klasifikasiburung / README.md
riyadifirman's picture
End of training
9697da4 verified
metadata
library_name: transformers
base_model: RobertZ2011/resnet-18-birb
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: klasifikasiburung
    results: []

klasifikasiburung

This model is a fine-tuned version of RobertZ2011/resnet-18-birb on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0186
  • Accuracy: 0.7565
  • Precision: 0.7631
  • Recall: 0.7565
  • F1: 0.7554

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5955 1.0 188 1.4442 0.7235 0.7426 0.7235 0.7169
1.1224 2.0 376 1.2881 0.7458 0.7546 0.7458 0.7406
0.7778 3.0 564 1.1965 0.7501 0.7635 0.7501 0.7483
0.5573 4.0 752 1.1417 0.7565 0.7635 0.7565 0.7538
0.4231 5.0 940 1.1077 0.7584 0.7671 0.7584 0.7567
0.2878 6.0 1128 1.0893 0.7601 0.7716 0.7601 0.7597
0.2043 7.0 1316 1.0688 0.7591 0.7661 0.7591 0.7579
0.1326 8.0 1504 1.0687 0.7582 0.7653 0.7582 0.7565
0.0851 9.0 1692 1.0502 0.7598 0.7652 0.7598 0.7581
0.0807 10.0 1880 1.0318 0.7582 0.7644 0.7582 0.7569
0.0581 11.0 2068 1.0403 0.7572 0.7629 0.7572 0.7558
0.043 12.0 2256 1.0295 0.7565 0.7633 0.7565 0.7557
0.0379 13.0 2444 1.0271 0.7568 0.7636 0.7568 0.7557
0.0399 14.0 2632 1.0319 0.7558 0.7627 0.7558 0.7549
0.0447 15.0 2820 1.0186 0.7565 0.7631 0.7565 0.7554

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1