ernlavr's picture
Update README.md
1e0334e
metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: bert-base-multilingual-cased-IDMGSP-danish
    results: []
datasets:
  - ernlavr/IDMGSP-danish
language:
  - da
library_name: transformers

bert-base-multilingual-cased-IDMGSP-danish

This model is a fine-tuned version of bert-base-multilingual-cased on the on the ernlavr/IDMGSP-danish dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0123
  • Accuracy: {'accuracy': 0.8289043068464459}
  • F1: {'f1': 0.842473183078221}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.4692 1.0 480 0.3779 {'accuracy': 0.8519439717240477} {'f1': 0.84845236500067}
0.3267 2.0 960 0.5350 {'accuracy': 0.7896321508050792} {'f1': 0.8138538167496815}
0.5149 3.0 1440 0.7051 {'accuracy': 0.7510145306977353} {'f1': 0.7911267296288161}
0.2823 4.0 1920 0.6520 {'accuracy': 0.7317711742374656} {'f1': 0.7837010450754776}
0.2107 5.0 2400 0.3335 {'accuracy': 0.8785181306453724} {'f1': 0.8759689922480619}
0.1868 6.0 2880 0.8269 {'accuracy': 0.8175153815944496} {'f1': 0.8349123638086214}
0.0969 7.0 3360 0.4585 {'accuracy': 0.877470873150936} {'f1': 0.872200983069361}
0.1116 8.0 3840 1.0309 {'accuracy': 0.7993192826286163} {'f1': 0.8236106316879531}
0.0386 9.0 4320 0.9517 {'accuracy': 0.8294279355936641} {'f1': 0.8426898466739103}
0.0204 10.0 4800 1.0123 {'accuracy': 0.8289043068464459} {'f1': 0.842473183078221}

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.1
  • Datasets 2.14.6
  • Tokenizers 0.14.1