|
--- |
|
base_model: layoutlmv3 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mp-02/cord |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: mp-02/cord |
|
type: mp-02/cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9572519083969465 |
|
- name: Recall |
|
type: recall |
|
value: 0.9736024844720497 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9653579676674365 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9673174872665535 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord |
|
|
|
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1831 |
|
- Precision: 0.9573 |
|
- Recall: 0.9736 |
|
- F1: 0.9654 |
|
- Accuracy: 0.9673 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 3.125 | 250 | 0.7551 | 0.7974 | 0.8587 | 0.8269 | 0.8544 | |
|
| 1.1001 | 6.25 | 500 | 0.3822 | 0.8846 | 0.9286 | 0.9061 | 0.9215 | |
|
| 1.1001 | 9.375 | 750 | 0.2750 | 0.9334 | 0.9581 | 0.9456 | 0.9444 | |
|
| 0.2309 | 12.5 | 1000 | 0.2072 | 0.9439 | 0.9674 | 0.9555 | 0.9605 | |
|
| 0.2309 | 15.625 | 1250 | 0.1934 | 0.9500 | 0.9728 | 0.9613 | 0.9652 | |
|
| 0.1003 | 18.75 | 1500 | 0.1898 | 0.9602 | 0.9736 | 0.9668 | 0.9665 | |
|
| 0.1003 | 21.875 | 1750 | 0.2032 | 0.9542 | 0.9705 | 0.9623 | 0.9631 | |
|
| 0.0637 | 25.0 | 2000 | 0.1831 | 0.9573 | 0.9736 | 0.9654 | 0.9673 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|