louislu9911's picture
Model save
3a092cb verified
|
raw
history blame
2.75 kB
metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnextv2-tiny-1k-224-finetuned-cassava-leaf-disease
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8649532710280374

convnextv2-tiny-1k-224-finetuned-cassava-leaf-disease

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4109
  • Accuracy: 0.8650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 480
  • eval_batch_size: 480
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1920
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
7.8796 0.98 10 3.9572 0.1706
2.3762 1.95 20 1.4334 0.6178
1.1413 2.93 30 0.8877 0.6841
0.7549 4.0 41 0.6403 0.7724
0.5904 4.98 51 0.5366 0.8098
0.5152 5.95 61 0.4799 0.8369
0.4764 6.93 71 0.4567 0.8486
0.4386 8.0 82 0.4421 0.8509
0.4306 8.98 92 0.4381 0.8519
0.4266 9.95 102 0.4296 0.8603
0.4072 10.93 112 0.4196 0.8593
0.4033 12.0 123 0.4127 0.8621
0.3982 12.98 133 0.4125 0.8640
0.3993 13.95 143 0.4097 0.8631
0.3812 14.63 150 0.4109 0.8650

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.1