CamemBERT-MedNERF / README.md
davanstrien's picture
davanstrien HF staff
Update README.md
3831e8c
|
raw
history blame
1.31 kB
metadata
tags:
  - autotrain
  - token-classification
  - medical
language:
  - fr
widget:
  - text: Prendré 2 compris par jour, pendant 1 mois.
  - text: DOLIPRANETABS 1000 MG CPR PELL PLQ/8 (Paracétamol 1.000mg comprimé)
datasets:
  - Posos/MedNERF
co2_eq_emissions:
  emissions: 0.11647938304211661
license: mit
metrics:
  - f1
  - accuracy
  - precision
  - recall

Model Trained Using AutoTrain

  • Problem type: Entity Extraction
  • Model ID: 69856137957
  • CO2 Emissions (in grams): 0.1165

Validation Metrics

  • Loss: 1.510
  • Accuracy: 0.706
  • Precision: 0.648
  • Recall: 0.679
  • F1: 0.663

Usage

You can use cURL to access this model:

$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-french-ner-blank-model-69856137957

Or Python API:

from transformers import AutoModelForTokenClassification, AutoTokenizer

model = AutoModelForTokenClassification.from_pretrained("davanstrien/autotrain-french-ner-blank-model-69856137957", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-french-ner-blank-model-69856137957", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)