metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
datasets:
- param-bharat/scorers-nli
pipeline_tag: text-classification
model-index:
- name: ModernBERT-base-nli-clf
results: []
ModernBERT-base-nli-clf
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0101
- F1: 0.8717
- Accuracy: 0.8717
- Precision: 0.8717
- Recall: 0.8717
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 2024
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 1024
- total_eval_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 0.0185 | 0.5044 | 0.5297 | 0.5418 | 0.5297 |
0.0135 | 0.4999 | 6630 | 0.0150 | 0.7539 | 0.755 | 0.7582 | 0.755 |
0.0108 | 0.9998 | 13260 | 0.0108 | 0.8539 | 0.8539 | 0.8540 | 0.8539 |
0.0109 | 1.4998 | 19890 | 0.0113 | 0.8492 | 0.8493 | 0.8496 | 0.8493 |
0.0103 | 1.9997 | 26520 | 0.0103 | 0.8641 | 0.8641 | 0.8641 | 0.8641 |
0.0099 | 2.4996 | 33150 | 0.0109 | 0.8575 | 0.8579 | 0.8630 | 0.8579 |
0.0095 | 2.9995 | 39780 | 0.0103 | 0.8686 | 0.8686 | 0.8686 | 0.8686 |
0.0092 | 3.4995 | 46410 | 0.0101 | 0.8700 | 0.87 | 0.8700 | 0.87 |
0.0094 | 3.9994 | 53040 | 0.0097 | 0.8751 | 0.8751 | 0.8751 | 0.8751 |
0.0095 | 4.4993 | 59670 | 0.0105 | 0.8664 | 0.8664 | 0.8664 | 0.8664 |
0.0086 | 4.9992 | 66300 | 0.0101 | 0.8717 | 0.8717 | 0.8717 | 0.8717 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.0