|
--- |
|
base_model: layoutlmv3 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mp-02/cord |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: mp-02/cord |
|
type: mp-02/cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9640397857689365 |
|
- name: Recall |
|
type: recall |
|
value: 0.9782608695652174 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9710982658959537 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9741086587436333 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord |
|
|
|
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/cord dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1874 |
|
- Precision: 0.9640 |
|
- Recall: 0.9783 |
|
- F1: 0.9711 |
|
- Accuracy: 0.9741 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.4341 | 6.25 | 500 | 0.1703 | 0.9601 | 0.9720 | 0.9660 | 0.9656 | |
|
| 0.0487 | 12.5 | 1000 | 0.1762 | 0.9662 | 0.9759 | 0.9710 | 0.9703 | |
|
| 0.0185 | 18.75 | 1500 | 0.1913 | 0.9609 | 0.9720 | 0.9664 | 0.9682 | |
|
| 0.0091 | 25.0 | 2000 | 0.1846 | 0.9693 | 0.9821 | 0.9757 | 0.9758 | |
|
| 0.0038 | 31.25 | 2500 | 0.1874 | 0.9640 | 0.9783 | 0.9711 | 0.9741 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|