izaitova's picture
End of training
3fdabc0 verified
|
raw
history blame
3 kB
metadata
license: mit
base_model: DTAI-KULeuven/robbert-2023-dutch-large
tags:
  - generated_from_trainer
datasets:
  - universal_dependencies
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: robbert-2023-dutch-large-upos
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: universal_dependencies
          type: universal_dependencies
          config: nl_alpino
          split: validation
          args: nl_alpino
        metrics:
          - name: Precision
            type: precision
            value: 0.8288342749653388
          - name: Recall
            type: recall
            value: 0.7844121660589751
          - name: F1
            type: f1
            value: 0.7968496038696615
          - name: Accuracy
            type: accuracy
            value: 0.8897894458638006

robbert-2023-dutch-large-upos

This model is a fine-tuned version of DTAI-KULeuven/robbert-2023-dutch-large on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3606
  • Precision: 0.8288
  • Recall: 0.7844
  • F1: 0.7968
  • Accuracy: 0.8898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 438 0.6318 0.7041 0.6544 0.6603 0.7663
No log 2.0 876 0.5374 0.7741 0.6827 0.7090 0.8075
No log 3.0 1314 0.4318 0.8544 0.7431 0.7527 0.8595
No log 4.0 1752 0.4009 0.8254 0.7677 0.7796 0.8771
No log 5.0 2190 0.3606 0.8288 0.7844 0.7968 0.8898
No log 6.0 2628 0.3700 0.8318 0.8002 0.8108 0.9037
No log 7.0 3066 0.3733 0.8522 0.8024 0.8163 0.9071
No log 8.0 3504 0.3711 0.8659 0.8203 0.8333 0.9189
No log 9.0 3942 0.3846 0.8599 0.8222 0.8343 0.9235
No log 10.0 4380 0.3920 0.8657 0.8263 0.8397 0.9284

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1