lge_tests_prelim / README.md
mtzig's picture
Model save
0994862 verified
|
raw
history blame
3.36 kB
metadata
library_name: transformers
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: lge_tests_prelim
    results: []

lge_tests_prelim

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4324
  • Accuracy: 0.64

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0 0 2.6277 0.0
2.487 0.0320 100 2.4830 0.0
2.3341 0.0641 200 2.3221 0.0
2.2138 0.0961 300 2.2363 0.0
2.0317 0.1281 400 2.0567 0.0
1.8181 0.1602 500 1.7764 0.005
1.5427 0.1922 600 1.5209 0.015
1.3683 0.2242 700 1.3421 0.015
1.1867 0.2562 800 1.1883 0.045
1.1158 0.2883 900 1.1456 0.035
1.1237 0.3203 1000 1.0221 0.04
0.9856 0.3523 1100 0.9365 0.14
0.8885 0.3844 1200 0.8694 0.16
0.8273 0.4164 1300 0.8421 0.115
0.8084 0.4484 1400 0.8112 0.14
0.7671 0.4805 1500 0.7577 0.145
0.6999 0.5125 1600 0.6785 0.33
0.6531 0.5445 1700 0.6651 0.325
0.6251 0.5766 1800 0.6239 0.365
0.5899 0.6086 1900 0.5955 0.375
0.5622 0.6406 2000 0.5660 0.42
0.5719 0.6726 2100 0.5642 0.365
0.5585 0.7047 2200 0.5228 0.495
0.514 0.7367 2300 0.4972 0.575
0.5052 0.7687 2400 0.4992 0.49
0.4651 0.8008 2500 0.4654 0.585
0.4473 0.8328 2600 0.4556 0.65
0.4548 0.8648 2700 0.4506 0.575
0.4576 0.8969 2800 0.4450 0.57
0.4343 0.9289 2900 0.4344 0.67
0.4262 0.9609 3000 0.4328 0.67
0.4298 0.9930 3100 0.4324 0.64

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1