarRing A inst✝³ : Algebra 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : T2Space A s : Set 𝕜 inst✝ : CompactSpace ↑s φ ψ : C(↑s, 𝕜) →⋆ₐ[𝕜] A hφ : Continuous ↑φ hψ : Continuous ↑ψ h : ↑φ (↑(toContinuousMapOnAlgHom s) X) = ↑ψ (↑(toContinuousMapOnAlgHom s) X) ⊢ topologicalClosure (Subalgebra.starClosure (polynomialFunctions s)) ≤ StarAlgHom.equalizer φ ψ [PROOFSTEP] exact StarSubalgebra.topologicalClosure_minimal (polynomialFunctions.starClosure_le_equalizer s φ ψ h) (isClosed_eq hφ hψ)
{"mathlib_filename": "Mathlib.Topology.ContinuousFunction.StoneWeierstrass", "llama_tokens": 56913}
{"mathlib_filename": "Mathlib.Algebra.GradedMulAction", "llama_tokens": 0}
[GOAL] x x✝ : PEmpty ⊢ PEmpty [PROOFSTEP] cases x [GOAL] x y z : PEmpty ⊢ x * y * z = x * (y * z) [PROOFSTEP] cases x
{"mathlib_filename": "Mathlib.Algebra.PEmptyInstances", "llama_tokens": 65}
[GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q₁ q₂ : Basis A c₁ c₂ hi : q₁.i = q₂.i hj : q₁.j = q₂.j ⊢ q₁ = q₂ [PROOFSTEP] cases q₁ [GOAL] case mk R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q₂ : Basis A c₁ c₂ i✝ j✝ k✝ : A i_mul_i✝ : i✝ * i✝ = c₁ • 1 j_mul_j✝ : j✝ * j✝ = c₂ • 1 i_mul_j✝ : i✝ * j✝ = k✝ j_mul_i✝ : j✝ * i✝ = -k✝ hi : { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := i_mul_j✝, j_mul_i := j_mul_i✝ }.i = q₂.i hj : { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := i_mul_j✝, j_mul_i := j_mul_i✝ }.j = q₂.j ⊢ { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := i_mul_j✝, j_mul_i := j_mul_i✝ } = q₂ [PROOFSTEP] rename_i q₁_i_mul_j _ [GOAL] case mk R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q₂ : Basis A c₁ c₂ i✝ j✝ k✝ : A i_mul_i✝ : i✝ * i✝ = c₁ • 1 j_mul_j✝ : j✝ * j✝ = c₂ • 1 q₁_i_mul_j : i✝ * j✝ = k✝ j_mul_i✝ : j✝ * i✝ = -k✝ hi : { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝ }.i = q₂.i hj : { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝ }.j = q₂.j ⊢ { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝ } = q₂ [PROOFSTEP] cases q₂ [GOAL] case mk.mk R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R i✝¹ j✝¹ k✝¹ : A i_mul_i✝¹ : i✝¹ * i✝¹ = c₁ • 1 j_mul_j✝¹ : j✝¹ * j✝¹ = c₂ • 1 q₁_i_mul_j : i✝¹ * j✝¹ = k✝¹ j_mul_i✝¹ : j✝¹ * i✝¹ = -k✝¹ i✝ j✝ k✝ : A i_mul_i✝ : i✝ * i✝ = c₁ • 1 j_mul_j✝ : j✝ * j✝ = c₂ • 1 i_mul_j✝ : i✝ * j✝ = k✝ j_mul_i✝ : j✝ * i✝ = -k✝ hi : { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ }.i = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := i_mul_j✝, j_mul_i := j_mul_i✝ }.i hj : { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ }.j = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := i_mul_j✝, j_mul_i := j_mul_i✝ }.j ⊢ { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ } = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := i_mul_j✝, j_mul_i := j_mul_i✝ } [PROOFSTEP] rename_i q₂_i_mul_j _ [GOAL] case mk.mk R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R i✝¹ j✝¹ k✝¹ : A i_mul_i✝¹ : i✝¹ * i✝¹ = c₁ • 1 j_mul_j✝¹ : j✝¹ * j✝¹ = c₂ • 1 q₁_i_mul_j : i✝¹ * j✝¹ = k✝¹ j_mul_i✝¹ : j✝¹ * i✝¹ = -k✝¹ i✝ j✝ k✝ : A i_mul_i✝ : i✝ * i✝ = c₁ • 1 j_mul_j✝ : j✝ * j✝ = c₂ • 1 q₂_i_mul_j : i✝ * j✝ = k✝ j_mul_i✝ : j✝ * i✝ = -k✝ hi : { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ }.i = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₂_i_mul_j, j_mul_i := j_mul_i✝ }.i hj : { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ }.j = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₂_i_mul_j, j_mul_i := j_mul_i✝ }.j ⊢ { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ } = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₂_i_mul_j, j_mul_i := j_mul_i✝ } [PROOFSTEP] congr [GOAL] case mk.mk.e_k R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R i✝¹ j✝¹ k✝¹ : A i_mul_i✝¹ : i✝¹ * i✝¹ = c₁ • 1 j_mul_j✝¹ : j✝¹ * j✝¹ = c₂ • 1 q₁_i_mul_j : i✝¹ * j✝¹ = k✝¹ j_mul_i✝¹ : j✝¹ * i✝¹ = -k✝¹ i✝ j✝ k✝ : A i_mul_i✝ : i✝ * i✝ = c₁ • 1 j_mul_j✝ : j✝ * j✝ = c₂ • 1 q₂_i_mul_j : i✝ * j✝ = k✝ j_mul_i✝ : j✝ * i✝ = -k✝ hi : { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ }.i = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₂_i_mul_j, j_mul_i := j_mul_i✝ }.i hj : { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ }.j = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₂_i_mul_j, j_mul_i := j_mul_i✝ }.j ⊢ k✝¹ = k✝ [PROOFSTEP] rw [← q₁_i_mul_j, ← q₂_i_mul_j] [GOAL] case mk.mk.e_k R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R i✝¹ j✝¹ k✝¹ : A i_mul_i✝¹ : i✝¹ * i✝¹ = c₁ • 1 j_mul_j✝¹ : j✝¹ * j✝¹ = c₂ • 1 q₁_i_mul_j : i✝¹ * j✝¹ = k✝¹ j_mul_i✝¹ : j✝¹ * i✝¹ = -k✝¹ i✝ j✝ k✝ : A i_mul_i✝ : i✝ * i✝ = c₁ • 1 j_mul_j✝ : j✝ * j✝ = c₂ • 1 q₂_i_mul_j : i✝ * j✝ = k✝ j_mul_i✝ : j✝ * i✝ = -k✝ hi : { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ }.i = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₂_i_mul_j, j_mul_i := j_mul_i✝ }.i hj : { i := i✝¹, j := j✝¹, k := k✝¹, i_mul_i := i_mul_i✝¹, j_mul_j := j_mul_j✝¹, i_mul_j := q₁_i_mul_j, j_mul_i := j_mul_i✝¹ }.j = { i := i✝, j := j✝, k := k✝, i_mul_i := i_mul_i✝, j_mul_j := j_mul_j✝, i_mul_j := q₂_i_mul_j, j_mul_i := j_mul_i✝ }.j ⊢ i✝¹ * j✝¹ = i✝ * j✝ [PROOFSTEP] congr [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ { re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 } = c₁ • 1 [PROOFSTEP] ext [GOAL] case re R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 }).re = (c₁ • 1).re [PROOFSTEP] simp [GOAL] case imI R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 }).imI = (c₁ • 1).imI [PROOFSTEP] simp [GOAL] case imJ R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 }).imJ = (c₁ • 1).imJ [PROOFSTEP] simp [GOAL] case imK R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 }).imK = (c₁ • 1).imK [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ { re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 } = c₂ • 1 [PROOFSTEP] ext [GOAL] case re R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 }).re = (c₂ • 1).re [PROOFSTEP] simp [GOAL] case imI R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 }).imI = (c₂ • 1).imI [PROOFSTEP] simp [GOAL] case imJ R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 }).imJ = (c₂ • 1).imJ [PROOFSTEP] simp [GOAL] case imK R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 }).imK = (c₂ • 1).imK [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ { re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 } = { re := 0, imI := 0, imJ := 0, imK := 1 } [PROOFSTEP] ext [GOAL] case re R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 }).re = { re := 0, imI := 0, imJ := 0, imK := 1 }.re [PROOFSTEP] simp [GOAL] case imI R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 }).imI = { re := 0, imI := 0, imJ := 0, imK := 1 }.imI [PROOFSTEP] simp [GOAL] case imJ R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 }).imJ = { re := 0, imI := 0, imJ := 0, imK := 1 }.imJ [PROOFSTEP] simp [GOAL] case imK R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 1, imJ := 0, imK := 0 } * { re := 0, imI := 0, imJ := 1, imK := 0 }).imK = { re := 0, imI := 0, imJ := 0, imK := 1 }.imK [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ { re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 } = -{ re := 0, imI := 0, imJ := 0, imK := 1 } [PROOFSTEP] ext [GOAL] case re R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 }).re = (-{ re := 0, imI := 0, imJ := 0, imK := 1 }).re [PROOFSTEP] simp [GOAL] case imI R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 }).imI = (-{ re := 0, imI := 0, imJ := 0, imK := 1 }).imI [PROOFSTEP] simp [GOAL] case imJ R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 }).imJ = (-{ re := 0, imI := 0, imJ := 0, imK := 1 }).imJ [PROOFSTEP] simp [GOAL] case imK R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R ⊢ ({ re := 0, imI := 0, imJ := 1, imK := 0 } * { re := 0, imI := 1, imJ := 0, imK := 0 }).imK = (-{ re := 0, imI := 0, imJ := 0, imK := 1 }).imK [PROOFSTEP] simp [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ q.i * q.k = c₁ • q.j [PROOFSTEP] rw [← i_mul_j, ← mul_assoc, i_mul_i, smul_mul_assoc, one_mul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ q.k * q.i = -c₁ • q.j [PROOFSTEP] rw [← i_mul_j, mul_assoc, j_mul_i, mul_neg, i_mul_k, neg_smul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ q.k * q.j = c₂ • q.i [PROOFSTEP] rw [← i_mul_j, mul_assoc, j_mul_j, mul_smul_comm, mul_one] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ q.j * q.k = -c₂ • q.i [PROOFSTEP] rw [← i_mul_j, ← mul_assoc, j_mul_i, neg_mul, k_mul_j, neg_smul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ q.k * q.k = -((c₁ * c₂) • 1) [PROOFSTEP] rw [← i_mul_j, mul_assoc, ← mul_assoc q.j _ _, j_mul_i, ← i_mul_j, ← mul_assoc, mul_neg, ← mul_assoc, i_mul_i, smul_mul_assoc, one_mul, neg_mul, smul_mul_assoc, j_mul_j, smul_smul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ lift q 0 = 0 [PROOFSTEP] simp [lift] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ lift q 1 = 1 [PROOFSTEP] simp [lift] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ lift q (x + y) = lift q x + lift q y [PROOFSTEP] simp [lift, add_smul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ ↑(algebraMap R A) x.re + ↑(algebraMap R A) y.re + (x.imI • q.i + y.imI • q.i) + (x.imJ • q.j + y.imJ • q.j) + (x.imK • q.k + y.imK • q.k) = ↑(algebraMap R A) x.re + x.imI • q.i + x.imJ • q.j + x.imK • q.k + (↑(algebraMap R A) y.re + y.imI • q.i + y.imJ • q.j + y.imK • q.k) [PROOFSTEP] abel [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ ↑(algebraMap R A) x.re + ↑(algebraMap R A) y.re + (x.imI • q.i + y.imI • q.i) + (x.imJ • q.j + y.imJ • q.j) + (x.imK • q.k + y.imK • q.k) = ↑(algebraMap R A) x.re + x.imI • q.i + x.imJ • q.j + x.imK • q.k + (↑(algebraMap R A) y.re + y.imI • q.i + y.imJ • q.j + y.imK • q.k) [PROOFSTEP] abel [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ lift q (x * y) = lift q x * lift q y [PROOFSTEP] simp only [lift, Algebra.algebraMap_eq_smul_one] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re • 1 + x.imI • q.i + x.imJ • q.j + x.imK • q.k) * (y.re • 1 + y.imI • q.i + y.imJ • q.j + y.imK • q.k) [PROOFSTEP] simp_rw [add_mul, mul_add, smul_mul_assoc, mul_smul_comm, one_mul, mul_one, smul_smul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + ((x.imI * y.re) • q.i + (x.imI * y.imI) • (q.i * q.i) + (x.imI * y.imJ) • (q.i * q.j) + (x.imI * y.imK) • (q.i * q.k)) + ((x.imJ * y.re) • q.j + (x.imJ * y.imI) • (q.j * q.i) + (x.imJ * y.imJ) • (q.j * q.j) + (x.imJ * y.imK) • (q.j * q.k)) + ((x.imK * y.re) • q.k + (x.imK * y.imI) • (q.k * q.i) + (x.imK * y.imJ) • (q.k * q.j) + (x.imK * y.imK) • (q.k * q.k)) [PROOFSTEP] simp only [i_mul_i, j_mul_j, i_mul_j, j_mul_i, i_mul_k, k_mul_i, k_mul_j, j_mul_k, k_mul_k] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + ((x.imI * y.re) • q.i + (x.imI * y.imI) • c₁ • 1 + (x.imI * y.imJ) • q.k + (x.imI * y.imK) • c₁ • q.j) + ((x.imJ * y.re) • q.j + (x.imJ * y.imI) • -q.k + (x.imJ * y.imJ) • c₂ • 1 + (x.imJ * y.imK) • -c₂ • q.i) + ((x.imK * y.re) • q.k + (x.imK * y.imI) • -c₁ • q.j + (x.imK * y.imJ) • c₂ • q.i + (x.imK * y.imK) • -((c₁ * c₂) • 1)) [PROOFSTEP] simp only [smul_smul, smul_neg, sub_eq_add_neg, add_smul, ← add_assoc, mul_neg, neg_smul] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (x.imI * y.imI * c₁) • 1 + (x.imI * y.imJ) • q.k + (x.imI * y.imK * c₁) • q.j + (x.imJ * y.re) • q.j + -((x.imJ * y.imI) • q.k) + (x.imJ * y.imJ * c₂) • 1 + -((x.imJ * y.imK * c₂) • q.i) + (x.imK * y.re) • q.k + -((x.imK * y.imI * c₁) • q.j) + (x.imK * y.imJ * c₂) • q.i + -((x.imK * y.imK * (c₁ * c₂)) • 1) [PROOFSTEP] simp only [mul_right_comm _ _ (c₁ * c₂), mul_comm _ (c₁ * c₂)] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (x.imI * y.imI * c₁) • 1 + (x.imI * y.imJ) • q.k + (x.imI * y.imK * c₁) • q.j + (x.imJ * y.re) • q.j + -((x.imJ * y.imI) • q.k) + (x.imJ * y.imJ * c₂) • 1 + -((x.imJ * y.imK * c₂) • q.i) + (x.imK * y.re) • q.k + -((x.imK * y.imI * c₁) • q.j) + (x.imK * y.imJ * c₂) • q.i + -((c₁ * c₂ * (x.imK * y.imK)) • 1) [PROOFSTEP] simp only [mul_comm _ c₁, mul_right_comm _ _ c₁] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (c₁ * (x.imI * y.imI)) • 1 + (x.imI * y.imJ) • q.k + (c₁ * (x.imI * y.imK)) • q.j + (x.imJ * y.re) • q.j + -((x.imJ * y.imI) • q.k) + (x.imJ * y.imJ * c₂) • 1 + -((x.imJ * y.imK * c₂) • q.i) + (x.imK * y.re) • q.k + -((c₁ * (x.imK * y.imI)) • q.j) + (x.imK * y.imJ * c₂) • q.i + -((c₁ * c₂ * (x.imK * y.imK)) • 1) [PROOFSTEP] simp only [mul_comm _ c₂, mul_right_comm _ _ c₂] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (c₁ * (x.imI * y.imI)) • 1 + (x.imI * y.imJ) • q.k + (c₁ * (x.imI * y.imK)) • q.j + (x.imJ * y.re) • q.j + -((x.imJ * y.imI) • q.k) + (c₂ * (x.imJ * y.imJ)) • 1 + -((c₂ * (x.imJ * y.imK)) • q.i) + (x.imK * y.re) • q.k + -((c₁ * (x.imK * y.imI)) • q.j) + (c₂ * (x.imK * y.imJ)) • q.i + -((c₂ * c₁ * (x.imK * y.imK)) • 1) [PROOFSTEP] simp only [← mul_comm c₁ c₂, ← mul_assoc] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x * y).re • 1 + (x * y).imI • q.i + (x * y).imJ • q.j + (x * y).imK • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (c₁ * x.imI * y.imI) • 1 + (x.imI * y.imJ) • q.k + (c₁ * x.imI * y.imK) • q.j + (x.imJ * y.re) • q.j + -((x.imJ * y.imI) • q.k) + (c₂ * x.imJ * y.imJ) • 1 + -((c₂ * x.imJ * y.imK) • q.i) + (x.imK * y.re) • q.k + -((c₁ * x.imK * y.imI) • q.j) + (c₂ * x.imK * y.imJ) • q.i + -((c₁ * c₂ * x.imK * y.imK) • 1) [PROOFSTEP] simp [sub_eq_add_neg, add_smul, ← add_assoc] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x.re * y.re) • 1 + (c₁ * x.imI * y.imI) • 1 + (c₂ * x.imJ * y.imJ) • 1 + -((c₁ * c₂ * x.imK * y.imK) • 1) + (x.re * y.imI) • q.i + (x.imI * y.re) • q.i + -((c₂ * x.imJ * y.imK) • q.i) + (c₂ * x.imK * y.imJ) • q.i + (x.re * y.imJ) • q.j + (c₁ * x.imI * y.imK) • q.j + (x.imJ * y.re) • q.j + -((c₁ * x.imK * y.imI) • q.j) + (x.re * y.imK) • q.k + (x.imI * y.imJ) • q.k + -((x.imJ * y.imI) • q.k) + (x.imK * y.re) • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (c₁ * x.imI * y.imI) • 1 + (x.imI * y.imJ) • q.k + (c₁ * x.imI * y.imK) • q.j + (x.imJ * y.re) • q.j + -((x.imJ * y.imI) • q.k) + (c₂ * x.imJ * y.imJ) • 1 + -((c₂ * x.imJ * y.imK) • q.i) + (x.imK * y.re) • q.k + -((c₁ * x.imK * y.imI) • q.j) + (c₂ * x.imK * y.imJ) • q.i + -((c₁ * c₂ * x.imK * y.imK) • 1) [PROOFSTEP] abel [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ x y : ℍ[R,c₁,c₂] ⊢ (x.re * y.re) • 1 + (c₁ * x.imI * y.imI) • 1 + (c₂ * x.imJ * y.imJ) • 1 + -((c₁ * c₂ * x.imK * y.imK) • 1) + (x.re * y.imI) • q.i + (x.imI * y.re) • q.i + -((c₂ * x.imJ * y.imK) • q.i) + (c₂ * x.imK * y.imJ) • q.i + (x.re * y.imJ) • q.j + (c₁ * x.imI * y.imK) • q.j + (x.imJ * y.re) • q.j + -((c₁ * x.imK * y.imI) • q.j) + (x.re * y.imK) • q.k + (x.imI * y.imJ) • q.k + -((x.imJ * y.imI) • q.k) + (x.imK * y.re) • q.k = (x.re * y.re) • 1 + (x.re * y.imI) • q.i + (x.re * y.imJ) • q.j + (x.re * y.imK) • q.k + (x.imI * y.re) • q.i + (c₁ * x.imI * y.imI) • 1 + (x.imI * y.imJ) • q.k + (c₁ * x.imI * y.imK) • q.j + (x.imJ * y.re) • q.j + -((x.imJ * y.imI) • q.k) + (c₂ * x.imJ * y.imJ) • 1 + -((c₂ * x.imJ * y.imK) • q.i) + (x.imK * y.re) • q.k + -((c₁ * x.imK * y.imI) • q.j) + (c₂ * x.imK * y.imJ) • q.i + -((c₁ * c₂ * x.imK * y.imK) • 1) [PROOFSTEP] abel [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ r : R x : ℍ[R,c₁,c₂] ⊢ lift q (r • x) = r • lift q x [PROOFSTEP] simp [lift, mul_smul, ← Algebra.smul_def] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ F : A →ₐ[R] B ⊢ ↑F q.i * ↑F q.i = c₁ • 1 [PROOFSTEP] rw [← F.map_mul, q.i_mul_i, F.map_smul, F.map_one] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ F : A →ₐ[R] B ⊢ ↑F q.j * ↑F q.j = c₂ • 1 [PROOFSTEP] rw [← F.map_mul, q.j_mul_j, F.map_smul, F.map_one] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ F : A →ₐ[R] B ⊢ ↑F q.i * ↑F q.j = ↑F q.k [PROOFSTEP] rw [← F.map_mul, q.i_mul_j] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ F : A →ₐ[R] B ⊢ ↑F q.j * ↑F q.i = -↑F q.k [PROOFSTEP] rw [← F.map_mul, q.j_mul_i, F.map_neg] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ Basis.compHom (Basis.self R) (Basis.liftHom q) = q [PROOFSTEP] ext [GOAL] case hi R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ (Basis.compHom (Basis.self R) (Basis.liftHom q)).i = q.i [PROOFSTEP] simp [Basis.lift] [GOAL] case hj R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R q : Basis A c₁ c₂ ⊢ (Basis.compHom (Basis.self R) (Basis.liftHom q)).j = q.j [PROOFSTEP] simp [Basis.lift] [GOAL] R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A ⊢ Basis.liftHom (Basis.compHom (Basis.self R) F) = F [PROOFSTEP] ext [GOAL] case H R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A x✝ : ℍ[R,c₁,c₂] ⊢ ↑(Basis.liftHom (Basis.compHom (Basis.self R) F)) x✝ = ↑F x✝ [PROOFSTEP] dsimp [Basis.lift] [GOAL] case H R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A x✝ : ℍ[R,c₁,c₂] ⊢ ↑(algebraMap R A) x✝.re + x✝.imI • ↑F { re := 0, imI := 1, imJ := 0, imK := 0 } + x✝.imJ • ↑F { re := 0, imI := 0, imJ := 1, imK := 0 } + x✝.imK • ↑F { re := 0, imI := 0, imJ := 0, imK := 1 } = ↑F x✝ [PROOFSTEP] rw [← F.commutes] [GOAL] case H R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A x✝ : ℍ[R,c₁,c₂] ⊢ ↑F (↑(algebraMap R ℍ[R,c₁,c₂]) x✝.re) + x✝.imI • ↑F { re := 0, imI := 1, imJ := 0, imK := 0 } + x✝.imJ • ↑F { re := 0, imI := 0, imJ := 1, imK := 0 } + x✝.imK • ↑F { re := 0, imI := 0, imJ := 0, imK := 1 } = ↑F x✝ [PROOFSTEP] simp only [← F.commutes, ← F.map_smul, ← F.map_add, mk_add_mk, smul_mk, smul_zero, algebraMap_eq] [GOAL] case H R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A x✝ : ℍ[R,c₁,c₂] ⊢ ↑F { re := x✝.re + 0 + 0 + 0, imI := 0 + x✝.imI • 1 + 0 + 0, imJ := 0 + 0 + x✝.imJ • 1 + 0, imK := 0 + 0 + 0 + x✝.imK • 1 } = ↑F x✝ [PROOFSTEP] congr [GOAL] case H.h.e_6.h.e_re R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A x✝ : ℍ[R,c₁,c₂] ⊢ x✝.re + 0 + 0 + 0 = x✝.re [PROOFSTEP] simp [GOAL] case H.h.e_6.h.e_imI R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A x✝ : ℍ[R,c₁,c₂] ⊢ 0 + x✝.imI • 1 + 0 + 0 = x✝.imI [PROOFSTEP] simp [GOAL] case H.h.e_6.h.e_imJ R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A x✝ : ℍ[R,c₁,c₂] ⊢ 0 + 0 + x✝.imJ • 1 + 0 = x✝.imJ [PROOFSTEP] simp [GOAL] case H.h.e_6.h.e_imK R : Type u_1 A : Type u_2 B : Type u_3 inst✝⁴ : CommRing R inst✝³ : Ring A inst✝² : Ring B inst✝¹ : Algebra R A inst✝ : Algebra R B c₁ c₂ : R F : ℍ[R,c₁,c₂] →ₐ[R] A x✝ : ℍ[R,c₁,c₂] ⊢ 0 + 0 + 0 + x✝.imK • 1 = x✝.imK [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Algebra.QuaternionBasis", "llama_tokens": 18048}
[GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp ppred pred : Pair K nth_s_eq : Stream'.Seq.get? g.s n = some gp nth_conts_aux_eq : continuantsAux g n = ppred succ_nth_conts_aux_eq : continuantsAux g (n + 1) = pred ⊢ continuantsAux g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b } [PROOFSTEP] simp [*, continuantsAux, nextContinuants, nextDenominator, nextNumerator] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp ppred pred : Pair K nth_s_eq : Stream'.Seq.get? g.s n = some gp nth_conts_aux_eq : continuantsAux g n = ppred succ_nth_conts_aux_eq : continuantsAux g (n + 1) = pred ⊢ continuants g (n + 1) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b } [PROOFSTEP] simp [nth_cont_eq_succ_nth_cont_aux, continuantsAux_recurrence nth_s_eq nth_conts_aux_eq succ_nth_conts_aux_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp ppred pred : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_conts_eq : continuants g n = ppred succ_nth_conts_eq : continuants g (n + 1) = pred ⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b } [PROOFSTEP] rw [nth_cont_eq_succ_nth_cont_aux] at nth_conts_eq succ_nth_conts_eq [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp ppred pred : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_conts_eq : continuantsAux g (n + 1) = ppred succ_nth_conts_eq : continuantsAux g (n + 1 + 1) = pred ⊢ continuants g (n + 2) = { a := gp.b * pred.a + gp.a * ppred.a, b := gp.b * pred.b + gp.a * ppred.b } [PROOFSTEP] exact continuants_recurrenceAux succ_nth_s_eq nth_conts_eq succ_nth_conts_eq [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K ppredA predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_num_eq : numerators g n = ppredA succ_nth_num_eq : numerators g (n + 1) = predA ⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredA [PROOFSTEP] obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.a = ppredA [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K ppredA predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_num_eq : numerators g n = ppredA succ_nth_num_eq : numerators g (n + 1) = predA ⊢ ∃ conts, continuants g n = conts ∧ conts.a = ppredA case intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_num_eq : numerators g (n + 1) = predA ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a ⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredConts.a [PROOFSTEP] exact exists_conts_a_of_num nth_num_eq [GOAL] case intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_num_eq : numerators g (n + 1) = predA ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a ⊢ numerators g (n + 2) = gp.b * predA + gp.a * ppredConts.a [PROOFSTEP] obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants (n + 1) = conts ∧ conts.a = predA [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predA : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_num_eq : numerators g (n + 1) = predA ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a ⊢ ∃ conts, continuants g (n + 1) = conts ∧ conts.a = predA case intro.intro.refl.intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a predConts : Pair K succ_nth_conts_eq : continuants g (n + 1) = predConts succ_nth_num_eq : numerators g (n + 1) = predConts.a ⊢ numerators g (n + 2) = gp.b * predConts.a + gp.a * ppredConts.a [PROOFSTEP] exact exists_conts_a_of_num succ_nth_num_eq [GOAL] case intro.intro.refl.intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_num_eq : numerators g n = ppredConts.a predConts : Pair K succ_nth_conts_eq : continuants g (n + 1) = predConts succ_nth_num_eq : numerators g (n + 1) = predConts.a ⊢ numerators g (n + 2) = gp.b * predConts.a + gp.a * ppredConts.a [PROOFSTEP] rw [num_eq_conts_a, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq] [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K ppredB predB : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_denom_eq : denominators g n = ppredB succ_nth_denom_eq : denominators g (n + 1) = predB ⊢ denominators g (n + 2) = gp.b * predB + gp.a * ppredB [PROOFSTEP] obtain ⟨ppredConts, nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants n = conts ∧ conts.b = ppredB [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K ppredB predB : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp nth_denom_eq : denominators g n = ppredB succ_nth_denom_eq : denominators g (n + 1) = predB ⊢ ∃ conts, continuants g n = conts ∧ conts.b = ppredB case intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predB : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_denom_eq : denominators g (n + 1) = predB ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_denom_eq : denominators g n = ppredConts.b ⊢ denominators g (n + 2) = gp.b * predB + gp.a * ppredConts.b [PROOFSTEP] exact exists_conts_b_of_denom nth_denom_eq [GOAL] case intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predB : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_denom_eq : denominators g (n + 1) = predB ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_denom_eq : denominators g n = ppredConts.b ⊢ denominators g (n + 2) = gp.b * predB + gp.a * ppredConts.b [PROOFSTEP] obtain ⟨predConts, succ_nth_conts_eq, ⟨rfl⟩⟩ : ∃ conts, g.continuants (n + 1) = conts ∧ conts.b = predB [GOAL] K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K predB : K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp succ_nth_denom_eq : denominators g (n + 1) = predB ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_denom_eq : denominators g n = ppredConts.b ⊢ ∃ conts, continuants g (n + 1) = conts ∧ conts.b = predB case intro.intro.refl.intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_denom_eq : denominators g n = ppredConts.b predConts : Pair K succ_nth_conts_eq : continuants g (n + 1) = predConts succ_nth_denom_eq : denominators g (n + 1) = predConts.b ⊢ denominators g (n + 2) = gp.b * predConts.b + gp.a * ppredConts.b [PROOFSTEP] exact exists_conts_b_of_denom succ_nth_denom_eq [GOAL] case intro.intro.refl.intro.intro.refl K : Type u_1 g : GeneralizedContinuedFraction K n : ℕ inst✝ : DivisionRing K gp : Pair K succ_nth_s_eq : Stream'.Seq.get? g.s (n + 1) = some gp ppredConts : Pair K nth_conts_eq : continuants g n = ppredConts nth_denom_eq : denominators g n = ppredConts.b predConts : Pair K succ_nth_conts_eq : continuants g (n + 1) = predConts succ_nth_denom_eq : denominators g (n + 1) = predConts.b ⊢ denominators g (n + 2) = gp.b * predConts.b + gp.a * ppredConts.b [PROOFSTEP] rw [denom_eq_conts_b, continuants_recurrence succ_nth_s_eq nth_conts_eq succ_nth_conts_eq]
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.ContinuantsRecurrence", "llama_tokens": 3845}
[GOAL] R : Type u_1 inst✝ : Ring R a b c : R ⊢ discrim (-a) (-b) (-c) = discrim a b c [PROOFSTEP] simp [discrim] [GOAL] R : Type u_1 inst✝ : CommRing R a b c x : R h : a * x * x + b * x + c = 0 ⊢ discrim a b c = (2 * a * x + b) ^ 2 [PROOFSTEP] rw [discrim] [GOAL] R : Type u_1 inst✝ : CommRing R a b c x : R h : a * x * x + b * x + c = 0 ⊢ b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2 [PROOFSTEP] linear_combination -4 * a * h [GOAL] R : Type u_1 inst✝² : CommRing R a b c : R inst✝¹ : NeZero 2 inst✝ : NoZeroDivisors R ha : a ≠ 0 x : R ⊢ a * x * x + b * x + c = 0 ↔ discrim a b c = (2 * a * x + b) ^ 2 [PROOFSTEP] refine ⟨discrim_eq_sq_of_quadratic_eq_zero, fun h ↦ ?_⟩ [GOAL] R : Type u_1 inst✝² : CommRing R a b c : R inst✝¹ : NeZero 2 inst✝ : NoZeroDivisors R ha : a ≠ 0 x : R h : discrim a b c = (2 * a * x + b) ^ 2 ⊢ a * x * x + b * x + c = 0 [PROOFSTEP] rw [discrim] at h [GOAL] R : Type u_1 inst✝² : CommRing R a b c : R inst✝¹ : NeZero 2 inst✝ : NoZeroDivisors R ha : a ≠ 0 x : R h : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2 ⊢ a * x * x + b * x + c = 0 [PROOFSTEP] have ha : 2 * 2 * a ≠ 0 := mul_ne_zero (mul_ne_zero (NeZero.ne _) (NeZero.ne _)) ha [GOAL] R : Type u_1 inst✝² : CommRing R a b c : R inst✝¹ : NeZero 2 inst✝ : NoZeroDivisors R ha✝ : a ≠ 0 x : R h : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2 ha : 2 * 2 * a ≠ 0 ⊢ a * x * x + b * x + c = 0 [PROOFSTEP] apply mul_left_cancel₀ ha [GOAL] R : Type u_1 inst✝² : CommRing R a b c : R inst✝¹ : NeZero 2 inst✝ : NoZeroDivisors R ha✝ : a ≠ 0 x : R h : b ^ 2 - 4 * a * c = (2 * a * x + b) ^ 2 ha : 2 * 2 * a ≠ 0 ⊢ 2 * 2 * a * (a * x * x + b * x + c) = 2 * 2 * a * 0 [PROOFSTEP] linear_combination -h [GOAL] K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ a * x * x + b * x + c = 0 ↔ x = (-b + s) / (2 * a) ∨ x = (-b - s) / (2 * a) [PROOFSTEP] rw [quadratic_eq_zero_iff_discrim_eq_sq ha, h, sq, mul_self_eq_mul_self_iff] [GOAL] K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ s = 2 * a * x + b ∨ s = -(2 * a * x + b) ↔ x = (-b + s) / (2 * a) ∨ x = (-b - s) / (2 * a) [PROOFSTEP] field_simp [GOAL] K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ s = 2 * a * x + b ∨ s = -b + -(2 * a * x) ↔ x * (2 * a) = -b + s ∨ x * (2 * a) = -b - s [PROOFSTEP] apply or_congr [GOAL] case h₁ K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ s = 2 * a * x + b ↔ x * (2 * a) = -b + s [PROOFSTEP] constructor [GOAL] case h₁.mp K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ s = 2 * a * x + b → x * (2 * a) = -b + s [PROOFSTEP] intro h' [GOAL] case h₁.mpr K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ x * (2 * a) = -b + s → s = 2 * a * x + b [PROOFSTEP] intro h' [GOAL] case h₁.mp K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K h' : s = 2 * a * x + b ⊢ x * (2 * a) = -b + s [PROOFSTEP] linear_combination -h' [GOAL] case h₁.mpr K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K h' : x * (2 * a) = -b + s ⊢ s = 2 * a * x + b [PROOFSTEP] linear_combination -h' [GOAL] case h₂ K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ s = -b + -(2 * a * x) ↔ x * (2 * a) = -b - s [PROOFSTEP] constructor [GOAL] case h₂.mp K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ s = -b + -(2 * a * x) → x * (2 * a) = -b - s [PROOFSTEP] intro h' [GOAL] case h₂.mpr K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K ⊢ x * (2 * a) = -b - s → s = -b + -(2 * a * x) [PROOFSTEP] intro h' [GOAL] case h₂.mp K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K h' : s = -b + -(2 * a * x) ⊢ x * (2 * a) = -b - s [PROOFSTEP] linear_combination h' [GOAL] case h₂.mpr K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 s : K h : discrim a b c = s * s x : K h' : x * (2 * a) = -b - s ⊢ s = -b + -(2 * a * x) [PROOFSTEP] linear_combination h' [GOAL] K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x : K ha : a ≠ 0 h : ∃ s, discrim a b c = s * s ⊢ ∃ x, a * x * x + b * x + c = 0 [PROOFSTEP] rcases h with ⟨s, hs⟩ [GOAL] case intro K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x : K ha : a ≠ 0 s : K hs : discrim a b c = s * s ⊢ ∃ x, a * x * x + b * x + c = 0 [PROOFSTEP] use(-b + s) / (2 * a) [GOAL] case h K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x : K ha : a ≠ 0 s : K hs : discrim a b c = s * s ⊢ a * ((-b + s) / (2 * a)) * ((-b + s) / (2 * a)) + b * ((-b + s) / (2 * a)) + c = 0 [PROOFSTEP] rw [quadratic_eq_zero_iff ha hs] [GOAL] case h K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x : K ha : a ≠ 0 s : K hs : discrim a b c = s * s ⊢ (-b + s) / (2 * a) = (-b + s) / (2 * a) ∨ (-b + s) / (2 * a) = (-b - s) / (2 * a) [PROOFSTEP] simp [GOAL] K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 h : discrim a b c = 0 x : K ⊢ a * x * x + b * x + c = 0 ↔ x = -b / (2 * a) [PROOFSTEP] have : discrim a b c = 0 * 0 := by rw [h, mul_zero] [GOAL] K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 h : discrim a b c = 0 x : K ⊢ discrim a b c = 0 * 0 [PROOFSTEP] rw [h, mul_zero] [GOAL] K : Type u_1 inst✝¹ : Field K inst✝ : NeZero 2 a b c x✝ : K ha : a ≠ 0 h : discrim a b c = 0 x : K this : discrim a b c = 0 * 0 ⊢ a * x * x + b * x + c = 0 ↔ x = -b / (2 * a) [PROOFSTEP] rw [quadratic_eq_zero_iff ha this, add_zero, sub_zero, or_self_iff] [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ⊢ discrim a b c ≤ 0 [PROOFSTEP] rw [discrim, sq] [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ⊢ b * b - 4 * a * c ≤ 0 [PROOFSTEP] obtain ha | rfl | ha : a < 0 ∨ a = 0 ∨ 0 < a := lt_trichotomy a 0 -- if a < 0 [GOAL] case inl K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ha : a < 0 ⊢ b * b - 4 * a * c ≤ 0 [PROOFSTEP] have : Tendsto (fun x => (a * x + b) * x + c) atTop atBot := tendsto_atBot_add_const_right _ c ((tendsto_atBot_add_const_right _ b (tendsto_id.neg_const_mul_atTop ha)).atBot_mul_atTop tendsto_id) [GOAL] case inl K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ha : a < 0 this : Tendsto (fun x => (a * x + b) * x + c) atTop atBot ⊢ b * b - 4 * a * c ≤ 0 [PROOFSTEP] rcases(this.eventually (eventually_lt_atBot 0)).exists with ⟨x, hx⟩ [GOAL] case inl.intro K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ha : a < 0 this : Tendsto (fun x => (a * x + b) * x + c) atTop atBot x : K hx : (a * x + b) * x + c < 0 ⊢ b * b - 4 * a * c ≤ 0 [PROOFSTEP] exact False.elim ((h x).not_lt <| by rwa [← add_mul]) -- if a = 0 [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ha : a < 0 this : Tendsto (fun x => (a * x + b) * x + c) atTop atBot x : K hx : (a * x + b) * x + c < 0 ⊢ a * x * x + b * x + c < 0 [PROOFSTEP] rwa [← add_mul] [GOAL] case inr.inl K : Type u_1 inst✝ : LinearOrderedField K b c : K h : ∀ (x : K), 0 ≤ 0 * x * x + b * x + c ⊢ b * b - 4 * 0 * c ≤ 0 [PROOFSTEP] rcases eq_or_ne b 0 with (rfl | hb) [GOAL] case inr.inl.inl K : Type u_1 inst✝ : LinearOrderedField K c : K h : ∀ (x : K), 0 ≤ 0 * x * x + 0 * x + c ⊢ 0 * 0 - 4 * 0 * c ≤ 0 [PROOFSTEP] simp [GOAL] case inr.inl.inr K : Type u_1 inst✝ : LinearOrderedField K b c : K h : ∀ (x : K), 0 ≤ 0 * x * x + b * x + c hb : b ≠ 0 ⊢ b * b - 4 * 0 * c ≤ 0 [PROOFSTEP] have := h ((-c - 1) / b) [GOAL] case inr.inl.inr K : Type u_1 inst✝ : LinearOrderedField K b c : K h : ∀ (x : K), 0 ≤ 0 * x * x + b * x + c hb : b ≠ 0 this : 0 ≤ 0 * ((-c - 1) / b) * ((-c - 1) / b) + b * ((-c - 1) / b) + c ⊢ b * b - 4 * 0 * c ≤ 0 [PROOFSTEP] rw [mul_div_cancel' _ hb] at this [GOAL] case inr.inl.inr K : Type u_1 inst✝ : LinearOrderedField K b c : K h : ∀ (x : K), 0 ≤ 0 * x * x + b * x + c hb : b ≠ 0 this : 0 ≤ 0 * ((-c - 1) / b) * ((-c - 1) / b) + (-c - 1) + c ⊢ b * b - 4 * 0 * c ≤ 0 [PROOFSTEP] linarith -- if a > 0 [GOAL] case inr.inr K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ha : 0 < a ⊢ b * b - 4 * a * c ≤ 0 [PROOFSTEP] have ha' : 0 ≤ 4 * a := mul_nonneg zero_le_four ha.le [GOAL] case inr.inr K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ha : 0 < a ha' : 0 ≤ 4 * a ⊢ b * b - 4 * a * c ≤ 0 [PROOFSTEP] convert neg_nonpos.2 (mul_nonneg ha' (h (-b / (2 * a)))) using 1 [GOAL] case h.e'_3 K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ha : 0 < a ha' : 0 ≤ 4 * a ⊢ b * b - 4 * a * c = -(4 * a * (a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c)) [PROOFSTEP] field_simp [ha.ne'] [GOAL] case h.e'_3 K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), 0 ≤ a * x * x + b * x + c ha : 0 < a ha' : 0 ≤ 4 * a ⊢ (b * b - 4 * a * c) * (2 * a * (2 * a) * (2 * a)) = -(4 * a * (a * b * b * (2 * a) + -(b * b * (2 * a * (2 * a))) + c * (2 * a * (2 * a) * (2 * a)))) [PROOFSTEP] ring [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K h : ∀ (x : K), a * x * x + b * x + c ≤ 0 ⊢ ∀ (x : K), 0 ≤ -a * x * x + -b * x + -c [PROOFSTEP] simpa only [neg_mul, ← neg_add, neg_nonneg] [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K ha : a ≠ 0 h : ∀ (x : K), 0 < a * x * x + b * x + c ⊢ discrim a b c < 0 [PROOFSTEP] have : ∀ x : K, 0 ≤ a * x * x + b * x + c := fun x => le_of_lt (h x) [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K ha : a ≠ 0 h : ∀ (x : K), 0 < a * x * x + b * x + c this : ∀ (x : K), 0 ≤ a * x * x + b * x + c ⊢ discrim a b c < 0 [PROOFSTEP] refine lt_of_le_of_ne (discrim_le_zero this) fun h' ↦ ?_ [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K ha : a ≠ 0 h : ∀ (x : K), 0 < a * x * x + b * x + c this : ∀ (x : K), 0 ≤ a * x * x + b * x + c h' : discrim a b c = 0 ⊢ False [PROOFSTEP] have := h (-b / (2 * a)) [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K ha : a ≠ 0 h : ∀ (x : K), 0 < a * x * x + b * x + c this✝ : ∀ (x : K), 0 ≤ a * x * x + b * x + c h' : discrim a b c = 0 this : 0 < a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c ⊢ False [PROOFSTEP] have : a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c = 0 := by rw [quadratic_eq_zero_iff_of_discrim_eq_zero ha h' (-b / (2 * a))] [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K ha : a ≠ 0 h : ∀ (x : K), 0 < a * x * x + b * x + c this✝ : ∀ (x : K), 0 ≤ a * x * x + b * x + c h' : discrim a b c = 0 this : 0 < a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c ⊢ a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c = 0 [PROOFSTEP] rw [quadratic_eq_zero_iff_of_discrim_eq_zero ha h' (-b / (2 * a))] [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K ha : a ≠ 0 h : ∀ (x : K), 0 < a * x * x + b * x + c this✝¹ : ∀ (x : K), 0 ≤ a * x * x + b * x + c h' : discrim a b c = 0 this✝ : 0 < a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c this : a * (-b / (2 * a)) * (-b / (2 * a)) + b * (-b / (2 * a)) + c = 0 ⊢ False [PROOFSTEP] linarith [GOAL] K : Type u_1 inst✝ : LinearOrderedField K a b c : K ha : a ≠ 0 h : ∀ (x : K), a * x * x + b * x + c < 0 ⊢ ∀ (x : K), 0 < -a * x * x + -b * x + -c [PROOFSTEP] simpa only [neg_mul, ← neg_add, neg_pos]
{"mathlib_filename": "Mathlib.Algebra.QuadraticDiscriminant", "llama_tokens": 6605}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n : ℕ h : p ∣ a ^ n ⊢ p ∣ a [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n : ℕ h✝ : p ∣ a ^ n h : p ∣ a ^ Nat.zero ⊢ p ∣ a [PROOFSTEP] rw [pow_zero] at h [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n : ℕ h✝ : p ∣ a ^ n h : p ∣ 1 ⊢ p ∣ a [PROOFSTEP] have := isUnit_of_dvd_one h [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n : ℕ h✝ : p ∣ a ^ n h : p ∣ 1 this : IsUnit p ⊢ p ∣ a [PROOFSTEP] have := not_unit hp [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n : ℕ h✝ : p ∣ a ^ n h : p ∣ 1 this✝ : IsUnit p this : ¬IsUnit p ⊢ p ∣ a [PROOFSTEP] contradiction [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n✝ : ℕ h✝ : p ∣ a ^ n✝ n : ℕ ih : p ∣ a ^ n → p ∣ a h : p ∣ a ^ Nat.succ n ⊢ p ∣ a [PROOFSTEP] rw [pow_succ] at h [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n✝ : ℕ h✝ : p ∣ a ^ n✝ n : ℕ ih : p ∣ a ^ n → p ∣ a h : p ∣ a * a ^ n ⊢ p ∣ a [PROOFSTEP] cases' dvd_or_dvd hp h with dvd_a dvd_pow [GOAL] case succ.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n✝ : ℕ h✝ : p ∣ a ^ n✝ n : ℕ ih : p ∣ a ^ n → p ∣ a h : p ∣ a * a ^ n dvd_a : p ∣ a ⊢ p ∣ a [PROOFSTEP] assumption [GOAL] case succ.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α hp✝ hp : Prime p a : α n✝ : ℕ h✝ : p ∣ a ^ n✝ n : ℕ ih : p ∣ a ^ n → p ∣ a h : p ∣ a * a ^ n dvd_pow : p ∣ a ^ n ⊢ p ∣ a [PROOFSTEP] exact ih dvd_pow [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) h : p = 0 ⊢ ↑f p = 0 [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h : p ∣ a * b ⊢ p ∣ a ∨ p ∣ b [PROOFSTEP] refine' (hp.2.2 (f a) (f b) <| by convert map_dvd f h simp).imp _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h : p ∣ a * b ⊢ ↑f p ∣ ↑f a * ↑f b [PROOFSTEP] convert map_dvd f h [GOAL] case h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h : p ∣ a * b ⊢ ↑f a * ↑f b = ↑f (a * b) [PROOFSTEP] simp [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h : p ∣ a * b ⊢ ↑f p ∣ ↑f a → p ∣ a [PROOFSTEP] intro h [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h✝ : p ∣ a * b h : ↑f p ∣ ↑f a ⊢ p ∣ a [PROOFSTEP] convert ← map_dvd g h [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h✝ : p ∣ a * b h : ↑f p ∣ ↑f a ⊢ ↑g (↑f p) = p [PROOFSTEP] apply hinv [GOAL] case h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h✝ : p ∣ a * b h : ↑f p ∣ ↑f a ⊢ ↑g (↑f a) = a [PROOFSTEP] apply hinv [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h : p ∣ a * b ⊢ ↑f p ∣ ↑f b → p ∣ b [PROOFSTEP] intro h [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h✝ : p ∣ a * b h : ↑f p ∣ ↑f b ⊢ p ∣ b [PROOFSTEP] convert ← map_dvd g h [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h✝ : p ∣ a * b h : ↑f p ∣ ↑f b ⊢ ↑g (↑f p) = p [PROOFSTEP] apply hinv [GOAL] case h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α hinv : ∀ (a : α), ↑g (↑f a) = a hp : Prime (↑f p) a b : α h✝ : p ∣ a * b h : ↑f p ∣ ↑f b ⊢ ↑g (↑f b) = b [PROOFSTEP] apply hinv [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α e : α ≃* β h : Prime p a : β ⊢ ↑e (↑(symm e) a) = a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : CommMonoidWithZero α inst✝² : CommMonoidWithZero β F : Type u_5 G : Type u_6 inst✝¹ : MonoidWithZeroHomClass F α β inst✝ : MulHomClass G β α f : F g : G p : α e : α ≃* β a : α ⊢ ↑(symm e) (↑e a) = a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p a b : α ⊢ a ∣ p * b → p ∣ a ∨ a ∣ b [PROOFSTEP] rintro ⟨c, hc⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p a b c : α hc : p * b = a * c ⊢ p ∣ a ∨ a ∣ b [PROOFSTEP] rcases hp.2.2 a c (hc ▸ dvd_mul_right _ _) with (h | ⟨x, rfl⟩) [GOAL] case intro.inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p a b c : α hc : p * b = a * c h : p ∣ a ⊢ p ∣ a ∨ a ∣ b [PROOFSTEP] exact Or.inl h [GOAL] case intro.inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p a b x : α hc : p * b = a * (p * x) ⊢ p ∣ a ∨ a ∣ b [PROOFSTEP] rw [mul_left_comm, mul_right_inj' hp.ne_zero] at hc [GOAL] case intro.inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α hp : Prime p a b x : α hc : b = a * x ⊢ p ∣ a ∨ a ∣ b [PROOFSTEP] exact Or.inr (hc.symm ▸ dvd_mul_right _ _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α hp : Prime p n : ℕ h : ¬p ∣ a h' : p ^ n ∣ a * b ⊢ p ^ n ∣ b [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α hp : Prime p n : ℕ h : ¬p ∣ a h'✝ : p ^ n ∣ a * b h' : p ^ Nat.zero ∣ a * b ⊢ p ^ Nat.zero ∣ b [PROOFSTEP] rw [pow_zero] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α hp : Prime p n : ℕ h : ¬p ∣ a h'✝ : p ^ n ∣ a * b h' : p ^ Nat.zero ∣ a * b ⊢ 1 ∣ b [PROOFSTEP] exact one_dvd b [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α hp : Prime p n✝ : ℕ h : ¬p ∣ a h'✝ : p ^ n✝ ∣ a * b n : ℕ ih : p ^ n ∣ a * b → p ^ n ∣ b h' : p ^ Nat.succ n ∣ a * b ⊢ p ^ Nat.succ n ∣ b [PROOFSTEP] obtain ⟨c, rfl⟩ := ih (dvd_trans (pow_dvd_pow p n.le_succ) h') [GOAL] case succ.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α hp : Prime p n✝ : ℕ h : ¬p ∣ a n : ℕ c : α h'✝ : p ^ n✝ ∣ a * (p ^ n * c) ih : p ^ n ∣ a * (p ^ n * c) → p ^ n ∣ p ^ n * c h' : p ^ Nat.succ n ∣ a * (p ^ n * c) ⊢ p ^ Nat.succ n ∣ p ^ n * c [PROOFSTEP] rw [pow_succ'] [GOAL] case succ.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α hp : Prime p n✝ : ℕ h : ¬p ∣ a n : ℕ c : α h'✝ : p ^ n✝ ∣ a * (p ^ n * c) ih : p ^ n ∣ a * (p ^ n * c) → p ^ n ∣ p ^ n * c h' : p ^ Nat.succ n ∣ a * (p ^ n * c) ⊢ p ^ n * p ∣ p ^ n * c [PROOFSTEP] apply mul_dvd_mul_left _ ((hp.dvd_or_dvd _).resolve_left h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α hp : Prime p n✝ : ℕ h : ¬p ∣ a n : ℕ c : α h'✝ : p ^ n✝ ∣ a * (p ^ n * c) ih : p ^ n ∣ a * (p ^ n * c) → p ^ n ∣ p ^ n * c h' : p ^ Nat.succ n ∣ a * (p ^ n * c) ⊢ p ∣ a * c [PROOFSTEP] rwa [← mul_dvd_mul_iff_left (pow_ne_zero n hp.ne_zero), ← pow_succ', mul_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α hp : Prime p n : ℕ h : ¬p ∣ b h' : p ^ n ∣ a * b ⊢ p ^ n ∣ a [PROOFSTEP] rw [mul_comm] at h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α hp : Prime p n : ℕ h : ¬p ∣ b h' : p ^ n ∣ b * a ⊢ p ^ n ∣ a [PROOFSTEP] exact hp.pow_dvd_of_dvd_mul_left n h h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α n : ℕ hp : Prime p hpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * b ^ n hb : ¬p ^ 2 ∣ b ⊢ p ∣ a [PROOFSTEP] cases' hp.dvd_or_dvd ((dvd_pow_self p (Nat.succ_ne_zero n)).trans hpow) with H hbdiv [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α n : ℕ hp : Prime p hpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * b ^ n hb : ¬p ^ 2 ∣ b H : p ∣ a ^ Nat.succ n ⊢ p ∣ a [PROOFSTEP] exact hp.dvd_of_dvd_pow H [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a b : α n : ℕ hp : Prime p hpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * b ^ n hb : ¬p ^ 2 ∣ b hbdiv : p ∣ b ^ n ⊢ p ∣ a [PROOFSTEP] obtain ⟨x, rfl⟩ := hp.dvd_of_dvd_pow hbdiv [GOAL] case inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α n : ℕ hp : Prime p x : α hpow : p ^ Nat.succ n ∣ a ^ Nat.succ n * (p * x) ^ n hb : ¬p ^ 2 ∣ p * x hbdiv : p ∣ (p * x) ^ n ⊢ p ∣ a [PROOFSTEP] obtain ⟨y, hy⟩ := hpow [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α n : ℕ hp : Prime p x : α hb : ¬p ^ 2 ∣ p * x hbdiv : p ∣ (p * x) ^ n y : α hy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y ⊢ p ∣ a [PROOFSTEP] have : a ^ n.succ * x ^ n = p * y := by refine' mul_left_cancel₀ (pow_ne_zero n hp.ne_zero) _ rw [← mul_assoc _ p, ← pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ), mul_comm _ (p ^ n), mul_assoc] -- So `p ∣ a` (and we're done) or `p ∣ x`, which can't be the case since it implies `p^2 ∣ b`. [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α n : ℕ hp : Prime p x : α hb : ¬p ^ 2 ∣ p * x hbdiv : p ∣ (p * x) ^ n y : α hy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y ⊢ a ^ Nat.succ n * x ^ n = p * y [PROOFSTEP] refine' mul_left_cancel₀ (pow_ne_zero n hp.ne_zero) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α n : ℕ hp : Prime p x : α hb : ¬p ^ 2 ∣ p * x hbdiv : p ∣ (p * x) ^ n y : α hy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y ⊢ p ^ n * (a ^ Nat.succ n * x ^ n) = p ^ n * (p * y) [PROOFSTEP] rw [← mul_assoc _ p, ← pow_succ', ← hy, mul_pow, ← mul_assoc (a ^ n.succ), mul_comm _ (p ^ n), mul_assoc] -- So `p ∣ a` (and we're done) or `p ∣ x`, which can't be the case since it implies `p^2 ∣ b`. [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α n : ℕ hp : Prime p x : α hb : ¬p ^ 2 ∣ p * x hbdiv : p ∣ (p * x) ^ n y : α hy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y this : a ^ Nat.succ n * x ^ n = p * y ⊢ p ∣ a [PROOFSTEP] refine' hp.dvd_of_dvd_pow ((hp.dvd_or_dvd ⟨_, this⟩).resolve_right fun hdvdx => hb _) [GOAL] case inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α n : ℕ hp : Prime p x : α hb : ¬p ^ 2 ∣ p * x hbdiv : p ∣ (p * x) ^ n y : α hy : a ^ Nat.succ n * (p * x) ^ n = p ^ Nat.succ n * y this : a ^ Nat.succ n * x ^ n = p * y hdvdx : p ∣ x ^ n ⊢ p ^ 2 ∣ p * x [PROOFSTEP] obtain ⟨z, rfl⟩ := hp.dvd_of_dvd_pow hdvdx [GOAL] case inr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α n : ℕ hp : Prime p y z : α hb : ¬p ^ 2 ∣ p * (p * z) hbdiv : p ∣ (p * (p * z)) ^ n hy : a ^ Nat.succ n * (p * (p * z)) ^ n = p ^ Nat.succ n * y this : a ^ Nat.succ n * (p * z) ^ n = p * y hdvdx : p ∣ (p * z) ^ n ⊢ p ^ 2 ∣ p * (p * z) [PROOFSTEP] rw [pow_two, ← mul_assoc] [GOAL] case inr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p a : α n : ℕ hp : Prime p y z : α hb : ¬p ^ 2 ∣ p * (p * z) hbdiv : p ∣ (p * (p * z)) ^ n hy : a ^ Nat.succ n * (p * (p * z)) ^ n = p ^ Nat.succ n * y this : a ^ Nat.succ n * (p * z) ^ n = p * y hdvdx : p ∣ (p * z) ^ n ⊢ p * p ∣ p * p * z [PROOFSTEP] exact dvd_mul_right _ _ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x y : α h : Prime p i : ℕ hxy : p ^ (i + 1) ∣ x * y ⊢ p ^ (i + 1) ∣ x ∨ p ∣ y [PROOFSTEP] rw [or_iff_not_imp_right] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x y : α h : Prime p i : ℕ hxy : p ^ (i + 1) ∣ x * y ⊢ ¬p ∣ y → p ^ (i + 1) ∣ x [PROOFSTEP] intro hy [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x y : α h : Prime p i : ℕ hxy : p ^ (i + 1) ∣ x * y hy : ¬p ∣ y ⊢ p ^ (i + 1) ∣ x [PROOFSTEP] induction' i with i ih generalizing x [GOAL] case zero α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x✝ y : α h : Prime p i : ℕ hxy✝ : p ^ (i + 1) ∣ x✝ * y hy : ¬p ∣ y x : α hxy : p ^ (Nat.zero + 1) ∣ x * y ⊢ p ^ (Nat.zero + 1) ∣ x [PROOFSTEP] rw [pow_one] at hxy ⊢ [GOAL] case zero α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x✝ y : α h : Prime p i : ℕ hxy✝ : p ^ (i + 1) ∣ x✝ * y hy : ¬p ∣ y x : α hxy : p ∣ x * y ⊢ p ∣ x [PROOFSTEP] exact (h.dvd_or_dvd hxy).resolve_right hy [GOAL] case succ α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x✝ y : α h : Prime p i✝ : ℕ hxy✝ : p ^ (i✝ + 1) ∣ x✝ * y hy : ¬p ∣ y i : ℕ ih : ∀ {x : α}, p ^ (i + 1) ∣ x * y → p ^ (i + 1) ∣ x x : α hxy : p ^ (Nat.succ i + 1) ∣ x * y ⊢ p ^ (Nat.succ i + 1) ∣ x [PROOFSTEP] rw [pow_succ] at hxy ⊢ [GOAL] case succ α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x✝ y : α h : Prime p i✝ : ℕ hxy✝ : p ^ (i✝ + 1) ∣ x✝ * y hy : ¬p ∣ y i : ℕ ih : ∀ {x : α}, p ^ (i + 1) ∣ x * y → p ^ (i + 1) ∣ x x : α hxy : p * p ^ (i + 1) ∣ x * y ⊢ p * p ^ (i + 1) ∣ x [PROOFSTEP] obtain ⟨x', rfl⟩ := (h.dvd_or_dvd (dvd_of_mul_right_dvd hxy)).resolve_right hy [GOAL] case succ.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x y : α h : Prime p i✝ : ℕ hxy✝ : p ^ (i✝ + 1) ∣ x * y hy : ¬p ∣ y i : ℕ ih : ∀ {x : α}, p ^ (i + 1) ∣ x * y → p ^ (i + 1) ∣ x x' : α hxy : p * p ^ (i + 1) ∣ p * x' * y ⊢ p * p ^ (i + 1) ∣ p * x' [PROOFSTEP] rw [mul_assoc] at hxy [GOAL] case succ.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : CancelCommMonoidWithZero α p x y : α h : Prime p i✝ : ℕ hxy✝ : p ^ (i✝ + 1) ∣ x * y hy : ¬p ∣ y i : ℕ ih : ∀ {x : α}, p ^ (i + 1) ∣ x * y → p ^ (i + 1) ∣ x x' : α hxy : p * p ^ (i + 1) ∣ p * (x' * y) ⊢ p * p ^ (i + 1) ∣ p * x' [PROOFSTEP] exact mul_dvd_mul_left p (ih ((mul_dvd_mul_iff_left h.ne_zero).mp hxy)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α ⊢ ¬Irreducible 1 [PROOFSTEP] simp [irreducible_iff] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α n : ℕ hn : n ≠ 1 ⊢ Irreducible (x ^ n) → IsUnit x [PROOFSTEP] obtain hn | hn := hn.lt_or_lt [GOAL] case inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α n : ℕ hn✝ : n ≠ 1 hn : n < 1 ⊢ Irreducible (x ^ n) → IsUnit x [PROOFSTEP] simp only [Nat.lt_one_iff.mp hn, IsEmpty.forall_iff, not_irreducible_one, pow_zero] [GOAL] case inr α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α n : ℕ hn✝ : n ≠ 1 hn : 1 < n ⊢ Irreducible (x ^ n) → IsUnit x [PROOFSTEP] intro h [GOAL] case inr α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α n : ℕ hn✝ : n ≠ 1 hn : 1 < n h : Irreducible (x ^ n) ⊢ IsUnit x [PROOFSTEP] obtain ⟨k, rfl⟩ := Nat.exists_eq_add_of_lt hn [GOAL] case inr.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α k : ℕ hn✝ : 1 + k + 1 ≠ 1 hn : 1 < 1 + k + 1 h : Irreducible (x ^ (1 + k + 1)) ⊢ IsUnit x [PROOFSTEP] rw [pow_succ, add_comm] at h [GOAL] case inr.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α k : ℕ hn✝ : 1 + k + 1 ≠ 1 hn : 1 < 1 + k + 1 h : Irreducible (x * x ^ (k + 1)) ⊢ IsUnit x [PROOFSTEP] exact (or_iff_left_of_imp isUnit_pow_succ_iff.mp).mp (of_irreducible_mul h) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α h : ¬IsUnit x ⊢ Irreducible x ∨ ∃ a b, ¬IsUnit a ∧ ¬IsUnit b ∧ a * b = x [PROOFSTEP] haveI := Classical.dec [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α h : ¬IsUnit x this : (p : Prop) → Decidable p ⊢ Irreducible x ∨ ∃ a b, ¬IsUnit a ∧ ¬IsUnit b ∧ a * b = x [PROOFSTEP] refine' or_iff_not_imp_right.2 fun H => _ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α h : ¬IsUnit x this : (p : Prop) → Decidable p H : ¬∃ a b, ¬IsUnit a ∧ ¬IsUnit b ∧ a * b = x ⊢ Irreducible x [PROOFSTEP] simp [h, irreducible_iff] at H ⊢ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α h : ¬IsUnit x this : (p : Prop) → Decidable p H : ∀ (x_1 : α), ¬IsUnit x_1 → ∀ (x_2 : α), ¬IsUnit x_2 → ¬x_1 * x_2 = x ⊢ ∀ (a b : α), x = a * b → IsUnit a ∨ IsUnit b [PROOFSTEP] refine' fun a b h => by_contradiction fun o => _ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α h✝ : ¬IsUnit x this : (p : Prop) → Decidable p H : ∀ (x_1 : α), ¬IsUnit x_1 → ∀ (x_2 : α), ¬IsUnit x_2 → ¬x_1 * x_2 = x a b : α h : x = a * b o : ¬(IsUnit a ∨ IsUnit b) ⊢ False [PROOFSTEP] simp [not_or] at o [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 α : Type u_5 inst✝ : Monoid α x : α h✝ : ¬IsUnit x this : (p : Prop) → Decidable p H : ∀ (x_1 : α), ¬IsUnit x_1 → ∀ (x_2 : α), ¬IsUnit x_2 → ¬x_1 * x_2 = x a b : α h : x = a * b o : ¬IsUnit a ∧ ¬IsUnit b ⊢ False [PROOFSTEP] exact H _ o.1 _ o.2 h.symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α p q : α hp : Irreducible p hq : Irreducible q ⊢ p ∣ q → q ∣ p [PROOFSTEP] rintro ⟨q', rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α p : α hp : Irreducible p q' : α hq : Irreducible (p * q') ⊢ p * q' ∣ p [PROOFSTEP] rw [IsUnit.mul_right_dvd (Or.resolve_left (of_irreducible_mul hq) hp.not_unit)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α ⊢ Irreducible (↑a * b) ↔ Irreducible b [PROOFSTEP] simp only [irreducible_iff, Units.isUnit_units_mul, and_congr_right_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α ⊢ ¬IsUnit b → ((∀ (a_2 b_1 : α), ↑a * b = a_2 * b_1 → IsUnit a_2 ∨ IsUnit b_1) ↔ ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1) [PROOFSTEP] refine' fun _ => ⟨fun h A B HAB => _, fun h A B HAB => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1 A B : α HAB : b = A * B ⊢ IsUnit A ∨ IsUnit B [PROOFSTEP] rw [← a.isUnit_units_mul] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1 A B : α HAB : b = A * B ⊢ IsUnit (↑a * A) ∨ IsUnit B [PROOFSTEP] apply h [GOAL] case refine'_1.a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a_1 b_1 : α), ↑a * b = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1 A B : α HAB : b = A * B ⊢ ↑a * b = ↑a * A * B [PROOFSTEP] rw [mul_assoc, ← HAB] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1 A B : α HAB : ↑a * b = A * B ⊢ IsUnit A ∨ IsUnit B [PROOFSTEP] rw [← a⁻¹.isUnit_units_mul] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1 A B : α HAB : ↑a * b = A * B ⊢ IsUnit (↑a⁻¹ * A) ∨ IsUnit B [PROOFSTEP] apply h [GOAL] case refine'_2.a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1 A B : α HAB : ↑a * b = A * B ⊢ b = ↑a⁻¹ * A * B [PROOFSTEP] rw [mul_assoc, ← HAB, Units.inv_mul_cancel_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α ⊢ Irreducible (b * ↑a) ↔ Irreducible b [PROOFSTEP] simp only [irreducible_iff, Units.isUnit_mul_units, and_congr_right_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α ⊢ ¬IsUnit b → ((∀ (a_2 b_1 : α), b * ↑a = a_2 * b_1 → IsUnit a_2 ∨ IsUnit b_1) ↔ ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1) [PROOFSTEP] refine' fun _ => ⟨fun h A B HAB => _, fun h A B HAB => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a_1 b_1 : α), b * ↑a = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1 A B : α HAB : b = A * B ⊢ IsUnit A ∨ IsUnit B [PROOFSTEP] rw [← Units.isUnit_mul_units B a] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a_1 b_1 : α), b * ↑a = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1 A B : α HAB : b = A * B ⊢ IsUnit A ∨ IsUnit (B * ↑a) [PROOFSTEP] apply h [GOAL] case refine'_1.a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a_1 b_1 : α), b * ↑a = a_1 * b_1 → IsUnit a_1 ∨ IsUnit b_1 A B : α HAB : b = A * B ⊢ b * ↑a = A * (B * ↑a) [PROOFSTEP] rw [← mul_assoc, ← HAB] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1 A B : α HAB : b * ↑a = A * B ⊢ IsUnit A ∨ IsUnit B [PROOFSTEP] rw [← Units.isUnit_mul_units B a⁻¹] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1 A B : α HAB : b * ↑a = A * B ⊢ IsUnit A ∨ IsUnit (B * ↑a⁻¹) [PROOFSTEP] apply h [GOAL] case refine'_2.a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : αˣ b : α x✝ : ¬IsUnit b h : ∀ (a b_1 : α), b = a * b_1 → IsUnit a ∨ IsUnit b_1 A B : α HAB : b * ↑a = A * B ⊢ b = A * (B * ↑a⁻¹) [PROOFSTEP] rw [← mul_assoc, ← HAB, Units.mul_inv_cancel_right] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a b : α ⊢ Irreducible (a * b) ↔ Irreducible a ∧ IsUnit b ∨ Irreducible b ∧ IsUnit a [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a b : α ⊢ Irreducible (a * b) → Irreducible a ∧ IsUnit b ∨ Irreducible b ∧ IsUnit a [PROOFSTEP] refine' fun h => Or.imp (fun h' => ⟨_, h'⟩) (fun h' => ⟨_, h'⟩) (h.isUnit_or_isUnit rfl).symm [GOAL] case mp.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a b : α h : Irreducible (a * b) h' : IsUnit b ⊢ Irreducible a [PROOFSTEP] rwa [irreducible_mul_isUnit h'] at h [GOAL] case mp.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a b : α h : Irreducible (a * b) h' : IsUnit a ⊢ Irreducible b [PROOFSTEP] rwa [irreducible_isUnit_mul h'] at h [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a b : α ⊢ Irreducible a ∧ IsUnit b ∨ Irreducible b ∧ IsUnit a → Irreducible (a * b) [PROOFSTEP] rintro (⟨ha, hb⟩ | ⟨hb, ha⟩) [GOAL] case mpr.inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a b : α ha : Irreducible a hb : IsUnit b ⊢ Irreducible (a * b) [PROOFSTEP] rwa [irreducible_mul_isUnit hb] [GOAL] case mpr.inr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a b : α hb : Irreducible b ha : IsUnit a ⊢ Irreducible (a * b) [PROOFSTEP] rwa [irreducible_isUnit_mul ha] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a : α ha : Irreducible a ⊢ ¬IsSquare a [PROOFSTEP] rintro ⟨b, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α b : α ha : Irreducible (b * b) ⊢ False [PROOFSTEP] simp only [irreducible_mul_iff, or_self_iff] at ha [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α b : α ha : Irreducible b ∧ IsUnit b ⊢ False [PROOFSTEP] exact ha.1.not_unit ha.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ a x : α hx : a = a * b * x h : a = 0 ⊢ False [PROOFSTEP] simp [Prime] at * [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : ¬p = 0 ∧ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b a b : α hab : p = a * b x✝ : a * b ∣ a x : α hx : a = a * b * x h : a = 0 ⊢ False [PROOFSTEP] rw [h, zero_mul] at hab [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : ¬p = 0 ∧ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b a b : α hab : p = 0 x✝ : a * b ∣ a x : α hx : a = a * b * x h : a = 0 ⊢ False [PROOFSTEP] have := hp.left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : ¬p = 0 ∧ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b a b : α hab : p = 0 x✝ : a * b ∣ a x : α hx : a = a * b * x h : a = 0 this : ¬p = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ a x : α hx : a = a * b * x ⊢ 1 * a = b * x * a [PROOFSTEP] conv => lhs rw [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ a x : α hx : a = a * b * x | 1 * a = b * x * a [PROOFSTEP] lhs rw [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ a x : α hx : a = a * b * x | 1 * a = b * x * a [PROOFSTEP] lhs rw [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ a x : α hx : a = a * b * x | 1 * a = b * x * a [PROOFSTEP] lhs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ a x : α hx : a = a * b * x | 1 * a [PROOFSTEP] rw [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ a x : α hx : a = a * b * x ⊢ 1 * (a * b * x) = b * x * a [PROOFSTEP] simp [mul_comm, mul_assoc, mul_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ b x : α hx : b = a * b * x h : b = 0 ⊢ False [PROOFSTEP] simp [Prime] at * [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : ¬p = 0 ∧ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b a b : α hab : p = a * b x✝ : a * b ∣ b x : α hx : b = a * b * x h : b = 0 ⊢ False [PROOFSTEP] rw [h, mul_zero] at hab [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : ¬p = 0 ∧ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b a b : α hab : p = 0 x✝ : a * b ∣ b x : α hx : b = a * b * x h : b = 0 ⊢ False [PROOFSTEP] have := hp.left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : ¬p = 0 ∧ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b a b : α hab : p = 0 x✝ : a * b ∣ b x : α hx : b = a * b * x h : b = 0 this : ¬p = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ b x : α hx : b = a * b * x ⊢ 1 * b = a * x * b [PROOFSTEP] conv => lhs rw [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ b x : α hx : b = a * b * x | 1 * b = a * x * b [PROOFSTEP] lhs rw [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ b x : α hx : b = a * b * x | 1 * b = a * x * b [PROOFSTEP] lhs rw [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ b x : α hx : b = a * b * x | 1 * b = a * x * b [PROOFSTEP] lhs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ b x : α hx : b = a * b * x | 1 * b [PROOFSTEP] rw [hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α hab : p = a * b x✝ : a * b ∣ b x : α hx : b = a * b * x ⊢ 1 * (a * b * x) = a * x * b [PROOFSTEP] simp [mul_comm, mul_assoc, mul_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α k l : ℕ x✝² : p ^ k ∣ a x✝¹ : p ^ l ∣ b x✝ : p ^ (k + l + 1) ∣ a * b x : α hx : a = p ^ k * x y : α hy : b = p ^ l * y z : α hz : a * b = p ^ (k + l + 1) * z ⊢ p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z) [PROOFSTEP] simpa [mul_comm, pow_add, hx, hy, mul_assoc, mul_left_comm] using hz [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α k l : ℕ x✝² : p ^ k ∣ a x✝¹ : p ^ l ∣ b x✝ : p ^ (k + l + 1) ∣ a * b x : α hx : a = p ^ k * x y : α hy : b = p ^ l * y z : α hz : a * b = p ^ (k + l + 1) * z h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z) hp0 : p ^ (k + l) ≠ 0 ⊢ x * y = p * z [PROOFSTEP] rwa [mul_right_inj' hp0] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α k l : ℕ x✝³ : p ^ k ∣ a x✝² : p ^ l ∣ b x✝¹ : p ^ (k + l + 1) ∣ a * b x : α hx : a = p ^ k * x y : α hy : b = p ^ l * y z : α hz : a * b = p ^ (k + l + 1) * z h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z) hp0 : p ^ (k + l) ≠ 0 hpd : p ∣ x * y x✝ : p ∣ x d : α hd : x = p * d ⊢ a = p ^ (k + 1) * d [PROOFSTEP] simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a✝ p : α hp : Prime p a b : α k l : ℕ x✝³ : p ^ k ∣ a x✝² : p ^ l ∣ b x✝¹ : p ^ (k + l + 1) ∣ a * b x : α hx : a = p ^ k * x y : α hy : b = p ^ l * y z : α hz : a * b = p ^ (k + l + 1) * z h : p ^ (k + l) * (x * y) = p ^ (k + l) * (p * z) hp0 : p ^ (k + l) ≠ 0 hpd : p ∣ x * y x✝ : p ∣ y d : α hd : y = p * d ⊢ b = p ^ (l + 1) * d [PROOFSTEP] simp [*, pow_succ, mul_comm, mul_left_comm, mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α x : α ⊢ x * ↑1 = x [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α x : α u : αˣ ⊢ x * ↑u * ↑u⁻¹ = x [PROOFSTEP] rw [mul_assoc, Units.mul_inv, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α x : α u v : αˣ ⊢ x * ↑(u * v) = x * ↑u * ↑v [PROOFSTEP] rw [Units.val_mul, mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a : α x✝ : IsUnit a c : αˣ h : ↑c = a ⊢ 1 * ↑c = a [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : MonoidWithZero α a : α h : a ~ᵤ 0 ⊢ a = 0 [PROOFSTEP] let ⟨u, h⟩ := h.symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : MonoidWithZero α a : α h✝ : a ~ᵤ 0 u : αˣ h : 0 * ↑u = a ⊢ a = 0 [PROOFSTEP] simpa using h.symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α u : αˣ h : a * b * ↑u = 1 ⊢ a * (b * ↑u) = 1 [PROOFSTEP] simpa [mul_assoc] using h [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 β : Type u_5 inst✝ : CommMonoid β a u : β hu : IsUnit u ⊢ u * a ~ᵤ a [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 β : Type u_5 inst✝ : CommMonoid β a u : β hu : IsUnit u ⊢ a * u ~ᵤ a [PROOFSTEP] exact associated_mul_unit_left _ _ hu [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 β : Type u_5 inst✝ : CommMonoid β u a b : β hu : IsUnit u ⊢ u * a ~ᵤ b ↔ a ~ᵤ b [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 β✝ : Type u_2 γ : Type u_3 δ : Type u_4 β : Type u_5 inst✝ : CommMonoid β u a b : β hu : IsUnit u ⊢ a * u ~ᵤ b ↔ a ~ᵤ b [PROOFSTEP] exact associated_mul_isUnit_left_iff hu [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a₁ a₂ b₁ b₂ : α c₁ : αˣ h₁ : a₁ * ↑c₁ = b₁ c₂ : αˣ h₂ : a₂ * ↑c₂ = b₂ ⊢ a₁ * a₂ * ↑(c₁ * c₂) = b₁ * b₂ [PROOFSTEP] simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α n : ℕ h : a ~ᵤ b ⊢ a ^ n ~ᵤ b ^ n [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α h : a ~ᵤ b ⊢ a ^ Nat.zero ~ᵤ b ^ Nat.zero [PROOFSTEP] simp [h] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α h : a ~ᵤ b ⊢ 1 ~ᵤ 1 [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α h : a ~ᵤ b n : ℕ ih : a ^ n ~ᵤ b ^ n ⊢ a ^ Nat.succ n ~ᵤ b ^ Nat.succ n [PROOFSTEP] convert h.mul_mul ih [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α h : a ~ᵤ b n : ℕ ih : a ^ n ~ᵤ b ^ n ⊢ a ^ Nat.succ n = a * a ^ n [PROOFSTEP] rw [pow_succ] [GOAL] case h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α h : a ~ᵤ b n : ℕ ih : a ^ n ~ᵤ b ^ n ⊢ b ^ Nat.succ n = b * b ^ n [PROOFSTEP] rw [pow_succ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a b : α hab : a ∣ b hba : b ∣ a ⊢ a ~ᵤ b [PROOFSTEP] rcases hab with ⟨c, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c : α hba : a * c ∣ a ⊢ a ~ᵤ a * c [PROOFSTEP] rcases hba with ⟨d, a_eq⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ⊢ a ~ᵤ a * c [PROOFSTEP] by_cases ha0 : a = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : a = 0 ⊢ a ~ᵤ a * c [PROOFSTEP] simp_all [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α ha0 : a = 0 ⊢ 0 ~ᵤ 0 [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 ⊢ a ~ᵤ a * c [PROOFSTEP] have hac0 : a * c ≠ 0 := by intro con rw [con, zero_mul] at a_eq apply ha0 a_eq [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 ⊢ a * c ≠ 0 [PROOFSTEP] intro con [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 con : a * c = 0 ⊢ False [PROOFSTEP] rw [con, zero_mul] at a_eq [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = 0 ha0 : ¬a = 0 con : a * c = 0 ⊢ False [PROOFSTEP] apply ha0 a_eq [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 hac0 : a * c ≠ 0 ⊢ a ~ᵤ a * c [PROOFSTEP] have : a * (c * d) = a * 1 := by rw [← mul_assoc, ← a_eq, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 hac0 : a * c ≠ 0 ⊢ a * (c * d) = a * 1 [PROOFSTEP] rw [← mul_assoc, ← a_eq, mul_one] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 hac0 : a * c ≠ 0 this : a * (c * d) = a * 1 ⊢ a ~ᵤ a * c [PROOFSTEP] have hcd : c * d = 1 := mul_left_cancel₀ ha0 this [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 hac0 : a * c ≠ 0 this : a * (c * d) = a * 1 hcd : c * d = 1 ⊢ a ~ᵤ a * c [PROOFSTEP] have : a * c * (d * c) = a * c * 1 := by rw [← mul_assoc, ← a_eq, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 hac0 : a * c ≠ 0 this : a * (c * d) = a * 1 hcd : c * d = 1 ⊢ a * c * (d * c) = a * c * 1 [PROOFSTEP] rw [← mul_assoc, ← a_eq, mul_one] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 hac0 : a * c ≠ 0 this✝ : a * (c * d) = a * 1 hcd : c * d = 1 this : a * c * (d * c) = a * c * 1 ⊢ a ~ᵤ a * c [PROOFSTEP] have hdc : d * c = 1 := mul_left_cancel₀ hac0 this [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelMonoidWithZero α a c d : α a_eq : a = a * c * d ha0 : ¬a = 0 hac0 : a * c ≠ 0 this✝ : a * (c * d) = a * 1 hcd : c * d = 1 this : a * c * (d * c) = a * c * 1 hdc : d * c = 1 ⊢ a ~ᵤ a * c [PROOFSTEP] exact ⟨⟨c, d, hcd, hdc⟩, rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : MonoidWithZero α a b : α h : a ~ᵤ b ha : a = 0 ⊢ b = 0 [PROOFSTEP] let ⟨u, hu⟩ := h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : MonoidWithZero α a b : α h : a ~ᵤ b ha : a = 0 u : αˣ hu : a * ↑u = b ⊢ b = 0 [PROOFSTEP] simp [hu.symm, ha] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : MonoidWithZero α a b : α h : a ~ᵤ b hb : b = 0 ⊢ a = 0 [PROOFSTEP] let ⟨u, hu⟩ := h.symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : MonoidWithZero α a b : α h : a ~ᵤ b hb : b = 0 u : αˣ hu : b * ↑u = a ⊢ a = 0 [PROOFSTEP] simp [hu.symm, hb] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p q : α h : p ~ᵤ q hp : Prime p u : αˣ hu : p * ↑u = q x✝ : IsUnit q v : αˣ hv : ↑v = q ⊢ ↑(v * u⁻¹) = p [PROOFSTEP] simp [hv, hu.symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p q : α h : p ~ᵤ q hp : Prime p u : αˣ hu : p * ↑u = q ⊢ ∀ (a b : α), p * ↑u ∣ a * b → p * ↑u ∣ a ∨ p * ↑u ∣ b [PROOFSTEP] simp [Units.mul_right_dvd] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p q : α h : p ~ᵤ q hp : Prime p u : αˣ hu : p * ↑u = q ⊢ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b [PROOFSTEP] intro a b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p q : α h : p ~ᵤ q hp : Prime p u : αˣ hu : p * ↑u = q a b : α ⊢ p ∣ a * b → p ∣ a ∨ p ∣ b [PROOFSTEP] exact hp.dvd_or_dvd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α a b : α h : a ~ᵤ b u : αˣ hu : a * ↑u = b x✝ : IsUnit a v : αˣ hv : ↑v = a ⊢ ↑(v * u) = b [PROOFSTEP] simp [hv, hu.symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α p q : α h : p ~ᵤ q hp : Irreducible p u : αˣ hu : p * ↑u = q a b : α hab : q = a * b ⊢ p = p * ↑u * ↑u⁻¹ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α p q : α h : p ~ᵤ q hp : Irreducible p u : αˣ hu : p * ↑u = q a b : α hab : q = a * b ⊢ p * ↑u * ↑u⁻¹ = a * (b * ↑u⁻¹) [PROOFSTEP] rw [hu] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α p q : α h : p ~ᵤ q hp : Irreducible p u : αˣ hu : p * ↑u = q a b : α hab : q = a * b ⊢ q * ↑u⁻¹ = a * (b * ↑u⁻¹) [PROOFSTEP] simp [hab, mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : Monoid α p q : α h : p ~ᵤ q hp : Irreducible p u : αˣ hu : p * ↑u = q a b : α hab : q = a * b hpab : p = a * (b * ↑u⁻¹) x✝ : IsUnit (b * ↑u⁻¹) v : αˣ hv : ↑v = b * ↑u⁻¹ ⊢ ↑(v * u) = b [PROOFSTEP] simp [hv] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a b c d : α h : a * b ~ᵤ c * d h₁ : a ~ᵤ c ha : a ≠ 0 u : αˣ hu : a * b * ↑u = c * d v : αˣ hv : c * ↑v = a ⊢ a * (b * ↑(u * v)) = a * d [PROOFSTEP] rw [← hv, mul_assoc c (v : α) d, mul_left_comm c, ← hu] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a b c d : α h : a * b ~ᵤ c * d h₁ : a ~ᵤ c ha : a ≠ 0 u : αˣ hu : a * b * ↑u = c * d v : αˣ hv : c * ↑v = a ⊢ c * ↑v * (b * ↑(u * v)) = ↑v * (a * b * ↑u) [PROOFSTEP] simp [hv.symm, mul_assoc, mul_comm, mul_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a b c d : α ⊢ a * b ~ᵤ c * d → b ~ᵤ d → b ≠ 0 → a ~ᵤ c [PROOFSTEP] rw [mul_comm a, mul_comm c] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a b c d : α ⊢ b * a ~ᵤ d * c → b ~ᵤ d → b ≠ 0 → a ~ᵤ c [PROOFSTEP] exact Associated.of_mul_left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p₁ p₂ : α k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₁ h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂ ⊢ p₁ ~ᵤ p₂ [PROOFSTEP] have : p₁ ∣ p₂ ^ k₂ := by rw [← h.dvd_iff_dvd_right] apply dvd_pow_self _ hk₁.ne' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p₁ p₂ : α k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₁ h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂ ⊢ p₁ ∣ p₂ ^ k₂ [PROOFSTEP] rw [← h.dvd_iff_dvd_right] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p₁ p₂ : α k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₁ h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂ ⊢ p₁ ∣ p₁ ^ k₁ [PROOFSTEP] apply dvd_pow_self _ hk₁.ne' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p₁ p₂ : α k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₁ h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂ this : p₁ ∣ p₂ ^ k₂ ⊢ p₁ ~ᵤ p₂ [PROOFSTEP] rw [← hp₁.dvd_prime_iff_associated hp₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p₁ p₂ : α k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₁ h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂ this : p₁ ∣ p₂ ^ k₂ ⊢ p₁ ∣ p₂ [PROOFSTEP] exact hp₁.dvd_of_dvd_pow this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Unique αˣ x y : α ⊢ x ~ᵤ y ↔ x = y [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Unique αˣ x y : α ⊢ x ~ᵤ y → x = y [PROOFSTEP] rintro ⟨c, rfl⟩ [GOAL] case mp.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Unique αˣ x : α c : αˣ ⊢ x = x * ↑c [PROOFSTEP] rw [units_eq_one c, Units.val_one, mul_one] [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Unique αˣ x y : α ⊢ x = y → x ~ᵤ y [PROOFSTEP] rintro rfl [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Unique αˣ x : α ⊢ x ~ᵤ x [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Unique αˣ ⊢ Associated = Eq [PROOFSTEP] ext [GOAL] case h.h.a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Unique αˣ x✝¹ x✝ : α ⊢ x✝¹ ~ᵤ x✝ ↔ x✝¹ = x✝ [PROOFSTEP] rw [associated_iff_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : Monoid α inst✝² : Unique αˣ M : Type u_5 inst✝¹ : CancelCommMonoidWithZero M inst✝ : Unique Mˣ p q : M pp : Prime p qp : Prime q ⊢ p ∣ q ↔ p = q [PROOFSTEP] rw [pp.dvd_prime_iff_associated qp, ← associated_eq_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 R : Type u_5 inst✝¹ : CancelCommMonoidWithZero R inst✝ : Unique Rˣ p₁ p₂ : R k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₁ h : p₁ ^ k₁ = p₂ ^ k₂ ⊢ p₁ = p₂ [PROOFSTEP] rw [← associated_iff_eq] at h ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 R : Type u_5 inst✝¹ : CancelCommMonoidWithZero R inst✝ : Unique Rˣ p₁ p₂ : R k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₁ h✝ : p₁ ^ k₁ = p₂ ^ k₂ h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂ ⊢ p₁ ~ᵤ p₂ [PROOFSTEP] apply h.of_pow_associated_of_prime hp₁ hp₂ hk₁ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 R : Type u_5 inst✝¹ : CancelCommMonoidWithZero R inst✝ : Unique Rˣ p₁ p₂ : R k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₂ h : p₁ ^ k₁ = p₂ ^ k₂ ⊢ p₁ = p₂ [PROOFSTEP] rw [← associated_iff_eq] at h ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 R : Type u_5 inst✝¹ : CancelCommMonoidWithZero R inst✝ : Unique Rˣ p₁ p₂ : R k₁ k₂ : ℕ hp₁ : Prime p₁ hp₂ : Prime p₂ hk₁ : 0 < k₂ h✝ : p₁ ^ k₁ = p₂ ^ k₂ h : p₁ ^ k₁ ~ᵤ p₂ ^ k₂ ⊢ p₁ ~ᵤ p₂ [PROOFSTEP] apply h.of_pow_associated_of_prime' hp₁ hp₂ hk₁ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Subsingleton α a : Associates α ⊢ a = default [PROOFSTEP] apply Quotient.recOnSubsingleton₂ [GOAL] case g α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Subsingleton α a : Associates α ⊢ ∀ (a b : α), Quotient.mk (Associated.setoid α) a = Quotient.mk (Associated.setoid α) b [PROOFSTEP] intro a b [GOAL] case g α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Subsingleton α a✝ : Associates α a b : α ⊢ Quotient.mk (Associated.setoid α) a = Quotient.mk (Associated.setoid α) b [PROOFSTEP] congr [GOAL] case g.e_a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : Monoid α inst✝ : Subsingleton α a✝ : Associates α a b : α ⊢ a = b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a' b' : Associates α a₁ a₂ b₁ b₂ : α x✝¹ : a₁ ≈ b₁ x✝ : a₂ ≈ b₂ c₁ : αˣ h₁ : a₁ * ↑c₁ = b₁ c₂ : αˣ h₂ : a₂ * ↑c₂ = b₂ ⊢ a₁ * a₂ * ↑(c₁ * c₂) = b₁ * b₂ [PROOFSTEP] rw [← h₁, ← h₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a' b' : Associates α a₁ a₂ b₁ b₂ : α x✝¹ : a₁ ≈ b₁ x✝ : a₂ ≈ b₂ c₁ : αˣ h₁ : a₁ * ↑c₁ = b₁ c₂ : αˣ h₂ : a₂ * ↑c₂ = b₂ ⊢ a₁ * a₂ * ↑(c₁ * c₂) = a₁ * ↑c₁ * (a₂ * ↑c₂) [PROOFSTEP] simp [h₁.symm, h₂.symm, mul_assoc, mul_comm, mul_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a' b' c' : Associates α a b c : α ⊢ Quotient.mk (Associated.setoid α) (a * b * c) = Quotient.mk (Associated.setoid α) (a * (b * c)) [PROOFSTEP] rw [mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a' : Associates α a : α ⊢ Quotient.mk (Associated.setoid α) (1 * a) = Quotient.mk (Associated.setoid α) a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a' : Associates α a : α ⊢ Quotient.mk (Associated.setoid α) (a * 1) = Quotient.mk (Associated.setoid α) a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a' b' : Associates α a b : α ⊢ Quotient.mk (Associated.setoid α) (a * b) = Quotient.mk (Associated.setoid α) (b * a) [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a : α n : ℕ ⊢ Associates.mk (a ^ n) = Associates.mk a ^ n [PROOFSTEP] induction n [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a : α ⊢ Associates.mk (a ^ Nat.zero) = Associates.mk a ^ Nat.zero [PROOFSTEP] simp [*, pow_succ, Associates.mk_mul_mk.symm] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a : α n✝ : ℕ n_ih✝ : Associates.mk (a ^ n✝) = Associates.mk a ^ n✝ ⊢ Associates.mk (a ^ Nat.succ n✝) = Associates.mk a ^ Nat.succ n✝ [PROOFSTEP] simp [*, pow_succ, Associates.mk_mul_mk.symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α x y : Associates α a b : α h : Quotient.mk (Associated.setoid α) a * Quotient.mk (Associated.setoid α) b = 1 this : a * b ~ᵤ 1 ⊢ b * ?m.284131 a b h this ~ᵤ 1 [PROOFSTEP] rwa [mul_comm] at this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α x y : Associates α ⊢ x = 1 ∧ y = 1 → x * y = 1 [PROOFSTEP] simp (config := { contextual := true }) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α u : (Associates α)ˣ ⊢ ↑u = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a : Associates α ⊢ IsUnit a ↔ a = ⊥ [PROOFSTEP] rw [Associates.isUnit_iff_eq_one, bot_eq_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a : α ⊢ IsUnit (Associates.mk a) ↔ a ~ᵤ 1 [PROOFSTEP] rw [isUnit_iff_eq_one, one_eq_mk_one, mk_eq_mk_iff_associated] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b c d : Associates α h₁ : a ≤ b h₂ : c ≤ d x : Associates α hx : b = a * x y : Associates α hy : d = c * y ⊢ b * d = a * c * (x * y) [PROOFSTEP] simp [hx, hy, mul_comm, mul_assoc, mul_left_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : Associates α ⊢ a ≤ b * a [PROOFSTEP] rw [mul_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : Associates α ⊢ a ≤ a * b [PROOFSTEP] exact le_mul_right [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α c' : Associates α hc' : Associates.mk b = Associates.mk a * c' ⊢ ∀ (c : α), Associates.mk b = Associates.mk a * Quotient.mk (Associated.setoid α) c → a ∣ b [PROOFSTEP] intro c hc [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α c' : Associates α hc' : Associates.mk b = Associates.mk a * c' c : α hc : Associates.mk b = Associates.mk a * Quotient.mk (Associated.setoid α) c ⊢ a ∣ b [PROOFSTEP] let ⟨d, hd⟩ := (Quotient.exact hc).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α c' : Associates α hc' : Associates.mk b = Associates.mk a * c' c : α hc : Associates.mk b = Associates.mk a * Quotient.mk (Associated.setoid α) c d : αˣ hd : a * c * ↑d = b ⊢ a ∣ b [PROOFSTEP] exact ⟨↑d * c, calc b = a * c * ↑d := hd.symm _ = a * (↑d * c) := by ac_rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α c' : Associates α hc' : Associates.mk b = Associates.mk a * c' c : α hc : Associates.mk b = Associates.mk a * Quotient.mk (Associated.setoid α) c d : αˣ hd : a * c * ↑d = b ⊢ a * c * ↑d = a * (↑d * c) [PROOFSTEP] ac_rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α x✝ : a ∣ b c : α hc : b = a * c ⊢ Associates.mk b = Associates.mk a * Associates.mk c [PROOFSTEP] simp [hc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoid α a b : α x✝ : a ∣ b c : α hc : b = a * c ⊢ Associates.mk (a * c) = Associates.mk a * Associates.mk c [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α ⊢ ∀ (a : Associates α), 0 * a = 0 [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a✝ : Associates α a : α ⊢ 0 * Quot.mk Setoid.r a = 0 [PROOFSTEP] show Associates.mk (0 * a) = Associates.mk 0 [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a✝ : Associates α a : α ⊢ Associates.mk (0 * a) = Associates.mk 0 [PROOFSTEP] rw [zero_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α ⊢ ∀ (a : Associates α), a * 0 = 0 [PROOFSTEP] rintro ⟨a⟩ [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a✝ : Associates α a : α ⊢ Quot.mk Setoid.r a * 0 = 0 [PROOFSTEP] show Associates.mk (a * 0) = Associates.mk 0 [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a✝ : Associates α a : α ⊢ Associates.mk (a * 0) = Associates.mk 0 [PROOFSTEP] rw [mul_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ Prime (Associates.mk p) ↔ Prime p [PROOFSTEP] rw [Prime, _root_.Prime, forall_associated] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (Associates.mk p ≠ 0 ∧ ¬IsUnit (Associates.mk p) ∧ ∀ (a : α) (b : Associates α), Associates.mk p ∣ Associates.mk a * b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ b) ↔ p ≠ 0 ∧ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b [PROOFSTEP] trans [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (Associates.mk p ≠ 0 ∧ ¬IsUnit (Associates.mk p) ∧ ∀ (a : α) (b : Associates α), Associates.mk p ∣ Associates.mk a * b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ b) ↔ ?m.311388 [PROOFSTEP] apply and_congr [GOAL] case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ Associates.mk p ≠ 0 ↔ ?c case h₂ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (¬IsUnit (Associates.mk p) ∧ ∀ (a : α) (b : Associates α), Associates.mk p ∣ Associates.mk a * b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ b) ↔ ?d case c α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ Prop case d α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ Prop [PROOFSTEP] rfl [GOAL] case h₂ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (¬IsUnit (Associates.mk p) ∧ ∀ (a : α) (b : Associates α), Associates.mk p ∣ Associates.mk a * b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ b) ↔ ?d case d α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ Prop [PROOFSTEP] apply and_congr [GOAL] case h₂.h₁ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ ¬IsUnit (Associates.mk p) ↔ ?h₂.c case h₂.h₂ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (∀ (a : α) (b : Associates α), Associates.mk p ∣ Associates.mk a * b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ b) ↔ ?h₂.d case h₂.c α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ Prop case h₂.d α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ Prop [PROOFSTEP] rfl [GOAL] case h₂.h₂ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (∀ (a : α) (b : Associates α), Associates.mk p ∣ Associates.mk a * b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ b) ↔ ?h₂.d case h₂.d α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ Prop [PROOFSTEP] apply forall_congr' [GOAL] case h₂.h₂.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ ∀ (a : α), (∀ (b : Associates α), Associates.mk p ∣ Associates.mk a * b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ b) ↔ ?h₂.h₂.q a case h₂.h₂.q α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ α → Prop [PROOFSTEP] intro a [GOAL] case h₂.h₂.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p a : α ⊢ (∀ (b : Associates α), Associates.mk p ∣ Associates.mk a * b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ b) ↔ ?h₂.h₂.q a case h₂.h₂.q α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ α → Prop [PROOFSTEP] exact forall_associated [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (Associates.mk p ≠ 0 ∧ ¬IsUnit (Associates.mk p) ∧ ∀ (a a_1 : α), Associates.mk p ∣ Associates.mk a * Associates.mk a_1 → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ Associates.mk a_1) ↔ p ≠ 0 ∧ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b [PROOFSTEP] apply and_congr mk_ne_zero [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (¬IsUnit (Associates.mk p) ∧ ∀ (a a_1 : α), Associates.mk p ∣ Associates.mk a * Associates.mk a_1 → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ Associates.mk a_1) ↔ ¬IsUnit p ∧ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b [PROOFSTEP] apply and_congr [GOAL] case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ ¬IsUnit (Associates.mk p) ↔ ¬IsUnit p [PROOFSTEP] rw [isUnit_mk] [GOAL] case h₂ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p : α ⊢ (∀ (a a_1 : α), Associates.mk p ∣ Associates.mk a * Associates.mk a_1 → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ Associates.mk a_1) ↔ ∀ (a b : α), p ∣ a * b → p ∣ a ∨ p ∣ b [PROOFSTEP] refine' forall₂_congr fun a b => _ [GOAL] case h₂ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p a b : α ⊢ Associates.mk p ∣ Associates.mk a * Associates.mk b → Associates.mk p ∣ Associates.mk a ∨ Associates.mk p ∣ Associates.mk b ↔ p ∣ a * b → p ∣ a ∨ p ∣ b [PROOFSTEP] rw [mk_mul_mk, mk_dvd_mk, mk_dvd_mk, mk_dvd_mk] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α ⊢ Irreducible (Associates.mk a) ↔ Irreducible a [PROOFSTEP] simp only [irreducible_iff, isUnit_mk] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α ⊢ (¬IsUnit a ∧ ∀ (a_1 b : Associates α), Associates.mk a = a_1 * b → IsUnit a_1 ∨ IsUnit b) ↔ ¬IsUnit a ∧ ∀ (a_1 b : α), a = a_1 * b → IsUnit a_1 ∨ IsUnit b [PROOFSTEP] apply and_congr Iff.rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α ⊢ (∀ (a_1 b : Associates α), Associates.mk a = a_1 * b → IsUnit a_1 ∨ IsUnit b) ↔ ∀ (a_1 b : α), a = a_1 * b → IsUnit a_1 ∨ IsUnit b [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α ⊢ (∀ (a_1 b : Associates α), Associates.mk a = a_1 * b → IsUnit a_1 ∨ IsUnit b) → ∀ (a_2 b : α), a = a_2 * b → IsUnit a_2 ∨ IsUnit b [PROOFSTEP] rintro h x y rfl [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α x y : α h : ∀ (a b : Associates α), Associates.mk (x * y) = a * b → IsUnit a ∨ IsUnit b ⊢ IsUnit x ∨ IsUnit y [PROOFSTEP] simpa [isUnit_mk] using h (Associates.mk x) (Associates.mk y) rfl [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α ⊢ (∀ (a_1 b : α), a = a_1 * b → IsUnit a_1 ∨ IsUnit b) → ∀ (a_2 b : Associates α), Associates.mk a = a_2 * b → IsUnit a_2 ∨ IsUnit b [PROOFSTEP] intro h x y [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α h : ∀ (a_1 b : α), a = a_1 * b → IsUnit a_1 ∨ IsUnit b x y : Associates α ⊢ Associates.mk a = x * y → IsUnit x ∨ IsUnit y [PROOFSTEP] refine' Quotient.inductionOn₂ x y fun x y a_eq => _ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α h : ∀ (a_1 b : α), a = a_1 * b → IsUnit a_1 ∨ IsUnit b x✝ y✝ : Associates α x y : α a_eq : Associates.mk a = Quotient.mk (Associated.setoid α) x * Quotient.mk (Associated.setoid α) y ⊢ IsUnit (Quotient.mk (Associated.setoid α) x) ∨ IsUnit (Quotient.mk (Associated.setoid α) y) [PROOFSTEP] rcases Quotient.exact a_eq.symm with ⟨u, a_eq⟩ [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α h : ∀ (a_1 b : α), a = a_1 * b → IsUnit a_1 ∨ IsUnit b x✝ y✝ : Associates α x y : α a_eq✝ : Associates.mk a = Quotient.mk (Associated.setoid α) x * Quotient.mk (Associated.setoid α) y u : αˣ a_eq : x * y * ↑u = a ⊢ IsUnit (Quotient.mk (Associated.setoid α) x) ∨ IsUnit (Quotient.mk (Associated.setoid α) y) [PROOFSTEP] rw [mul_assoc] at a_eq [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α h : ∀ (a_1 b : α), a = a_1 * b → IsUnit a_1 ∨ IsUnit b x✝ y✝ : Associates α x y : α a_eq✝ : Associates.mk a = Quotient.mk (Associated.setoid α) x * Quotient.mk (Associated.setoid α) y u : αˣ a_eq : x * (y * ↑u) = a ⊢ IsUnit (Quotient.mk (Associated.setoid α) x) ∨ IsUnit (Quotient.mk (Associated.setoid α) y) [PROOFSTEP] show IsUnit (Associates.mk x) ∨ IsUnit (Associates.mk y) [GOAL] case mpr.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α h : ∀ (a_1 b : α), a = a_1 * b → IsUnit a_1 ∨ IsUnit b x✝ y✝ : Associates α x y : α a_eq✝ : Associates.mk a = Quotient.mk (Associated.setoid α) x * Quotient.mk (Associated.setoid α) y u : αˣ a_eq : x * (y * ↑u) = a ⊢ IsUnit (Associates.mk x) ∨ IsUnit (Associates.mk y) [PROOFSTEP] simpa [isUnit_mk] using h _ _ a_eq.symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α ⊢ DvdNotUnit (Associates.mk a) (Associates.mk b) ↔ DvdNotUnit a b [PROOFSTEP] rw [DvdNotUnit, DvdNotUnit, mk_ne_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α ⊢ (a ≠ 0 ∧ ∃ x, ¬IsUnit x ∧ Associates.mk b = Associates.mk a * x) ↔ a ≠ 0 ∧ ∃ x, ¬IsUnit x ∧ b = a * x [PROOFSTEP] apply and_congr_right [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α ⊢ a ≠ 0 → ((∃ x, ¬IsUnit x ∧ Associates.mk b = Associates.mk a * x) ↔ ∃ x, ¬IsUnit x ∧ b = a * x) [PROOFSTEP] intro [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 ⊢ (∃ x, ¬IsUnit x ∧ Associates.mk b = Associates.mk a * x) ↔ ∃ x, ¬IsUnit x ∧ b = a * x [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 ⊢ (∃ x, ¬IsUnit x ∧ Associates.mk b = Associates.mk a * x) → ∃ x, ¬IsUnit x ∧ b = a * x [PROOFSTEP] contrapose! [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 ⊢ (∀ (x : α), ¬IsUnit x → b ≠ a * x) → ∀ (x : Associates α), ¬IsUnit x → Associates.mk b ≠ Associates.mk a * x [PROOFSTEP] rw [forall_associated] [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 ⊢ (∀ (x : α), ¬IsUnit x → b ≠ a * x) → ∀ (a_2 : α), ¬IsUnit (Associates.mk a_2) → Associates.mk b ≠ Associates.mk a * Associates.mk a_2 [PROOFSTEP] intro h x hx hbax [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit (Associates.mk x) hbax : Associates.mk b = Associates.mk a * Associates.mk x ⊢ False [PROOFSTEP] rw [mk_mul_mk, mk_eq_mk_iff_associated] at hbax [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit (Associates.mk x) hbax : b ~ᵤ a * x ⊢ False [PROOFSTEP] cases' hbax with u hu [GOAL] case h.mp.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit (Associates.mk x) u : αˣ hu : b * ↑u = a * x ⊢ False [PROOFSTEP] apply h (x * ↑u⁻¹) [GOAL] case h.mp.intro._ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit (Associates.mk x) u : αˣ hu : b * ↑u = a * x ⊢ ¬IsUnit (x * ↑u⁻¹) [PROOFSTEP] rw [isUnit_mk] at hx [GOAL] case h.mp.intro._ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit x u : αˣ hu : b * ↑u = a * x ⊢ ¬IsUnit (x * ↑u⁻¹) [PROOFSTEP] rw [Associated.isUnit_iff] [GOAL] case h.mp.intro._ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit x u : αˣ hu : b * ↑u = a * x ⊢ ¬IsUnit ?m.316875 case h.mp.intro._ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit x u : αˣ hu : b * ↑u = a * x ⊢ x * ↑u⁻¹ ~ᵤ ?m.316875 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit x u : αˣ hu : b * ↑u = a * x ⊢ α [PROOFSTEP] apply hx [GOAL] case h.mp.intro._ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit x u : αˣ hu : b * ↑u = a * x ⊢ x * ↑u⁻¹ ~ᵤ x [PROOFSTEP] use u [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit x u : αˣ hu : b * ↑u = a * x ⊢ x * ↑u⁻¹ * ↑u = x [PROOFSTEP] simp [GOAL] case h.mp.intro.a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 h : ∀ (x : α), ¬IsUnit x → b ≠ a * x x : α hx : ¬IsUnit (Associates.mk x) u : αˣ hu : b * ↑u = a * x ⊢ b = a * (x * ↑u⁻¹) [PROOFSTEP] simp [← mul_assoc, ← hu] [GOAL] case h.mpr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : α a✝ : a ≠ 0 ⊢ (∃ x, ¬IsUnit x ∧ b = a * x) → ∃ x, ¬IsUnit x ∧ Associates.mk b = Associates.mk a * x [PROOFSTEP] rintro ⟨x, ⟨hx, rfl⟩⟩ [GOAL] case h.mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α a✝ : a ≠ 0 x : α hx : ¬IsUnit x ⊢ ∃ x_1, ¬IsUnit x_1 ∧ Associates.mk (a * x) = Associates.mk a * x_1 [PROOFSTEP] use Associates.mk x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : α a✝ : a ≠ 0 x : α hx : ¬IsUnit x ⊢ ¬IsUnit (Associates.mk x) ∧ Associates.mk (a * x) = Associates.mk a * Associates.mk x [PROOFSTEP] simp [isUnit_mk, mk_mul_mk, hx] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : Associates α hlt : a < b ⊢ DvdNotUnit a b [PROOFSTEP] constructor [GOAL] case left α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : Associates α hlt : a < b ⊢ a ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case left α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α b : Associates α hlt : 0 < b ⊢ False [PROOFSTEP] apply not_lt_of_le _ hlt [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α b : Associates α hlt : 0 < b ⊢ b ≤ 0 [PROOFSTEP] apply dvd_zero [GOAL] case right α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a b : Associates α hlt : a < b ⊢ ∃ x, ¬IsUnit x ∧ b = a * x [PROOFSTEP] rcases hlt with ⟨⟨x, rfl⟩, ndvd⟩ [GOAL] case right.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : Associates α x : Associates α ndvd : ¬a * x ∣ a ⊢ ∃ x_1, ¬IsUnit x_1 ∧ a * x = a * x_1 [PROOFSTEP] refine' ⟨x, _, rfl⟩ [GOAL] case right.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : Associates α x : Associates α ndvd : ¬a * x ∣ a ⊢ ¬IsUnit x [PROOFSTEP] contrapose! ndvd [GOAL] case right.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : Associates α x : Associates α ndvd : IsUnit x ⊢ a * x ∣ a [PROOFSTEP] rcases ndvd with ⟨u, rfl⟩ [GOAL] case right.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α a : Associates α u : (Associates α)ˣ ⊢ a * ↑u ∣ a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α ⊢ (∀ (a : α), Irreducible a ↔ Prime a) ↔ ∀ (a : Associates α), Irreducible a ↔ Prime a [PROOFSTEP] simp_rw [forall_associated, irreducible_mk, prime_mk] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α ⊢ CommMonoidWithZero (Associates α) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α src✝ : CommMonoidWithZero (Associates α) := inferInstance ⊢ ∀ {a b c : Associates α}, a ≠ 0 → a * b = a * c → b = c [PROOFSTEP] rintro ⟨a⟩ ⟨b⟩ ⟨c⟩ ha h [GOAL] case mk.mk.mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α src✝ : CommMonoidWithZero (Associates α) := inferInstance a✝ : Associates α a : α b✝ : Associates α b : α c✝ : Associates α c : α ha : Quot.mk Setoid.r a ≠ 0 h : Quot.mk Setoid.r a * Quot.mk Setoid.r b = Quot.mk Setoid.r a * Quot.mk Setoid.r c ⊢ Quot.mk Setoid.r b = Quot.mk Setoid.r c [PROOFSTEP] rcases Quotient.exact' h with ⟨u, hu⟩ [GOAL] case mk.mk.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α src✝ : CommMonoidWithZero (Associates α) := inferInstance a✝ : Associates α a : α b✝ : Associates α b : α c✝ : Associates α c : α ha : Quot.mk Setoid.r a ≠ 0 h : Quot.mk Setoid.r a * Quot.mk Setoid.r b = Quot.mk Setoid.r a * Quot.mk Setoid.r c u : αˣ hu : a * b * ↑u = a * c ⊢ Quot.mk Setoid.r b = Quot.mk Setoid.r c [PROOFSTEP] have hu : a * (b * ↑u) = a * c := by rwa [← mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α src✝ : CommMonoidWithZero (Associates α) := inferInstance a✝ : Associates α a : α b✝ : Associates α b : α c✝ : Associates α c : α ha : Quot.mk Setoid.r a ≠ 0 h : Quot.mk Setoid.r a * Quot.mk Setoid.r b = Quot.mk Setoid.r a * Quot.mk Setoid.r c u : αˣ hu : a * b * ↑u = a * c ⊢ a * (b * ↑u) = a * c [PROOFSTEP] rwa [← mul_assoc] [GOAL] case mk.mk.mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α src✝ : CommMonoidWithZero (Associates α) := inferInstance a✝ : Associates α a : α b✝ : Associates α b : α c✝ : Associates α c : α ha : Quot.mk Setoid.r a ≠ 0 h : Quot.mk Setoid.r a * Quot.mk Setoid.r b = Quot.mk Setoid.r a * Quot.mk Setoid.r c u : αˣ hu✝ : a * b * ↑u = a * c hu : a * (b * ↑u) = a * c ⊢ Quot.mk Setoid.r b = Quot.mk Setoid.r c [PROOFSTEP] exact Quotient.sound' ⟨u, mul_left_cancel₀ (mk_ne_zero.1 ha) hu⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α ⊢ NoZeroDivisors (Associates α) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α a b c : Associates α ha : a ≠ 0 d : Associates α hd : a * c = a * b * d ⊢ a * c = a * (b * d) [PROOFSTEP] rwa [← mul_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d ⊢ m = 1 ∨ m = p [PROOFSTEP] have dvd_rfl' : p ∣ m * d := by rw [r] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d ⊢ p ∣ m * d [PROOFSTEP] rw [r] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d ⊢ m = 1 ∨ m = p [PROOFSTEP] rw [r] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d ⊢ m = 1 ∨ m = m * d [PROOFSTEP] match h m d dvd_rfl' with | Or.inl h' => by_cases h : m = 0 case pos => simp [h, zero_mul] case neg => rw [r] at h' have : m * d ≤ m * 1 := by simpa using h' have : d ≤ 1 := Associates.le_of_mul_le_mul_left m d 1 ‹m ≠ 0› this have : d = 1 := bot_unique this simp [this] | Or.inr h' => by_cases h : d = 0 case pos => rw [r] at hp0 have : m * d = 0 := by rw [h]; simp contradiction case neg => rw [r] at h' have : d * m ≤ d * 1 := by simpa [mul_comm] using h' exact Or.inl <| bot_unique <| Associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ m ⊢ m = 1 ∨ m = m * d [PROOFSTEP] by_cases h : m = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ m h : m = 0 ⊢ m = 1 ∨ m = m * d case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ m h : ¬m = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] case pos => simp [h, zero_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ m h : m = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] case pos => simp [h, zero_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ m h : m = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] simp [h, zero_mul] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ m h : ¬m = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] case neg => rw [r] at h' have : m * d ≤ m * 1 := by simpa using h' have : d ≤ 1 := Associates.le_of_mul_le_mul_left m d 1 ‹m ≠ 0› this have : d = 1 := bot_unique this simp [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ m h : ¬m = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] case neg => rw [r] at h' have : m * d ≤ m * 1 := by simpa using h' have : d ≤ 1 := Associates.le_of_mul_le_mul_left m d 1 ‹m ≠ 0› this have : d = 1 := bot_unique this simp [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ m h : ¬m = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] rw [r] at h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : m * d ∣ m h : ¬m = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] have : m * d ≤ m * 1 := by simpa using h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : m * d ∣ m h : ¬m = 0 ⊢ m * d ≤ m * 1 [PROOFSTEP] simpa using h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : m * d ∣ m h : ¬m = 0 this : m * d ≤ m * 1 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] have : d ≤ 1 := Associates.le_of_mul_le_mul_left m d 1 ‹m ≠ 0› this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : m * d ∣ m h : ¬m = 0 this✝ : m * d ≤ m * 1 this : d ≤ 1 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] have : d = 1 := bot_unique this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : m * d ∣ m h : ¬m = 0 this✝¹ : m * d ≤ m * 1 this✝ : d ≤ 1 this : d = 1 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] simp [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d ⊢ m = 1 ∨ m = m * d [PROOFSTEP] by_cases h : d = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : d = 0 ⊢ m = 1 ∨ m = m * d case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : ¬d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] case pos => rw [r] at hp0 have : m * d = 0 := by rw [h]; simp contradiction [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] case pos => rw [r] at hp0 have : m * d = 0 := by rw [h]; simp contradiction [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] rw [r] at hp0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α hp0 : m * d ≠ 0 r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] have : m * d = 0 := by rw [h]; simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α hp0 : m * d ≠ 0 r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : d = 0 ⊢ m * d = 0 [PROOFSTEP] rw [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α hp0 : m * d ≠ 0 r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : d = 0 ⊢ m * 0 = 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α hp0 : m * d ≠ 0 r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : d = 0 this : m * d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] contradiction [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : ¬d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] case neg => rw [r] at h' have : d * m ≤ d * 1 := by simpa [mul_comm] using h' exact Or.inl <| bot_unique <| Associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : ¬d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] case neg => rw [r] at h' have : d * m ≤ d * 1 := by simpa [mul_comm] using h' exact Or.inl <| bot_unique <| Associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : p ∣ d h : ¬d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] rw [r] at h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : m * d ∣ d h : ¬d = 0 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] have : d * m ≤ d * 1 := by simpa [mul_comm] using h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : m * d ∣ d h : ¬d = 0 ⊢ d * m ≤ d * 1 [PROOFSTEP] simpa [mul_comm] using h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p m : Associates α hp0 : p ≠ 0 left✝ : ¬IsUnit p h✝ : ∀ (a b : Associates α), p ∣ a * b → p ∣ a ∨ p ∣ b d : Associates α r : p = m * d dvd_rfl' : p ∣ m * d h' : m * d ∣ d h : ¬d = 0 this : d * m ≤ d * 1 ⊢ m = 1 ∨ m = m * d [PROOFSTEP] exact Or.inl <| bot_unique <| Associates.le_of_mul_le_mul_left d m 1 ‹d ≠ 0› this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : Associates α ⊢ p ≤ 1 ↔ p = 1 [PROOFSTEP] rw [← Associates.bot_eq_one, le_bot_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p q : α h : DvdNotUnit p q hq : Irreducible q ⊢ IsUnit p [PROOFSTEP] obtain ⟨_, x, hx, hx'⟩ := h [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p q : α hq : Irreducible q left✝ : p ≠ 0 x : α hx : ¬IsUnit x hx' : q = p * x ⊢ IsUnit p [PROOFSTEP] exact Or.resolve_right ((irreducible_iff.1 hq).right p x hx') hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p q : α hp : DvdNotUnit p q ⊢ ¬IsUnit q [PROOFSTEP] obtain ⟨-, x, hx, rfl⟩ := hp [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CommMonoidWithZero α p x : α hx : ¬IsUnit x ⊢ ¬IsUnit (p * x) [PROOFSTEP] exact fun hc => hx (isUnit_iff_dvd_one.mpr (dvd_of_mul_left_dvd (isUnit_iff_dvd_one.mp hc))) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CommMonoidWithZero α inst✝ : Nontrivial α p q r : α h : DvdNotUnit p q h' : q ~ᵤ r ⊢ DvdNotUnit p r [PROOFSTEP] obtain ⟨u, rfl⟩ := Associated.symm h' [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CommMonoidWithZero α inst✝ : Nontrivial α p r : α u : αˣ h : DvdNotUnit p (r * ↑u) h' : r * ↑u ~ᵤ r ⊢ DvdNotUnit p r [PROOFSTEP] obtain ⟨hp, x, hx⟩ := h [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CommMonoidWithZero α inst✝ : Nontrivial α p r : α u : αˣ h' : r * ↑u ~ᵤ r hp : p ≠ 0 x : α hx : ¬IsUnit x ∧ r * ↑u = p * x ⊢ DvdNotUnit p r [PROOFSTEP] refine' ⟨hp, x * ↑u⁻¹, DvdNotUnit.not_unit ⟨u⁻¹.ne_zero, x, hx.left, mul_comm _ _⟩, _⟩ [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝¹ : CommMonoidWithZero α inst✝ : Nontrivial α p r : α u : αˣ h' : r * ↑u ~ᵤ r hp : p ≠ 0 x : α hx : ¬IsUnit x ∧ r * ↑u = p * x ⊢ r = p * (x * ↑u⁻¹) [PROOFSTEP] rw [← mul_assoc, ← hx.right, mul_assoc, Units.mul_inv, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p b : α h : p * b ~ᵤ p hp : p ≠ 0 ⊢ IsUnit b [PROOFSTEP] cases' h with a ha [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p b : α hp : p ≠ 0 a : αˣ ha : p * b * ↑a = p ⊢ IsUnit b [PROOFSTEP] refine' isUnit_of_mul_eq_one b a ((mul_right_inj' hp).mp _) [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p b : α hp : p ≠ 0 a : αˣ ha : p * b * ↑a = p ⊢ p * (b * ↑a) = p * 1 [PROOFSTEP] rwa [← mul_assoc, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α h : DvdNotUnit p q ⊢ ¬p ~ᵤ q [PROOFSTEP] rintro ⟨a, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α a : αˣ h : DvdNotUnit p (p * ↑a) ⊢ False [PROOFSTEP] obtain ⟨hp, x, hx, hx'⟩ := h [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α a : αˣ hp : p ≠ 0 x : α hx : ¬IsUnit x hx' : p * ↑a = p * x ⊢ False [PROOFSTEP] rcases(mul_right_inj' hp).mp hx' with rfl [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p : α a : αˣ hp : p ≠ 0 hx : ¬IsUnit ↑a hx' : p * ↑a = p * ↑a ⊢ False [PROOFSTEP] exact hx a.isUnit [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α h : DvdNotUnit p q ⊢ p ≠ q [PROOFSTEP] by_contra hcontra [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α h : DvdNotUnit p q hcontra : p = q ⊢ False [PROOFSTEP] obtain ⟨hp, x, hx', hx''⟩ := h [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α hcontra : p = q hp : p ≠ 0 x : α hx' : ¬IsUnit x hx'' : q = p * x ⊢ False [PROOFSTEP] conv_lhs at hx'' => rw [← hcontra, ← mul_one p] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α hcontra : p = q hp : p ≠ 0 x : α hx' : ¬IsUnit x hx'' : q = p * x | q [PROOFSTEP] rw [← hcontra, ← mul_one p] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α hcontra : p = q hp : p ≠ 0 x : α hx' : ¬IsUnit x hx'' : q = p * x | q [PROOFSTEP] rw [← hcontra, ← mul_one p] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α hcontra : p = q hp : p ≠ 0 x : α hx' : ¬IsUnit x hx'' : q = p * x | q [PROOFSTEP] rw [← hcontra, ← mul_one p] [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α hcontra : p = q hp : p ≠ 0 x : α hx' : ¬IsUnit x hx'' : p * 1 = p * x ⊢ False [PROOFSTEP] rw [(mul_left_cancel₀ hp hx'').symm] at hx' [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α hcontra : p = q hp : p ≠ 0 x : α hx' : ¬IsUnit 1 hx'' : p * 1 = p * x ⊢ False [PROOFSTEP] exact hx' isUnit_one [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α q : α hq : ¬IsUnit q hq' : q ≠ 0 ⊢ Function.Injective fun n => q ^ n [PROOFSTEP] refine' injective_of_lt_imp_ne fun n m h => DvdNotUnit.ne ⟨pow_ne_zero n hq', q ^ (m - n), _, _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α q : α hq : ¬IsUnit q hq' : q ≠ 0 n m : ℕ h : n < m ⊢ ¬IsUnit (q ^ (m - n)) [PROOFSTEP] exact not_isUnit_of_not_isUnit_dvd hq (dvd_pow (dvd_refl _) (Nat.sub_pos_of_lt h).ne') [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α q : α hq : ¬IsUnit q hq' : q ≠ 0 n m : ℕ h : n < m ⊢ q ^ m = q ^ n * q ^ (m - n) [PROOFSTEP] exact (pow_mul_pow_sub q h.le).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q : α hp : Prime p n : ℕ ⊢ q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i [PROOFSTEP] induction' n with n ih generalizing q [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p q : α ⊢ q ∣ p ^ Nat.zero ↔ ∃ i, i ≤ Nat.zero ∧ q ~ᵤ p ^ i [PROOFSTEP] simp [← isUnit_iff_dvd_one, associated_one_iff_isUnit] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α ⊢ q ∣ p ^ Nat.succ n ↔ ∃ i, i ≤ Nat.succ n ∧ q ~ᵤ p ^ i [PROOFSTEP] refine' ⟨fun h => _, fun ⟨i, hi, hq⟩ => hq.dvd.trans (pow_dvd_pow p hi)⟩ [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α h : q ∣ p ^ Nat.succ n ⊢ ∃ i, i ≤ Nat.succ n ∧ q ~ᵤ p ^ i [PROOFSTEP] rw [pow_succ] at h [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α h : q ∣ p * p ^ n ⊢ ∃ i, i ≤ Nat.succ n ∧ q ~ᵤ p ^ i [PROOFSTEP] rcases hp.left_dvd_or_dvd_right_of_dvd_mul h with (⟨q, rfl⟩ | hno) [GOAL] case succ.inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α h : p * q ∣ p * p ^ n ⊢ ∃ i, i ≤ Nat.succ n ∧ p * q ~ᵤ p ^ i [PROOFSTEP] rw [mul_dvd_mul_iff_left hp.ne_zero, ih] at h [GOAL] case succ.inl.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α h : ∃ i, i ≤ n ∧ q ~ᵤ p ^ i ⊢ ∃ i, i ≤ Nat.succ n ∧ p * q ~ᵤ p ^ i [PROOFSTEP] rcases h with ⟨i, hi, hq⟩ [GOAL] case succ.inl.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α i : ℕ hi : i ≤ n hq : q ~ᵤ p ^ i ⊢ ∃ i, i ≤ Nat.succ n ∧ p * q ~ᵤ p ^ i [PROOFSTEP] refine' ⟨i + 1, Nat.succ_le_succ hi, (hq.mul_left p).trans _⟩ [GOAL] case succ.inl.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α i : ℕ hi : i ≤ n hq : q ~ᵤ p ^ i ⊢ p * p ^ i ~ᵤ p ^ (i + 1) [PROOFSTEP] rw [pow_succ] [GOAL] case succ.inl.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α i : ℕ hi : i ≤ n hq : q ~ᵤ p ^ i ⊢ p * p ^ i ~ᵤ p * p ^ i [PROOFSTEP] rfl [GOAL] case succ.inr α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α h : q ∣ p * p ^ n hno : q ∣ p ^ n ⊢ ∃ i, i ≤ Nat.succ n ∧ q ~ᵤ p ^ i [PROOFSTEP] obtain ⟨i, hi, hq⟩ := ih.mp hno [GOAL] case succ.inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝ : CancelCommMonoidWithZero α p q✝ : α hp : Prime p n : ℕ ih : ∀ {q : α}, q ∣ p ^ n ↔ ∃ i, i ≤ n ∧ q ~ᵤ p ^ i q : α h : q ∣ p * p ^ n hno : q ∣ p ^ n i : ℕ hi : i ≤ n hq : q ~ᵤ p ^ i ⊢ ∃ i, i ≤ Nat.succ n ∧ q ~ᵤ p ^ i [PROOFSTEP] exact ⟨i, hi.trans n.le_succ, hq⟩
{"mathlib_filename": "Mathlib.Algebra.Associated", "llama_tokens": 52246}
[GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M s : Set α ⊢ mulSupport f = s ↔ (∀ (x : α), x ∈ s → f x ≠ 1) ∧ ∀ (x : α), ¬x ∈ s → f x = 1 [PROOFSTEP] simp (config := { contextual := true }) only [ext_iff, mem_mulSupport, ne_eq, iff_def, not_imp_comm, and_comm, forall_and] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M s : Set α ⊢ Disjoint (mulSupport f) s ↔ EqOn f 1 s [PROOFSTEP] simp_rw [← subset_compl_iff_disjoint_right, mulSupport_subset_iff', not_mem_compl_iff, EqOn, Pi.one_apply] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M s : Set α ⊢ Disjoint s (mulSupport f) ↔ EqOn f 1 s [PROOFSTEP] rw [disjoint_comm, mulSupport_disjoint_iff] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M ⊢ mulSupport f = ∅ ↔ f = 1 [PROOFSTEP] simp_rw [← subset_empty_iff, mulSupport_subset_iff', funext_iff] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M ⊢ (∀ (x : α), ¬x ∈ ∅ → f x = 1) ↔ ∀ (a : α), f a = OfNat.ofNat 1 a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M ⊢ Set.Nonempty (mulSupport f) ↔ f ≠ 1 [PROOFSTEP] rw [nonempty_iff_ne_empty, Ne.def, mulSupport_eq_empty_iff] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M ⊢ range f ⊆ insert 1 (f '' mulSupport f) [PROOFSTEP] simpa only [range_subset_iff, mem_insert_iff, or_iff_not_imp_left] using fun x (hx : x ∈ mulSupport f) => mem_image_of_mem f hx [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P c : M hc : c ≠ 1 ⊢ (mulSupport fun x => c) = univ [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P c : M hc : c ≠ 1 x : α ⊢ (x ∈ mulSupport fun x => c) ↔ x ∈ univ [PROOFSTEP] simp [hc] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P op : M → N → P op1 : op 1 1 = 1 f : α → M g : α → N x : α hx : x ∈ mulSupport fun x => op (f x) (g x) hf : f x = 1 hg : g x = 1 ⊢ (fun x => op (f x) (g x)) x = 1 [PROOFSTEP] simp only [hf, hg, op1] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝⁴ : One M inst✝³ : One N inst✝² : One P inst✝¹ : ConditionallyCompleteLattice M inst✝ : Nonempty ι f : ι → α → M ⊢ (mulSupport fun x => ⨆ (i : ι), f i x) ⊆ ⋃ (i : ι), mulSupport (f i) [PROOFSTEP] rw [mulSupport_subset_iff'] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝⁴ : One M inst✝³ : One N inst✝² : One P inst✝¹ : ConditionallyCompleteLattice M inst✝ : Nonempty ι f : ι → α → M ⊢ ∀ (x : α), ¬x ∈ ⋃ (i : ι), mulSupport (f i) → ⨆ (i : ι), f i x = 1 [PROOFSTEP] simp only [mem_iUnion, not_exists, nmem_mulSupport] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝⁴ : One M inst✝³ : One N inst✝² : One P inst✝¹ : ConditionallyCompleteLattice M inst✝ : Nonempty ι f : ι → α → M ⊢ ∀ (x : α), (∀ (x_1 : ι), f x_1 x = 1) → ⨆ (i : ι), f i x = 1 [PROOFSTEP] intro x hx [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝⁴ : One M inst✝³ : One N inst✝² : One P inst✝¹ : ConditionallyCompleteLattice M inst✝ : Nonempty ι f : ι → α → M x : α hx : ∀ (x_1 : ι), f x_1 x = 1 ⊢ ⨆ (i : ι), f i x = 1 [PROOFSTEP] simp only [hx, ciSup_const] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P g : M → N hg : g 1 = 1 f : α → M x : α h : f x = 1 ⊢ (g ∘ f) x = 1 [PROOFSTEP] simp only [(· ∘ ·), *] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P g : M → N f : α → M hg : ∀ {x : M}, x ∈ range f → (g x = 1 ↔ x = 1) x : α ⊢ (g ∘ f) x = 1 ↔ f x = 1 [PROOFSTEP] rw [Function.comp, hg (mem_range_self x)] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M g : α → N x : α ⊢ (x ∈ mulSupport fun x => (f x, g x)) ↔ x ∈ mulSupport f ∪ mulSupport g [PROOFSTEP] simp only [mulSupport, not_and_or, mem_union, mem_setOf_eq, Prod.mk_eq_one, Ne.def] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α → M × N ⊢ mulSupport f = (mulSupport fun x => (f x).fst) ∪ mulSupport fun x => (f x).snd [PROOFSTEP] simp only [← mulSupport_prod_mk, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : One M inst✝¹ : One N inst✝ : One P f : α × β → M a : α x : β hx : x ∈ mulSupport fun b => f (a, b) ⊢ (a, x) ∈ mulSupport f ∧ (a, x).snd = x [PROOFSTEP] simpa using hx [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : Monoid M f : α → M n : ℕ ⊢ (mulSupport fun x => f x ^ n) ⊆ mulSupport f [PROOFSTEP] induction' n with n hfn [GOAL] case zero α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : Monoid M f : α → M ⊢ (mulSupport fun x => f x ^ Nat.zero) ⊆ mulSupport f [PROOFSTEP] simp [pow_zero, mulSupport_one] [GOAL] case succ α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : Monoid M f : α → M n : ℕ hfn : (mulSupport fun x => f x ^ n) ⊆ mulSupport f ⊢ (mulSupport fun x => f x ^ Nat.succ n) ⊆ mulSupport f [PROOFSTEP] simpa only [pow_succ] using (mulSupport_mul f _).trans (union_subset Subset.rfl hfn) [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : DivisionMonoid G f g : α → G ⊢ (fun a b => a * b⁻¹) 1 1 = 1 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : MulZeroClass R f g : α → R x : α hfg : x ∈ support fun x => f x * g x hf : f x = 0 ⊢ (fun x => f x * g x) x = 0 [PROOFSTEP] simp only [hf, zero_mul] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : MulZeroClass R f g : α → R x : α hfg : x ∈ support fun x => f x * g x hg : g x = 0 ⊢ (fun x => f x * g x) x = 0 [PROOFSTEP] simp only [hg, mul_zero] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : AddMonoid A inst✝¹ : Monoid B inst✝ : DistribMulAction B A b : B f : α → A x : α hbf : x ∈ support (b • f) hf : f x = 0 ⊢ (b • f) x = 0 [PROOFSTEP] rw [Pi.smul_apply, hf, smul_zero] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : Zero M inst✝¹ : Zero β inst✝ : SMulWithZero M β f : α → M g : α → β x : α hfg : x ∈ support (f • g) hf : f x = 0 ⊢ (f • g) x = 0 [PROOFSTEP] rw [Pi.smul_apply', hf, zero_smul] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝³ : Semiring R inst✝² : AddCommMonoid M inst✝¹ : Module R M inst✝ : NoZeroSMulDivisors R M c : R g : α → M hc : c ≠ 0 x : α ⊢ x ∈ support (c • g) ↔ x ∈ support g [PROOFSTEP] simp only [hc, mem_support, Pi.smul_apply, Ne.def, smul_eq_zero, false_or_iff] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : GroupWithZero G₀ f g : α → G₀ ⊢ (support fun x => f x / g x) = support f ∩ support g [PROOFSTEP] simp [div_eq_mul_inv] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : CommMonoid M s : Finset α f : α → β → M ⊢ (mulSupport fun x => ∏ i in s, f i x) ⊆ ⋃ (i : α) (_ : i ∈ s), mulSupport (f i) [PROOFSTEP] rw [mulSupport_subset_iff'] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : CommMonoid M s : Finset α f : α → β → M ⊢ ∀ (x : β), ¬x ∈ ⋃ (i : α) (_ : i ∈ s), mulSupport (f i) → ∏ i in s, f i x = 1 [PROOFSTEP] simp only [mem_iUnion, not_exists, nmem_mulSupport] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝ : CommMonoid M s : Finset α f : α → β → M ⊢ ∀ (x : β), (∀ (x_1 : α), x_1 ∈ s → f x_1 x = 1) → ∏ i in s, f i x = 1 [PROOFSTEP] exact fun x => Finset.prod_eq_one [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝² : CommMonoidWithZero A inst✝¹ : NoZeroDivisors A inst✝ : Nontrivial A s : Finset α f : α → β → A x : β ⊢ (x ∈ support fun x => ∏ i in s, f i x) ↔ x ∈ ⋂ (i : α) (_ : i ∈ s), support (f i) [PROOFSTEP] simp [support, Ne.def, Finset.prod_eq_zero_iff, mem_setOf_eq, Set.mem_iInter, not_exists] [GOAL] α : Type u_1 β : Type u_2 A : Type u_3 B : Type u_4 M : Type u_5 N : Type u_6 P : Type u_7 R : Type u_8 S : Type u_9 G : Type u_10 M₀ : Type u_11 G₀ : Type u_12 ι : Sort u_13 inst✝¹ : One R inst✝ : AddGroup R f : α → R ⊢ mulSupport (1 - f) = support f [PROOFSTEP] rw [sub_eq_add_neg, mulSupport_one_add', support_neg'] [GOAL] α : Type u_1 β : Type u_2 M : Type u_3 inst✝ : One M f : α → M s : Set β g : β → α ⊢ g '' s ∩ mulSupport f = g '' (s ∩ mulSupport (f ∘ g)) [PROOFSTEP] rw [mulSupport_comp_eq_preimage f g, image_inter_preimage] [GOAL] A : Type u_1 B : Type u_2 inst✝¹ : DecidableEq A inst✝ : One B a : A b : B ⊢ mulSupport (mulSingle a 1) = ∅ [PROOFSTEP] simp [GOAL] A : Type u_1 B : Type u_2 inst✝¹ : DecidableEq A inst✝ : One B a : A b : B h : b ≠ 1 x : A hx : x = a ⊢ x ∈ mulSupport (mulSingle a b) [PROOFSTEP] rwa [mem_mulSupport, hx, mulSingle_eq_same] [GOAL] A : Type u_1 B : Type u_2 inst✝² : DecidableEq A inst✝¹ : One B a : A b : B inst✝ : DecidableEq B ⊢ mulSupport (mulSingle a b) = if b = 1 then ∅ else {a} [PROOFSTEP] split_ifs with h [GOAL] case pos A : Type u_1 B : Type u_2 inst✝² : DecidableEq A inst✝¹ : One B a : A b : B inst✝ : DecidableEq B h : b = 1 ⊢ mulSupport (mulSingle a b) = ∅ [PROOFSTEP] simp [h] [GOAL] case neg A : Type u_1 B : Type u_2 inst✝² : DecidableEq A inst✝¹ : One B a : A b : B inst✝ : DecidableEq B h : ¬b = 1 ⊢ mulSupport (mulSingle a b) = {a} [PROOFSTEP] simp [h] [GOAL] A : Type u_1 B : Type u_2 inst✝¹ : DecidableEq A inst✝ : One B a : A b b' : B hb : b ≠ 1 hb' : b' ≠ 1 i j : A ⊢ Disjoint (mulSupport (mulSingle i b)) (mulSupport (mulSingle j b')) ↔ i ≠ j [PROOFSTEP] rw [mulSupport_mulSingle_of_ne hb, mulSupport_mulSingle_of_ne hb', disjoint_singleton]
{"mathlib_filename": "Mathlib.Algebra.Support", "llama_tokens": 7462}
[GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ ⊢ Decidable (TerminatedAt g n) [PROOFSTEP] unfold TerminatedAt [GOAL] α : Type u_1 g : GeneralizedContinuedFraction α n : ℕ ⊢ Decidable (Stream'.Seq.TerminatedAt g.s n) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 inst✝ : One α a : α n : ℕ aₙ : α h : Stream'.Seq.get? (partialNumerators (GeneralizedContinuedFraction.ofInteger a)) n = some aₙ ⊢ aₙ = 1 [PROOFSTEP] cases h [GOAL] α : Type u_1 inst✝² : One α inst✝¹ : Zero α inst✝ : LT α a : α n : ℕ bₙ : α h : Stream'.Seq.get? (partialDenominators ↑(SimpleContinuedFraction.ofInteger a)) n = some bₙ ⊢ 0 < bₙ [PROOFSTEP] cases h
{"mathlib_filename": "Mathlib.Algebra.ContinuedFractions.Basic", "llama_tokens": 312}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g✝ : α → β c c₁ c₂ x : α inst✝ : Add α h : Periodic f c g : β → γ ⊢ Periodic (g ∘ f) c [PROOFSTEP] simp_all [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g✝ : α → β c c₁ c₂ x✝ : α inst✝¹ : Add α inst✝ : Add γ h : Periodic f c g : AddHom γ α g_inv : α → γ hg : RightInverse g_inv ↑g x : γ ⊢ (f ∘ ↑g) (x + g_inv c) = (f ∘ ↑g) x [PROOFSTEP] simp only [hg c, h (g x), map_add, comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Add α inst✝ : Mul β hf : Periodic f c hg : Periodic g c ⊢ Periodic (f * g) c [PROOFSTEP] simp_all [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Add α inst✝ : Div β hf : Periodic f c hg : Periodic g c ⊢ Periodic (f / g) c [PROOFSTEP] simp_all [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Add α inst✝ : Monoid β l : List (α → β) hl : ∀ (f : α → β), f ∈ l → Periodic f c ⊢ Periodic (List.prod l) c [PROOFSTEP] induction' l with g l ih hl [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Add α inst✝ : Monoid β l : List (α → β) hl✝ : ∀ (f : α → β), f ∈ l → Periodic f c hl : ∀ (f : α → β), f ∈ [] → Periodic f c ⊢ Periodic (List.prod []) c [PROOFSTEP] simp [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 f g✝ : α → β c c₁ c₂ x : α inst✝¹ : Add α inst✝ : Monoid β l✝ : List (α → β) hl✝ : ∀ (f : α → β), f ∈ l✝ → Periodic f c g : α → β l : List (α → β) ih : (∀ (f : α → β), f ∈ l → Periodic f c) → Periodic (List.prod l) c hl : ∀ (f : α → β), f ∈ g :: l → Periodic f c ⊢ Periodic (List.prod (g :: l)) c [PROOFSTEP] rw [List.forall_mem_cons] at hl [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 f g✝ : α → β c c₁ c₂ x : α inst✝¹ : Add α inst✝ : Monoid β l✝ : List (α → β) hl✝ : ∀ (f : α → β), f ∈ l✝ → Periodic f c g : α → β l : List (α → β) ih : (∀ (f : α → β), f ∈ l → Periodic f c) → Periodic (List.prod l) c hl : Periodic g c ∧ ∀ (x : α → β), x ∈ l → Periodic x c ⊢ Periodic (List.prod (g :: l)) c [PROOFSTEP] simpa only [List.prod_cons] using hl.1.mul (ih hl.2) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f✝ g : α → β c c₁ c₂ x : α inst✝¹ : Add α inst✝ : CommMonoid β ι : Type u_4 f : ι → α → β s : Finset ι hs : ∀ (i : ι), i ∈ s → Periodic (f i) c ⊢ ∀ (f_1 : α → β), f_1 ∈ List.map f (Finset.toList s) → Periodic f_1 c [PROOFSTEP] simpa [-Periodic] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Add α inst✝ : SMul γ β h : Periodic f c a : γ ⊢ Periodic (a • f) c [PROOFSTEP] simp_all [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝² : AddMonoid α inst✝¹ : Group γ inst✝ : DistribMulAction γ α h : Periodic f c a : γ x : α ⊢ (fun x => f (a • x)) (x + a⁻¹ • c) = (fun x => f (a • x)) x [PROOFSTEP] simpa only [smul_add, smul_inv_smul] using h (a • x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝² : AddCommMonoid α inst✝¹ : DivisionSemiring γ inst✝ : Module γ α h : Periodic f c a : γ x : α ⊢ (fun x => f (a • x)) (x + a⁻¹ • c) = (fun x => f (a • x)) x [PROOFSTEP] by_cases ha : a = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝² : AddCommMonoid α inst✝¹ : DivisionSemiring γ inst✝ : Module γ α h : Periodic f c a : γ x : α ha : a = 0 ⊢ (fun x => f (a • x)) (x + a⁻¹ • c) = (fun x => f (a • x)) x [PROOFSTEP] simp only [ha, zero_smul] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝² : AddCommMonoid α inst✝¹ : DivisionSemiring γ inst✝ : Module γ α h : Periodic f c a : γ x : α ha : ¬a = 0 ⊢ (fun x => f (a • x)) (x + a⁻¹ • c) = (fun x => f (a • x)) x [PROOFSTEP] simpa only [smul_add, smul_inv_smul₀ ha] using h (a • x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝² : AddMonoid α inst✝¹ : Group γ inst✝ : DistribMulAction γ α h : Periodic f c a : γ ⊢ Periodic (fun x => f (a⁻¹ • x)) (a • c) [PROOFSTEP] simpa only [inv_inv] using h.const_smul a⁻¹ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝² : AddCommMonoid α inst✝¹ : DivisionSemiring γ inst✝ : Module γ α h : Periodic f c a : γ ⊢ Periodic (fun x => f (a⁻¹ • x)) (a • c) [PROOFSTEP] simpa only [inv_inv] using h.const_smul₀ a⁻¹ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : DivisionSemiring α h : Periodic f c a : α ⊢ Periodic (fun x => f (x * a)) (c / a) [PROOFSTEP] simpa only [div_eq_mul_inv] using h.mul_const a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : DivisionSemiring α h : Periodic f c a : α ⊢ Periodic (fun x => f (x / a)) (c * a) [PROOFSTEP] simpa only [div_eq_mul_inv] using h.mul_const_inv a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddSemigroup α h1 : Periodic f c₁ h2 : Periodic f c₂ ⊢ Periodic f (c₁ + c₂) [PROOFSTEP] simp_all [← add_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddGroup α h : Periodic f c x : α ⊢ f (x - c) = f x [PROOFSTEP] simpa only [sub_add_cancel] using (h (x - c)).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddCommGroup α h : Periodic f c ⊢ f (c - x) = f (-x) [PROOFSTEP] simpa only [sub_eq_neg_add] using h (-x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddGroup α h : Periodic f c ⊢ Periodic f (-c) [PROOFSTEP] simpa only [sub_eq_add_neg, Periodic] using h.sub_eq [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddGroup α h1 : Periodic f c₁ h2 : Periodic f c₂ x : α ⊢ f (x + (c₁ - c₂)) = f x [PROOFSTEP] rw [sub_eq_add_neg, ← add_assoc, h2.neg, h1] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddSemigroup α h : Periodic f c a x : α ⊢ (fun x => f (a + x)) (x + c) = (fun x => f (a + x)) x [PROOFSTEP] simpa [add_assoc] using h (a + x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddCommSemigroup α h : Periodic f c a x : α ⊢ (fun x => f (x + a)) (x + c) = (fun x => f (x + a)) x [PROOFSTEP] simpa only [add_right_comm] using h (x + a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddCommGroup α h : Periodic f c a x : α ⊢ (fun x => f (a - x)) (x + c) = (fun x => f (a - x)) x [PROOFSTEP] simp only [← sub_sub, h.sub_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddCommGroup α h : Periodic f c a : α ⊢ Periodic (fun x => f (x - a)) c [PROOFSTEP] simpa only [sub_eq_add_neg] using h.add_const (-a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddMonoid α h : Periodic f c n : ℕ ⊢ Periodic f (n • c) [PROOFSTEP] induction n [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddMonoid α h : Periodic f c ⊢ Periodic f (Nat.zero • c) [PROOFSTEP] simp_all [Nat.succ_eq_add_one, add_nsmul, ← add_assoc, zero_nsmul] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddMonoid α h : Periodic f c n✝ : ℕ n_ih✝ : Periodic f (n✝ • c) ⊢ Periodic f (Nat.succ n✝ • c) [PROOFSTEP] simp_all [Nat.succ_eq_add_one, add_nsmul, ← add_assoc, zero_nsmul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : Semiring α h : Periodic f c n : ℕ ⊢ Periodic f (↑n * c) [PROOFSTEP] simpa only [nsmul_eq_mul] using h.nsmul n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddGroup α h : Periodic f c n : ℕ ⊢ f (x - n • c) = f x [PROOFSTEP] simpa only [sub_eq_add_neg] using h.neg_nsmul n x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : Ring α h : Periodic f c n : ℕ ⊢ f (x - ↑n * c) = f x [PROOFSTEP] simpa only [nsmul_eq_mul] using h.sub_nsmul_eq n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : Ring α h : Periodic f c n : ℕ ⊢ f (↑n * c - x) = f (-x) [PROOFSTEP] simpa only [sub_eq_neg_add] using h.nat_mul n (-x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddGroup α h : Periodic f c n : ℤ ⊢ Periodic f (n • c) [PROOFSTEP] cases' n with n n [GOAL] case ofNat α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddGroup α h : Periodic f c n : ℕ ⊢ Periodic f (Int.ofNat n • c) [PROOFSTEP] simpa only [Int.ofNat_eq_coe, coe_nat_zsmul] using h.nsmul n [GOAL] case negSucc α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddGroup α h : Periodic f c n : ℕ ⊢ Periodic f (Int.negSucc n • c) [PROOFSTEP] simpa only [negSucc_zsmul] using (h.nsmul (n + 1)).neg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : Ring α h : Periodic f c n : ℤ ⊢ Periodic f (↑n * c) [PROOFSTEP] simpa only [zsmul_eq_mul] using h.zsmul n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝ : AddZeroClass α h : Periodic f c ⊢ f c = f 0 [PROOFSTEP] simpa only [zero_add] using h 0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α h : Periodic f c hc : c ≠ 0 a : α ⊢ f '' uIcc a (a + c) = range f [PROOFSTEP] cases hc.lt_or_lt with | inl hc => rw [uIcc_of_ge (add_le_of_nonpos_right hc.le), ← h.neg.image_Icc (neg_pos.2 hc) (a + c), add_neg_cancel_right] | inr hc => rw [uIcc_of_le (le_add_of_nonneg_right hc.le), h.image_Icc hc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α h : Periodic f c hc : c ≠ 0 a : α x✝ : c < 0 ∨ 0 < c ⊢ f '' uIcc a (a + c) = range f [PROOFSTEP] cases hc.lt_or_lt with | inl hc => rw [uIcc_of_ge (add_le_of_nonpos_right hc.le), ← h.neg.image_Icc (neg_pos.2 hc) (a + c), add_neg_cancel_right] | inr hc => rw [uIcc_of_le (le_add_of_nonneg_right hc.le), h.image_Icc hc] [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α h : Periodic f c hc✝ : c ≠ 0 a : α hc : c < 0 ⊢ f '' uIcc a (a + c) = range f [PROOFSTEP] | inl hc => rw [uIcc_of_ge (add_le_of_nonpos_right hc.le), ← h.neg.image_Icc (neg_pos.2 hc) (a + c), add_neg_cancel_right] [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α h : Periodic f c hc✝ : c ≠ 0 a : α hc : c < 0 ⊢ f '' uIcc a (a + c) = range f [PROOFSTEP] rw [uIcc_of_ge (add_le_of_nonpos_right hc.le), ← h.neg.image_Icc (neg_pos.2 hc) (a + c), add_neg_cancel_right] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α h : Periodic f c hc✝ : c ≠ 0 a : α hc : 0 < c ⊢ f '' uIcc a (a + c) = range f [PROOFSTEP] | inr hc => rw [uIcc_of_le (le_add_of_nonneg_right hc.le), h.image_Icc hc] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : LinearOrderedAddCommGroup α inst✝ : Archimedean α h : Periodic f c hc✝ : c ≠ 0 a : α hc : 0 < c ⊢ f '' uIcc a (a + c) = range f [PROOFSTEP] rw [uIcc_of_le (le_add_of_nonneg_right hc.le), h.image_Icc hc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f✝ g : α → β c c₁ c₂ x✝ : α inst✝ : AddZeroClass α f : α → β x : α ⊢ f (x + 0) = f x [PROOFSTEP] rw [add_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddCommGroup α hf : Periodic f c a : { x // x ∈ AddSubgroup.zmultiples c } x : α ⊢ f (a +ᵥ x) = f x [PROOFSTEP] rcases a with ⟨_, m, rfl⟩ [GOAL] case mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddCommGroup α hf : Periodic f c x : α m : ℤ ⊢ f ({ val := (fun x => x • c) m, property := (_ : ∃ y, (fun x => x • c) y = (fun x => x • c) m) } +ᵥ x) = f x [PROOFSTEP] simp [AddSubgroup.vadd_def, add_comm _ x, hf.zsmul m x] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddCommMonoid α hf : Periodic f c a : { x // x ∈ AddSubmonoid.multiples c } x : α ⊢ f (a +ᵥ x) = f x [PROOFSTEP] rcases a with ⟨_, m, rfl⟩ [GOAL] case mk.intro α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddCommMonoid α hf : Periodic f c x : α m : ℕ ⊢ f ({ val := (fun i => i • c) m, property := (_ : ∃ y, (fun i => i • c) y = (fun i => i • c) m) } +ᵥ x) = f x [PROOFSTEP] simp [AddSubmonoid.vadd_def, add_comm _ x, hf.nsmul m x] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddGroup α h : Periodic f c x : α ⧸ AddSubgroup.zmultiples c a b : α h' : Setoid.r a b ⊢ f a = f b [PROOFSTEP] rw [QuotientAddGroup.leftRel_apply] at h' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddGroup α h : Periodic f c x : α ⧸ AddSubgroup.zmultiples c a b : α h' : -a + b ∈ AddSubgroup.zmultiples c ⊢ f a = f b [PROOFSTEP] obtain ⟨k, hk⟩ := h' [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝ : AddGroup α h : Periodic f c x : α ⧸ AddSubgroup.zmultiples c a b : α k : ℤ hk : (fun x => x • c) k = -a + b ⊢ f a = f b [PROOFSTEP] exact (h.zsmul k _).symm.trans (congr_arg f (add_eq_of_eq_neg_add hk)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Semiring α inst✝ : InvolutiveNeg β h : Antiperiodic f c ⊢ Periodic f (2 * c) [PROOFSTEP] simp [two_mul, ← add_assoc, h _] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddZeroClass α inst✝ : Neg β h : Antiperiodic f c ⊢ f c = -f 0 [PROOFSTEP] simpa only [zero_add] using h 0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝¹ : Semiring α inst✝ : InvolutiveNeg β h : Antiperiodic f c n : ℕ x : α ⊢ f (x + (↑n * (2 * c) + c)) = -f x [PROOFSTEP] rw [← add_assoc, h, h.periodic.nat_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝¹ : Ring α inst✝ : InvolutiveNeg β h : Antiperiodic f c n : ℤ x : α ⊢ f (x + (↑n * (2 * c) + c)) = -f x [PROOFSTEP] rw [← add_assoc, h, h.periodic.int_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝¹ : AddGroup α inst✝ : InvolutiveNeg β h : Antiperiodic f c x : α ⊢ f (x - c) = -f x [PROOFSTEP] simp only [← neg_eq_iff_eq_neg, ← h (x - c), sub_add_cancel] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddCommGroup α inst✝ : Neg β h : Antiperiodic f c ⊢ f (c - x) = -f (-x) [PROOFSTEP] simpa only [sub_eq_neg_add] using h (-x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddGroup α inst✝ : InvolutiveNeg β h : Antiperiodic f c ⊢ Antiperiodic f (-c) [PROOFSTEP] simpa only [sub_eq_add_neg, Antiperiodic] using h.sub_eq [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddGroup α inst✝ : InvolutiveNeg β h : Antiperiodic f c ⊢ f (-c) = -f 0 [PROOFSTEP] simpa only [zero_add] using h.neg 0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Semiring α inst✝ : NegZeroClass β h : Antiperiodic f c hi : f 0 = 0 ⊢ f (↑0 * c) = 0 [PROOFSTEP] rwa [Nat.cast_zero, zero_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Semiring α inst✝ : NegZeroClass β h : Antiperiodic f c hi : f 0 = 0 n : ℕ ⊢ f (↑(n + 1) * c) = 0 [PROOFSTEP] simp [add_mul, h _, Antiperiodic.nat_mul_eq_of_eq_zero h hi n] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Ring α inst✝ : SubtractionMonoid β h : Antiperiodic f c hi : f 0 = 0 n : ℕ ⊢ f (↑↑n * c) = 0 [PROOFSTEP] rw [Int.cast_ofNat, h.nat_mul_eq_of_eq_zero hi n] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : Ring α inst✝ : SubtractionMonoid β h : Antiperiodic f c hi : f 0 = 0 n : ℕ ⊢ f (↑(Int.negSucc n) * c) = 0 [PROOFSTEP] rw [Int.cast_negSucc, neg_mul, ← mul_neg, h.neg.nat_mul_eq_of_eq_zero hi] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝¹ : AddSemigroup α inst✝ : Neg β h : Antiperiodic f c a x : α ⊢ (fun x => f (a + x)) (x + c) = -(fun x => f (a + x)) x [PROOFSTEP] simpa [add_assoc] using h (a + x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝¹ : AddCommSemigroup α inst✝ : Neg β h : Antiperiodic f c a x : α ⊢ (fun x => f (x + a)) (x + c) = -(fun x => f (x + a)) x [PROOFSTEP] simpa only [add_right_comm] using h (x + a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝¹ : AddCommGroup α inst✝ : InvolutiveNeg β h : Antiperiodic f c a x : α ⊢ (fun x => f (a - x)) (x + c) = -(fun x => f (a - x)) x [PROOFSTEP] simp only [← sub_sub, h.sub_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddCommGroup α inst✝ : Neg β h : Antiperiodic f c a : α ⊢ Antiperiodic (fun x => f (x - a)) c [PROOFSTEP] simpa only [sub_eq_add_neg] using h.add_const (-a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝³ : Add α inst✝² : Monoid γ inst✝¹ : AddGroup β inst✝ : DistribMulAction γ β h : Antiperiodic f c a : γ ⊢ Antiperiodic (a • f) c [PROOFSTEP] simp_all [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝³ : AddMonoid α inst✝² : Neg β inst✝¹ : Group γ inst✝ : DistribMulAction γ α h : Antiperiodic f c a : γ x : α ⊢ (fun x => f (a • x)) (x + a⁻¹ • c) = -(fun x => f (a • x)) x [PROOFSTEP] simpa only [smul_add, smul_inv_smul] using h (a • x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x✝ : α inst✝³ : AddCommMonoid α inst✝² : Neg β inst✝¹ : DivisionSemiring γ inst✝ : Module γ α h : Antiperiodic f c a : γ ha : a ≠ 0 x : α ⊢ (fun x => f (a • x)) (x + a⁻¹ • c) = -(fun x => f (a • x)) x [PROOFSTEP] simpa only [smul_add, smul_inv_smul₀ ha] using h (a • x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝³ : AddMonoid α inst✝² : Neg β inst✝¹ : Group γ inst✝ : DistribMulAction γ α h : Antiperiodic f c a : γ ⊢ Antiperiodic (fun x => f (a⁻¹ • x)) (a • c) [PROOFSTEP] simpa only [inv_inv] using h.const_smul a⁻¹ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝³ : AddCommMonoid α inst✝² : Neg β inst✝¹ : DivisionSemiring γ inst✝ : Module γ α h : Antiperiodic f c a : γ ha : a ≠ 0 ⊢ Antiperiodic (fun x => f (a⁻¹ • x)) (a • c) [PROOFSTEP] simpa only [inv_inv] using h.const_smul₀ (inv_ne_zero ha) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : DivisionSemiring α inst✝ : Neg β h : Antiperiodic f c a : α ha : a ≠ 0 ⊢ Antiperiodic (fun x => f (x * a)) (c / a) [PROOFSTEP] simpa only [div_eq_mul_inv] using h.mul_const ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : DivisionSemiring α inst✝ : Neg β h : Antiperiodic f c a : α ha : a ≠ 0 ⊢ Antiperiodic (fun x => f (x / a)) (c * a) [PROOFSTEP] simpa only [div_eq_mul_inv] using h.mul_const_inv ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddGroup α inst✝ : InvolutiveNeg β h1 : Antiperiodic f c₁ h2 : Antiperiodic f c₂ ⊢ Periodic f (c₁ + c₂) [PROOFSTEP] simp_all [← add_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddGroup α inst✝ : InvolutiveNeg β h1 : Antiperiodic f c₁ h2 : Antiperiodic f c₂ ⊢ Periodic f (c₁ - c₂) [PROOFSTEP] simpa only [sub_eq_add_neg] using h1.add h2.neg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddGroup α inst✝ : Neg β h1 : Periodic f c₁ h2 : Antiperiodic f c₂ ⊢ Antiperiodic f (c₁ + c₂) [PROOFSTEP] simp_all [← add_assoc] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝¹ : AddGroup α inst✝ : InvolutiveNeg β h1 : Periodic f c₁ h2 : Antiperiodic f c₂ ⊢ Antiperiodic f (c₁ - c₂) [PROOFSTEP] simpa only [sub_eq_add_neg] using h1.add_antiperiod h2.neg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝² : Add α inst✝¹ : Mul β inst✝ : HasDistribNeg β hf : Antiperiodic f c hg : Antiperiodic g c ⊢ Periodic (f * g) c [PROOFSTEP] simp_all [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f g : α → β c c₁ c₂ x : α inst✝² : Add α inst✝¹ : DivisionMonoid β inst✝ : HasDistribNeg β hf : Antiperiodic f c hg : Antiperiodic g c ⊢ Periodic (f / g) c [PROOFSTEP] simp_all [neg_div_neg_eq] [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 f g : α✝ → β c c₁ c₂ x : α✝ α : Type u_4 inst✝¹ : LinearOrderedRing α inst✝ : FloorRing α a : α ⊢ fract (a + 1) = fract a [PROOFSTEP] exact_mod_cast Int.fract_add_int a 1
{"mathlib_filename": "Mathlib.Algebra.Periodic", "llama_tokens": 11036}