ntxcong's picture
End of training
ce454ed verified
metadata
library_name: transformers
language:
  - vi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - capleaf/viVoice
metrics:
  - wer
model-index:
  - name: Whisper Small Vi - finetune viVoice - 70000
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: viVoice
          type: capleaf/viVoice
          config: default
          split: test
          args: 'split: train'
        metrics:
          - name: Wer
            type: wer
            value: 14.076664076664077

Whisper Small Vi - finetune viVoice - 70000

This model is a fine-tuned version of openai/whisper-small on the viVoice dataset. It achieves the following results on the evaluation set:

  • Loss: 5.7260
  • Wer: 14.0767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.25e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 80000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1892 0.05 4000 3.5308 18.7775
0.1551 0.1 8000 4.2465 18.1171
0.1444 0.15 12000 4.4830 16.9775
0.1097 1.0266 16000 4.4955 16.1357
0.0966 1.0766 20000 4.8873 15.6825
0.0915 1.1266 24000 4.8408 15.6177
0.0853 2.0032 28000 5.0293 15.1904
0.065 2.0532 32000 5.0290 15.8120
0.0644 2.1032 36000 5.1940 14.5299
0.0584 2.1532 40000 5.3418 15.1515
0.0466 3.0298 44000 5.2564 15.2422
0.0405 3.0798 48000 5.4065 14.7112
0.0412 3.1298 52000 5.5395 14.1414
0.0344 4.0064 56000 5.6079 14.5947
0.0288 4.0564 60000 5.5141 14.4911
0.0257 4.1064 64000 5.6983 14.7242
0.0249 4.1564 68000 5.7079 14.0378
0.0209 5.033 72000 5.5744 13.8177
0.0192 5.083 76000 5.7272 14.1803
0.0185 5.133 80000 5.7260 14.0767

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0