|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: pos_final_mono_fr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pos_final_mono_fr |
|
|
|
This model is a fine-tuned version of [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5416 |
|
- Precision: 0.9742 |
|
- Recall: 0.9745 |
|
- F1: 0.9743 |
|
- Accuracy: 0.9768 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 1024 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 40.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.95 | 14 | 3.6697 | 0.0210 | 0.0194 | 0.0201 | 0.0215 | |
|
| No log | 1.95 | 28 | 3.6329 | 0.0513 | 0.0484 | 0.0498 | 0.0511 | |
|
| No log | 2.95 | 42 | 3.5739 | 0.1142 | 0.1086 | 0.1113 | 0.1267 | |
|
| No log | 3.95 | 56 | 3.4791 | 0.2535 | 0.1976 | 0.2221 | 0.3061 | |
|
| No log | 4.95 | 70 | 3.3377 | 0.3393 | 0.2029 | 0.2539 | 0.3788 | |
|
| No log | 5.95 | 84 | 3.1886 | 0.3737 | 0.1401 | 0.2038 | 0.3427 | |
|
| No log | 6.95 | 98 | 3.0505 | 0.4342 | 0.3211 | 0.3692 | 0.4600 | |
|
| No log | 7.95 | 112 | 2.8996 | 0.5160 | 0.4319 | 0.4702 | 0.5282 | |
|
| No log | 8.95 | 126 | 2.7485 | 0.5617 | 0.4878 | 0.5222 | 0.5732 | |
|
| No log | 9.95 | 140 | 2.5862 | 0.6077 | 0.5374 | 0.5704 | 0.6246 | |
|
| No log | 10.95 | 154 | 2.4205 | 0.6805 | 0.6311 | 0.6549 | 0.6887 | |
|
| No log | 11.95 | 168 | 2.2603 | 0.7816 | 0.7569 | 0.7691 | 0.7839 | |
|
| No log | 12.95 | 182 | 2.1124 | 0.8366 | 0.8305 | 0.8335 | 0.8370 | |
|
| No log | 13.95 | 196 | 1.9826 | 0.8691 | 0.8681 | 0.8686 | 0.8736 | |
|
| No log | 14.95 | 210 | 1.8721 | 0.9210 | 0.92 | 0.9205 | 0.9240 | |
|
| No log | 15.95 | 224 | 1.7779 | 0.9390 | 0.9392 | 0.9391 | 0.9417 | |
|
| No log | 16.95 | 238 | 1.6986 | 0.9442 | 0.9452 | 0.9447 | 0.9466 | |
|
| No log | 17.95 | 252 | 1.6294 | 0.9467 | 0.9476 | 0.9472 | 0.9486 | |
|
| No log | 18.95 | 266 | 1.5667 | 0.9481 | 0.9493 | 0.9487 | 0.9499 | |
|
| No log | 19.95 | 280 | 1.5073 | 0.9507 | 0.9522 | 0.9514 | 0.9523 | |
|
| No log | 20.95 | 294 | 1.4499 | 0.9538 | 0.9550 | 0.9544 | 0.9552 | |
|
| No log | 21.95 | 308 | 1.3926 | 0.9555 | 0.9563 | 0.9559 | 0.9563 | |
|
| No log | 22.95 | 322 | 1.3373 | 0.9609 | 0.9614 | 0.9612 | 0.9612 | |
|
| No log | 23.95 | 336 | 1.2815 | 0.9622 | 0.9624 | 0.9623 | 0.9623 | |
|
| No log | 24.95 | 350 | 1.2246 | 0.9649 | 0.9648 | 0.9648 | 0.9646 | |
|
| No log | 25.95 | 364 | 1.1682 | 0.9653 | 0.9652 | 0.9652 | 0.9648 | |
|
| No log | 26.95 | 378 | 1.1114 | 0.9650 | 0.9659 | 0.9654 | 0.9661 | |
|
| No log | 27.95 | 392 | 1.0521 | 0.9669 | 0.9675 | 0.9672 | 0.9699 | |
|
| No log | 28.95 | 406 | 0.9950 | 0.9677 | 0.9679 | 0.9678 | 0.9707 | |
|
| No log | 29.95 | 420 | 0.9364 | 0.9687 | 0.9690 | 0.9688 | 0.9716 | |
|
| No log | 30.95 | 434 | 0.8800 | 0.9691 | 0.9693 | 0.9692 | 0.9721 | |
|
| No log | 31.95 | 448 | 0.8233 | 0.9693 | 0.9698 | 0.9696 | 0.9726 | |
|
| No log | 32.95 | 462 | 0.7679 | 0.9703 | 0.9703 | 0.9703 | 0.9733 | |
|
| No log | 33.95 | 476 | 0.7146 | 0.9711 | 0.9711 | 0.9711 | 0.9737 | |
|
| No log | 34.95 | 490 | 0.6641 | 0.9722 | 0.9724 | 0.9723 | 0.9750 | |
|
| 2.0937 | 35.95 | 504 | 0.6187 | 0.9729 | 0.9729 | 0.9729 | 0.9755 | |
|
| 2.0937 | 36.95 | 518 | 0.5834 | 0.9727 | 0.9732 | 0.9729 | 0.9756 | |
|
| 2.0937 | 37.95 | 532 | 0.5605 | 0.9735 | 0.9739 | 0.9737 | 0.9762 | |
|
| 2.0937 | 38.95 | 546 | 0.5466 | 0.9737 | 0.9742 | 0.9739 | 0.9765 | |
|
| 2.0937 | 39.95 | 560 | 0.5416 | 0.9742 | 0.9745 | 0.9743 | 0.9768 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.12.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.13.2 |
|
|