|
|
|
--- |
|
license: mit |
|
base_model: warp-ai/wuerstchen-prior |
|
datasets: |
|
- haorandai/Mammal_Mice_lr0.01_e0.1_20_with20constraints |
|
tags: |
|
- wuerstchen |
|
- text-to-image |
|
- diffusers |
|
- diffusers-training |
|
inference: true |
|
--- |
|
|
|
# Finetuning - haorandai/temp |
|
|
|
This pipeline was finetuned from **warp-ai/wuerstchen-prior** on the **haorandai/Mammal_Mice_lr0.01_e0.1_20_with20constraints** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['An image of a mice and a cat']: |
|
|
|
![val_imgs_grid](./val_imgs_grid.png) |
|
|
|
|
|
## Pipeline usage |
|
|
|
You can use the pipeline like so: |
|
|
|
```python |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
pipe_prior = DiffusionPipeline.from_pretrained("haorandai/temp", torch_dtype=torch.float16) |
|
pipe_t2i = DiffusionPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.float16) |
|
prompt = "An image of a mice and a cat" |
|
(image_embeds,) = pipe_prior(prompt).to_tuple() |
|
image = pipe_t2i(image_embeddings=image_embeds, prompt=prompt).images[0] |
|
image.save("my_image.png") |
|
``` |
|
|
|
## Training info |
|
|
|
These are the key hyperparameters used during training: |
|
|
|
* Epochs: 40 |
|
* Learning rate: 1e-05 |
|
* Batch size: 1 |
|
* Gradient accumulation steps: 4 |
|
* Image resolution: 512 |
|
* Mixed-precision: fp16 |
|
|
|
|