|
--- |
|
tags: |
|
- autotrain |
|
- token-classification |
|
- medical |
|
language: |
|
- fr |
|
widget: |
|
- text: Prendré 2 compris par jour, pendant 1 mois. |
|
- text: DOLIPRANETABS 1000 MG CPR PELL PLQ/8 (Paracétamol 1.000mg comprimé) |
|
datasets: |
|
- Posos/MedNERF |
|
co2_eq_emissions: |
|
emissions: 0.11647938304211661 |
|
license: mit |
|
metrics: |
|
- f1 |
|
- accuracy |
|
- precision |
|
- recall |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Entity Extraction |
|
- Model ID: 69856137957 |
|
- CO2 Emissions (in grams): 0.1165 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 1.510 |
|
- Accuracy: 0.706 |
|
- Precision: 0.648 |
|
- Recall: 0.679 |
|
- F1: 0.663 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-french-ner-blank-model-69856137957 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model = AutoModelForTokenClassification.from_pretrained("davanstrien/autotrain-french-ner-blank-model-69856137957", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-french-ner-blank-model-69856137957", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |