mp-02's picture
End of training
9e64531 verified
|
raw
history blame
2.33 kB
metadata
base_model: layoutlmv3
tags:
  - generated_from_trainer
datasets:
  - mp-02/cord
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/cord
          type: mp-02/cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9640397857689365
          - name: Recall
            type: recall
            value: 0.9782608695652174
          - name: F1
            type: f1
            value: 0.9710982658959537
          - name: Accuracy
            type: accuracy
            value: 0.9741086587436333

layoutlmv3-finetuned-cord

This model is a fine-tuned version of layoutlmv3 on the mp-02/cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1874
  • Precision: 0.9640
  • Recall: 0.9783
  • F1: 0.9711
  • Accuracy: 0.9741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4341 6.25 500 0.1703 0.9601 0.9720 0.9660 0.9656
0.0487 12.5 1000 0.1762 0.9662 0.9759 0.9710 0.9703
0.0185 18.75 1500 0.1913 0.9609 0.9720 0.9664 0.9682
0.0091 25.0 2000 0.1846 0.9693 0.9821 0.9757 0.9758
0.0038 31.25 2500 0.1874 0.9640 0.9783 0.9711 0.9741

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1