mp-02's picture
End of training
47c8538 verified
|
raw
history blame
2.62 kB
metadata
base_model: layoutlmv3
tags:
  - generated_from_trainer
datasets:
  - mp-02/cord
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/cord
          type: mp-02/cord
        metrics:
          - name: Precision
            type: precision
            value: 0.963984674329502
          - name: Recall
            type: recall
            value: 0.9767080745341615
          - name: F1
            type: f1
            value: 0.9703046664095644
          - name: Accuracy
            type: accuracy
            value: 0.9690152801358234

layoutlmv3-finetuned-cord

This model is a fine-tuned version of layoutlmv3 on the mp-02/cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2087
  • Precision: 0.9640
  • Recall: 0.9767
  • F1: 0.9703
  • Accuracy: 0.9690

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.5625 250 0.2302 0.9594 0.9720 0.9657 0.9656
0.041 3.125 500 0.2176 0.9542 0.9705 0.9623 0.9618
0.041 4.6875 750 0.1903 0.9573 0.9736 0.9654 0.9682
0.0302 6.25 1000 0.2027 0.9602 0.9744 0.9672 0.9660
0.0302 7.8125 1250 0.2174 0.9670 0.9775 0.9722 0.9703
0.019 9.375 1500 0.2018 0.9640 0.9775 0.9707 0.9711
0.019 10.9375 1750 0.2084 0.9677 0.9783 0.9730 0.9694
0.0115 12.5 2000 0.2087 0.9640 0.9767 0.9703 0.9690

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1