metadata
library_name: transformers
base_model: RobertZ2011/resnet-18-birb
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: klasifikasiburung
results: []
klasifikasiburung
This model is a fine-tuned version of RobertZ2011/resnet-18-birb on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0186
- Accuracy: 0.7565
- Precision: 0.7631
- Recall: 0.7565
- F1: 0.7554
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.5955 | 1.0 | 188 | 1.4442 | 0.7235 | 0.7426 | 0.7235 | 0.7169 |
1.1224 | 2.0 | 376 | 1.2881 | 0.7458 | 0.7546 | 0.7458 | 0.7406 |
0.7778 | 3.0 | 564 | 1.1965 | 0.7501 | 0.7635 | 0.7501 | 0.7483 |
0.5573 | 4.0 | 752 | 1.1417 | 0.7565 | 0.7635 | 0.7565 | 0.7538 |
0.4231 | 5.0 | 940 | 1.1077 | 0.7584 | 0.7671 | 0.7584 | 0.7567 |
0.2878 | 6.0 | 1128 | 1.0893 | 0.7601 | 0.7716 | 0.7601 | 0.7597 |
0.2043 | 7.0 | 1316 | 1.0688 | 0.7591 | 0.7661 | 0.7591 | 0.7579 |
0.1326 | 8.0 | 1504 | 1.0687 | 0.7582 | 0.7653 | 0.7582 | 0.7565 |
0.0851 | 9.0 | 1692 | 1.0502 | 0.7598 | 0.7652 | 0.7598 | 0.7581 |
0.0807 | 10.0 | 1880 | 1.0318 | 0.7582 | 0.7644 | 0.7582 | 0.7569 |
0.0581 | 11.0 | 2068 | 1.0403 | 0.7572 | 0.7629 | 0.7572 | 0.7558 |
0.043 | 12.0 | 2256 | 1.0295 | 0.7565 | 0.7633 | 0.7565 | 0.7557 |
0.0379 | 13.0 | 2444 | 1.0271 | 0.7568 | 0.7636 | 0.7568 | 0.7557 |
0.0399 | 14.0 | 2632 | 1.0319 | 0.7558 | 0.7627 | 0.7558 | 0.7549 |
0.0447 | 15.0 | 2820 | 1.0186 | 0.7565 | 0.7631 | 0.7565 | 0.7554 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1