ernlavr's picture
Update README.md
1e0334e
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: bert-base-multilingual-cased-IDMGSP-danish
results: []
datasets:
- ernlavr/IDMGSP-danish
language:
- da
library_name: transformers
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-multilingual-cased-IDMGSP-danish
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the on the [ernlavr/IDMGSP-danish](https://huggingface.co/datasets/ernlavr/IDMGSP-danish) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0123
- Accuracy: {'accuracy': 0.8289043068464459}
- F1: {'f1': 0.842473183078221}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:|
| 0.4692 | 1.0 | 480 | 0.3779 | {'accuracy': 0.8519439717240477} | {'f1': 0.84845236500067} |
| 0.3267 | 2.0 | 960 | 0.5350 | {'accuracy': 0.7896321508050792} | {'f1': 0.8138538167496815} |
| 0.5149 | 3.0 | 1440 | 0.7051 | {'accuracy': 0.7510145306977353} | {'f1': 0.7911267296288161} |
| 0.2823 | 4.0 | 1920 | 0.6520 | {'accuracy': 0.7317711742374656} | {'f1': 0.7837010450754776} |
| 0.2107 | 5.0 | 2400 | 0.3335 | {'accuracy': 0.8785181306453724} | {'f1': 0.8759689922480619} |
| 0.1868 | 6.0 | 2880 | 0.8269 | {'accuracy': 0.8175153815944496} | {'f1': 0.8349123638086214} |
| 0.0969 | 7.0 | 3360 | 0.4585 | {'accuracy': 0.877470873150936} | {'f1': 0.872200983069361} |
| 0.1116 | 8.0 | 3840 | 1.0309 | {'accuracy': 0.7993192826286163} | {'f1': 0.8236106316879531} |
| 0.0386 | 9.0 | 4320 | 0.9517 | {'accuracy': 0.8294279355936641} | {'f1': 0.8426898466739103} |
| 0.0204 | 10.0 | 4800 | 1.0123 | {'accuracy': 0.8289043068464459} | {'f1': 0.842473183078221} |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1