lettuce_pos_de_mono / README.md
pranaydeeps's picture
Upload folder using huggingface_hub
70df694 verified
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: pos_final_mono_de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pos_final_mono_de
This model is a fine-tuned version of [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1567
- Precision: 0.9771
- Recall: 0.9791
- F1: 0.9781
- Accuracy: 0.9810
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.99 | 128 | 0.2357 | 0.9443 | 0.9413 | 0.9428 | 0.9475 |
| No log | 1.99 | 256 | 0.0513 | 0.9843 | 0.9842 | 0.9842 | 0.9853 |
| No log | 2.99 | 384 | 0.0406 | 0.9868 | 0.9866 | 0.9867 | 0.9875 |
| 0.6822 | 3.99 | 512 | 0.0365 | 0.9877 | 0.9877 | 0.9877 | 0.9885 |
| 0.6822 | 4.99 | 640 | 0.0352 | 0.9881 | 0.9882 | 0.9882 | 0.9890 |
| 0.6822 | 5.99 | 768 | 0.0345 | 0.9887 | 0.9887 | 0.9887 | 0.9895 |
| 0.6822 | 6.99 | 896 | 0.0353 | 0.9888 | 0.9888 | 0.9888 | 0.9896 |
| 0.024 | 7.99 | 1024 | 0.0371 | 0.9886 | 0.9888 | 0.9887 | 0.9895 |
| 0.024 | 8.99 | 1152 | 0.0387 | 0.9888 | 0.9888 | 0.9888 | 0.9896 |
| 0.024 | 9.99 | 1280 | 0.0402 | 0.9890 | 0.9889 | 0.9890 | 0.9898 |
| 0.024 | 10.99 | 1408 | 0.0429 | 0.9889 | 0.9890 | 0.9889 | 0.9897 |
| 0.0128 | 11.99 | 1536 | 0.0454 | 0.9889 | 0.9889 | 0.9889 | 0.9896 |
| 0.0128 | 12.99 | 1664 | 0.0461 | 0.9889 | 0.9889 | 0.9889 | 0.9897 |
| 0.0128 | 13.99 | 1792 | 0.0477 | 0.9892 | 0.9891 | 0.9891 | 0.9899 |
| 0.0128 | 14.99 | 1920 | 0.0507 | 0.9890 | 0.9891 | 0.9890 | 0.9898 |
| 0.0069 | 15.99 | 2048 | 0.0514 | 0.9893 | 0.9893 | 0.9893 | 0.9901 |
| 0.0069 | 16.99 | 2176 | 0.0530 | 0.9892 | 0.9892 | 0.9892 | 0.9899 |
| 0.0069 | 17.99 | 2304 | 0.0552 | 0.9890 | 0.9891 | 0.9891 | 0.9898 |
| 0.0069 | 18.99 | 2432 | 0.0567 | 0.9891 | 0.9892 | 0.9892 | 0.9898 |
| 0.0037 | 19.99 | 2560 | 0.0577 | 0.9892 | 0.9893 | 0.9892 | 0.9900 |
| 0.0037 | 20.99 | 2688 | 0.0592 | 0.9892 | 0.9893 | 0.9893 | 0.9899 |
| 0.0037 | 21.99 | 2816 | 0.0606 | 0.9893 | 0.9893 | 0.9893 | 0.9900 |
| 0.0037 | 22.99 | 2944 | 0.0628 | 0.9893 | 0.9893 | 0.9893 | 0.9900 |
| 0.0023 | 23.99 | 3072 | 0.0629 | 0.9892 | 0.9891 | 0.9891 | 0.9899 |
| 0.0023 | 24.99 | 3200 | 0.0625 | 0.9892 | 0.9893 | 0.9893 | 0.9900 |
| 0.0023 | 25.99 | 3328 | 0.0636 | 0.9893 | 0.9893 | 0.9893 | 0.9900 |
| 0.0023 | 26.99 | 3456 | 0.0650 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
| 0.0017 | 27.99 | 3584 | 0.0644 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
| 0.0017 | 28.99 | 3712 | 0.0656 | 0.9895 | 0.9895 | 0.9895 | 0.9901 |
| 0.0017 | 29.99 | 3840 | 0.0668 | 0.9895 | 0.9895 | 0.9895 | 0.9902 |
| 0.0017 | 30.99 | 3968 | 0.0666 | 0.9895 | 0.9894 | 0.9894 | 0.9901 |
| 0.0011 | 31.99 | 4096 | 0.0678 | 0.9894 | 0.9894 | 0.9894 | 0.9900 |
| 0.0011 | 32.99 | 4224 | 0.0685 | 0.9896 | 0.9896 | 0.9896 | 0.9902 |
| 0.0011 | 33.99 | 4352 | 0.0692 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
| 0.0011 | 34.99 | 4480 | 0.0698 | 0.9895 | 0.9895 | 0.9895 | 0.9902 |
| 0.0009 | 35.99 | 4608 | 0.0698 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
| 0.0009 | 36.99 | 4736 | 0.0695 | 0.9895 | 0.9895 | 0.9895 | 0.9902 |
| 0.0009 | 37.99 | 4864 | 0.0696 | 0.9894 | 0.9895 | 0.9894 | 0.9902 |
| 0.0009 | 38.99 | 4992 | 0.0699 | 0.9895 | 0.9895 | 0.9895 | 0.9902 |
| 0.0007 | 39.99 | 5120 | 0.0697 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.0
- Datasets 2.18.0
- Tokenizers 0.13.2