metadata
base_model: layoutlmv3
tags:
- generated_from_trainer
datasets:
- mp-02/cord
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-cord
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mp-02/cord
type: mp-02/cord
metrics:
- name: Precision
type: precision
value: 0.9640397857689365
- name: Recall
type: recall
value: 0.9782608695652174
- name: F1
type: f1
value: 0.9710982658959537
- name: Accuracy
type: accuracy
value: 0.9741086587436333
layoutlmv3-finetuned-cord
This model is a fine-tuned version of layoutlmv3 on the mp-02/cord dataset. It achieves the following results on the evaluation set:
- Loss: 0.1874
- Precision: 0.9640
- Recall: 0.9783
- F1: 0.9711
- Accuracy: 0.9741
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.4341 | 6.25 | 500 | 0.1703 | 0.9601 | 0.9720 | 0.9660 | 0.9656 |
0.0487 | 12.5 | 1000 | 0.1762 | 0.9662 | 0.9759 | 0.9710 | 0.9703 |
0.0185 | 18.75 | 1500 | 0.1913 | 0.9609 | 0.9720 | 0.9664 | 0.9682 |
0.0091 | 25.0 | 2000 | 0.1846 | 0.9693 | 0.9821 | 0.9757 | 0.9758 |
0.0038 | 31.25 | 2500 | 0.1874 | 0.9640 | 0.9783 | 0.9711 | 0.9741 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1