metadata
license: mit
base_model: warp-ai/wuerstchen-prior
datasets:
- haorandai/Mammal_Mice_lr0.01_e0.1_20_with20constraints
tags:
- wuerstchen
- text-to-image
- diffusers
- diffusers-training
inference: true
Finetuning - haorandai/temp
This pipeline was finetuned from warp-ai/wuerstchen-prior on the haorandai/Mammal_Mice_lr0.01_e0.1_20_with20constraints dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['An image of a mice and a cat']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipe_prior = DiffusionPipeline.from_pretrained("haorandai/temp", torch_dtype=torch.float16)
pipe_t2i = DiffusionPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.float16)
prompt = "An image of a mice and a cat"
(image_embeds,) = pipe_prior(prompt).to_tuple()
image = pipe_t2i(image_embeddings=image_embeds, prompt=prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 40
- Learning rate: 1e-05
- Batch size: 1
- Gradient accumulation steps: 4
- Image resolution: 512
- Mixed-precision: fp16