metadata
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
- rajistics/indian_food_images
metrics:
- accuracy
widget:
- src: >-
https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/003.jpg
example_title: Fried Rice
- src: >-
https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/126.jpg
example_title: Paani Puri
- src: >-
https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/401.jpg
example_title: Chapathi
model-index:
- name: finetuned-indian-food
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: indian_food_images
type: imagefolder
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9521785334750266
- task:
type: image-classification
name: Image Classification
dataset:
name: rajistics/indian_food_images
type: rajistics/indian_food_images
config: rajistics--indian_food_images
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.8257173219978746
verified: true
- name: Precision Macro
type: precision
value: 0.8391547623590003
verified: true
- name: Precision Micro
type: precision
value: 0.8257173219978746
verified: true
- name: Precision Weighted
type: precision
value: 0.8437849242516663
verified: true
- name: Recall Macro
type: recall
value: 0.8199909093335551
verified: true
- name: Recall Micro
type: recall
value: 0.8257173219978746
verified: true
- name: Recall Weighted
type: recall
value: 0.8257173219978746
verified: true
- name: F1 Macro
type: f1
value: 0.8207881196755944
verified: true
- name: F1 Micro
type: f1
value: 0.8257173219978746
verified: true
- name: F1 Weighted
type: f1
value: 0.8256340007731109
verified: true
- name: loss
type: loss
value: 0.6241679787635803
verified: true
finetuned-indian-food
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the indian_food_images dataset. It achieves the following results on the evaluation set:
- Loss: 0.2139
- Accuracy: 0.9522
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.0846 | 0.3 | 100 | 0.9561 | 0.8555 |
0.7894 | 0.6 | 200 | 0.5871 | 0.8927 |
0.6233 | 0.9 | 300 | 0.4447 | 0.9107 |
0.3619 | 1.2 | 400 | 0.4355 | 0.8937 |
0.34 | 1.5 | 500 | 0.3712 | 0.9118 |
0.3413 | 1.8 | 600 | 0.4088 | 0.8916 |
0.3619 | 2.1 | 700 | 0.3741 | 0.9044 |
0.2135 | 2.4 | 800 | 0.3286 | 0.9160 |
0.2166 | 2.7 | 900 | 0.2758 | 0.9416 |
0.1557 | 3.0 | 1000 | 0.2679 | 0.9330 |
0.1115 | 3.3 | 1100 | 0.2529 | 0.9362 |
0.1571 | 3.6 | 1200 | 0.2360 | 0.9469 |
0.1079 | 3.9 | 1300 | 0.2139 | 0.9522 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1