|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-tiny-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: convnextv2-tiny-1k-224-finetuned-cassava-leaf-disease |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8649532710280374 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnextv2-tiny-1k-224-finetuned-cassava-leaf-disease |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4109 |
|
- Accuracy: 0.8650 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 480 |
|
- eval_batch_size: 480 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 1920 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 7.8796 | 0.98 | 10 | 3.9572 | 0.1706 | |
|
| 2.3762 | 1.95 | 20 | 1.4334 | 0.6178 | |
|
| 1.1413 | 2.93 | 30 | 0.8877 | 0.6841 | |
|
| 0.7549 | 4.0 | 41 | 0.6403 | 0.7724 | |
|
| 0.5904 | 4.98 | 51 | 0.5366 | 0.8098 | |
|
| 0.5152 | 5.95 | 61 | 0.4799 | 0.8369 | |
|
| 0.4764 | 6.93 | 71 | 0.4567 | 0.8486 | |
|
| 0.4386 | 8.0 | 82 | 0.4421 | 0.8509 | |
|
| 0.4306 | 8.98 | 92 | 0.4381 | 0.8519 | |
|
| 0.4266 | 9.95 | 102 | 0.4296 | 0.8603 | |
|
| 0.4072 | 10.93 | 112 | 0.4196 | 0.8593 | |
|
| 0.4033 | 12.0 | 123 | 0.4127 | 0.8621 | |
|
| 0.3982 | 12.98 | 133 | 0.4125 | 0.8640 | |
|
| 0.3993 | 13.95 | 143 | 0.4097 | 0.8631 | |
|
| 0.3812 | 14.63 | 150 | 0.4109 | 0.8650 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.37.2 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|