|
--- |
|
library_name: transformers |
|
base_model: RobertZ2011/resnet-18-birb |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: klasifikasiburung |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# klasifikasiburung |
|
|
|
This model is a fine-tuned version of [RobertZ2011/resnet-18-birb](https://huggingface.co/RobertZ2011/resnet-18-birb) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0186 |
|
- Accuracy: 0.7565 |
|
- Precision: 0.7631 |
|
- Recall: 0.7565 |
|
- F1: 0.7554 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.5955 | 1.0 | 188 | 1.4442 | 0.7235 | 0.7426 | 0.7235 | 0.7169 | |
|
| 1.1224 | 2.0 | 376 | 1.2881 | 0.7458 | 0.7546 | 0.7458 | 0.7406 | |
|
| 0.7778 | 3.0 | 564 | 1.1965 | 0.7501 | 0.7635 | 0.7501 | 0.7483 | |
|
| 0.5573 | 4.0 | 752 | 1.1417 | 0.7565 | 0.7635 | 0.7565 | 0.7538 | |
|
| 0.4231 | 5.0 | 940 | 1.1077 | 0.7584 | 0.7671 | 0.7584 | 0.7567 | |
|
| 0.2878 | 6.0 | 1128 | 1.0893 | 0.7601 | 0.7716 | 0.7601 | 0.7597 | |
|
| 0.2043 | 7.0 | 1316 | 1.0688 | 0.7591 | 0.7661 | 0.7591 | 0.7579 | |
|
| 0.1326 | 8.0 | 1504 | 1.0687 | 0.7582 | 0.7653 | 0.7582 | 0.7565 | |
|
| 0.0851 | 9.0 | 1692 | 1.0502 | 0.7598 | 0.7652 | 0.7598 | 0.7581 | |
|
| 0.0807 | 10.0 | 1880 | 1.0318 | 0.7582 | 0.7644 | 0.7582 | 0.7569 | |
|
| 0.0581 | 11.0 | 2068 | 1.0403 | 0.7572 | 0.7629 | 0.7572 | 0.7558 | |
|
| 0.043 | 12.0 | 2256 | 1.0295 | 0.7565 | 0.7633 | 0.7565 | 0.7557 | |
|
| 0.0379 | 13.0 | 2444 | 1.0271 | 0.7568 | 0.7636 | 0.7568 | 0.7557 | |
|
| 0.0399 | 14.0 | 2632 | 1.0319 | 0.7558 | 0.7627 | 0.7558 | 0.7549 | |
|
| 0.0447 | 15.0 | 2820 | 1.0186 | 0.7565 | 0.7631 | 0.7565 | 0.7554 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|