|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: answerdotai/ModernBERT-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
- precision |
|
- recall |
|
datasets: |
|
- param-bharat/scorers-nli |
|
pipeline_tag: text-classification |
|
model-index: |
|
- name: ModernBERT-base-nli-clf |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ModernBERT-base-nli-clf |
|
|
|
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0101 |
|
- F1: 0.8717 |
|
- Accuracy: 0.8717 |
|
- Precision: 0.8717 |
|
- Recall: 0.8717 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 2024 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 1024 |
|
- total_eval_batch_size: 1024 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |
|
|:-------------:|:------:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:| |
|
| No log | 0 | 0 | 0.0185 | 0.5044 | 0.5297 | 0.5418 | 0.5297 | |
|
| 0.0135 | 0.4999 | 6630 | 0.0150 | 0.7539 | 0.755 | 0.7582 | 0.755 | |
|
| 0.0108 | 0.9998 | 13260 | 0.0108 | 0.8539 | 0.8539 | 0.8540 | 0.8539 | |
|
| 0.0109 | 1.4998 | 19890 | 0.0113 | 0.8492 | 0.8493 | 0.8496 | 0.8493 | |
|
| 0.0103 | 1.9997 | 26520 | 0.0103 | 0.8641 | 0.8641 | 0.8641 | 0.8641 | |
|
| 0.0099 | 2.4996 | 33150 | 0.0109 | 0.8575 | 0.8579 | 0.8630 | 0.8579 | |
|
| 0.0095 | 2.9995 | 39780 | 0.0103 | 0.8686 | 0.8686 | 0.8686 | 0.8686 | |
|
| 0.0092 | 3.4995 | 46410 | 0.0101 | 0.8700 | 0.87 | 0.8700 | 0.87 | |
|
| 0.0094 | 3.9994 | 53040 | 0.0097 | 0.8751 | 0.8751 | 0.8751 | 0.8751 | |
|
| 0.0095 | 4.4993 | 59670 | 0.0105 | 0.8664 | 0.8664 | 0.8664 | 0.8664 | |
|
| 0.0086 | 4.9992 | 66300 | 0.0101 | 0.8717 | 0.8717 | 0.8717 | 0.8717 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.0.dev0 |
|
- Pytorch 2.5.1 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |