|
--- |
|
license: mit |
|
tags: |
|
- qwen |
|
- qwq |
|
- fp8 |
|
- vllm |
|
base_model: Qwen/QwQ-32B |
|
library_name: transformers |
|
--- |
|
|
|
# QwQ-32B-FP8-dynamic |
|
|
|
## Model Overview |
|
- **Model Architecture:** Qwen2ForCausalLM |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 3/6/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B). |
|
|
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations of [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) to FP8 data type. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized. |
|
Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme. |
|
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization. |
|
|
|
|
|
## Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
number_gpus = 1 |
|
model_name = "neuralmagic/QwQ-32B-FP8-dynamic" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot |
|
import os |
|
|
|
# Load model |
|
model_stub = "Qwen/QwQ-32B" |
|
model_name = model_stub.split("/")[-1] |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_stub, |
|
torch_dtype="auto", |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_stub) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
ignore=["lm_head"], |
|
) |
|
|
|
# Apply quantization |
|
oneshot( |
|
model=model, |
|
recipe=recipe, |
|
) |
|
|
|
# Save to disk in compressed-tensors format |
|
save_path = model_name + "-FP8-dynamic |
|
model.save_pretrained(save_path) |
|
tokenizer.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
``` |
|
|
|
|
|
### Accuracy |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>Qwen/QwQ-32B</th> |
|
<th>neuralmagic/QwQ-32B-FP8-dynamic</th> |
|
<th>Recovery</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="4"><b>Reasoning</b></td> |
|
<td>AIME 2024 (pass@1)</td> |
|
<td>78.66</td> |
|
<td>79.40</td> |
|
<td>100.94%</td> |
|
</tr> |
|
<tr> |
|
<td>MATH-500 (pass@1)</td> |
|
<td>97.39</td> |
|
<td>97.44</td> |
|
<td>100.05%</td> |
|
</tr> |
|
<tr> |
|
<td>GPQA Diamond (pass@1)</td> |
|
<td>64.72</td> |
|
<td>63.21</td> |
|
<td>97.66%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>80.25</b></td> |
|
<td><b>80.05</b></td> |
|
<td><b>99.75%</b></td> |
|
</tr> |
|
|
|
</tbody> |
|
</table> |
|
|