param-bharat's picture
Upload NLIScorer
55ef942 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
  - precision
  - recall
datasets:
  - param-bharat/scorers-nli
pipeline_tag: text-classification
model-index:
  - name: ModernBERT-base-nli-clf
    results: []

ModernBERT-base-nli-clf

This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0101
  • F1: 0.8717
  • Accuracy: 0.8717
  • Precision: 0.8717
  • Recall: 0.8717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 2024
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 1024
  • total_eval_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy Precision Recall
No log 0 0 0.0185 0.5044 0.5297 0.5418 0.5297
0.0135 0.4999 6630 0.0150 0.7539 0.755 0.7582 0.755
0.0108 0.9998 13260 0.0108 0.8539 0.8539 0.8540 0.8539
0.0109 1.4998 19890 0.0113 0.8492 0.8493 0.8496 0.8493
0.0103 1.9997 26520 0.0103 0.8641 0.8641 0.8641 0.8641
0.0099 2.4996 33150 0.0109 0.8575 0.8579 0.8630 0.8579
0.0095 2.9995 39780 0.0103 0.8686 0.8686 0.8686 0.8686
0.0092 3.4995 46410 0.0101 0.8700 0.87 0.8700 0.87
0.0094 3.9994 53040 0.0097 0.8751 0.8751 0.8751 0.8751
0.0095 4.4993 59670 0.0105 0.8664 0.8664 0.8664 0.8664
0.0086 4.9992 66300 0.0101 0.8717 0.8717 0.8717 0.8717

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1
  • Datasets 3.2.0
  • Tokenizers 0.21.0