|
--- |
|
language: |
|
- en |
|
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- spearmanr |
|
model-index: |
|
- name: hBERTv1_new_pretrain_48_ver2_stsb |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE STSB |
|
type: glue |
|
config: stsb |
|
split: validation |
|
args: stsb |
|
metrics: |
|
- name: Spearmanr |
|
type: spearmanr |
|
value: 0.385826216097769 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hBERTv1_new_pretrain_48_ver2_stsb |
|
|
|
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the GLUE STSB dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0507 |
|
- Pearson: 0.3913 |
|
- Spearmanr: 0.3858 |
|
- Combined Score: 0.3885 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| |
|
| 2.2439 | 1.0 | 90 | 2.2582 | 0.1118 | 0.1205 | 0.1162 | |
|
| 1.9712 | 2.0 | 180 | 2.5514 | 0.2121 | 0.2109 | 0.2115 | |
|
| 1.6254 | 3.0 | 270 | 2.6339 | 0.2885 | 0.2887 | 0.2886 | |
|
| 1.2292 | 4.0 | 360 | 2.1543 | 0.3642 | 0.3666 | 0.3654 | |
|
| 0.9444 | 5.0 | 450 | 2.6438 | 0.3529 | 0.3577 | 0.3553 | |
|
| 0.7567 | 6.0 | 540 | 2.3755 | 0.3820 | 0.3872 | 0.3846 | |
|
| 0.5838 | 7.0 | 630 | 2.0507 | 0.3913 | 0.3858 | 0.3885 | |
|
| 0.5032 | 8.0 | 720 | 2.5227 | 0.4037 | 0.4071 | 0.4054 | |
|
| 0.4112 | 9.0 | 810 | 2.1436 | 0.4072 | 0.3988 | 0.4030 | |
|
| 0.3551 | 10.0 | 900 | 2.1501 | 0.4069 | 0.4004 | 0.4037 | |
|
| 0.2961 | 11.0 | 990 | 2.2744 | 0.4137 | 0.4080 | 0.4109 | |
|
| 0.256 | 12.0 | 1080 | 2.3612 | 0.4115 | 0.4038 | 0.4076 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|