mp-02's picture
End of training
47c8538 verified
|
raw
history blame
2.62 kB
---
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord
type: mp-02/cord
metrics:
- name: Precision
type: precision
value: 0.963984674329502
- name: Recall
type: recall
value: 0.9767080745341615
- name: F1
type: f1
value: 0.9703046664095644
- name: Accuracy
type: accuracy
value: 0.9690152801358234
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-cord
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2087
- Precision: 0.9640
- Recall: 0.9767
- F1: 0.9703
- Accuracy: 0.9690
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.5625 | 250 | 0.2302 | 0.9594 | 0.9720 | 0.9657 | 0.9656 |
| 0.041 | 3.125 | 500 | 0.2176 | 0.9542 | 0.9705 | 0.9623 | 0.9618 |
| 0.041 | 4.6875 | 750 | 0.1903 | 0.9573 | 0.9736 | 0.9654 | 0.9682 |
| 0.0302 | 6.25 | 1000 | 0.2027 | 0.9602 | 0.9744 | 0.9672 | 0.9660 |
| 0.0302 | 7.8125 | 1250 | 0.2174 | 0.9670 | 0.9775 | 0.9722 | 0.9703 |
| 0.019 | 9.375 | 1500 | 0.2018 | 0.9640 | 0.9775 | 0.9707 | 0.9711 |
| 0.019 | 10.9375 | 1750 | 0.2084 | 0.9677 | 0.9783 | 0.9730 | 0.9694 |
| 0.0115 | 12.5 | 2000 | 0.2087 | 0.9640 | 0.9767 | 0.9703 | 0.9690 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1