metadata
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- medalpaca/medical_meadow_medqa
model-index:
- name: qlora-qwen-25-7b-instruct-3
results: []
See axolotl config
axolotl version: 0.6.0
base_model: Qwen/Qwen2.5-7B-Instruct
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: medalpaca/medical_meadow_medqa
type: alpaca
dataset_prepared_path:
val_set_size: 0.2
output_dir: ./qlora-qwen25
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter: qlora
lora_model_dir:
lora_r: 256
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32:
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps:
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
wandb_project: qwen-25-7b-instruct
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: neginashz/qlora-qwen-25-7b-instruct-3
hub_strategy:
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
qlora-qwen-25-7b-instruct-3
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set:
- Loss: 0.1238
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 4
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 6
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1473 | 0.25 | 18 | 0.1576 |
0.1456 | 0.5 | 36 | 0.1333 |
0.121 | 0.75 | 54 | 0.1312 |
0.1328 | 1.0 | 72 | 0.1303 |
0.1336 | 1.25 | 90 | 0.1276 |
0.1228 | 1.5 | 108 | 0.1263 |
0.1199 | 1.75 | 126 | 0.1260 |
0.1393 | 2.0 | 144 | 0.1257 |
0.1146 | 2.25 | 162 | 0.1244 |
0.1161 | 2.5 | 180 | 0.1238 |
0.139 | 2.75 | 198 | 0.1238 |
0.0927 | 3.0 | 216 | 0.1238 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0