sagir567's picture
End of training
1e3dd1d verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: wav2vec2transformerEMR
    results: []

wav2vec2transformerEMR

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6501
  • Accuracy: 0.7937
  • Precision: 0.7945
  • Recall: 0.7937
  • F1: 0.7924

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.6305 0.8210 500 1.5561 0.4443 0.4495 0.4443 0.3962
1.1604 1.6420 1000 1.1252 0.6510 0.6854 0.6510 0.6491
0.9048 2.4631 1500 0.9422 0.7008 0.7202 0.7008 0.6987
0.7442 3.2841 2000 0.8200 0.7398 0.7561 0.7398 0.7358
0.6853 4.1051 2500 0.7475 0.7587 0.7646 0.7587 0.7555
0.6067 4.9261 3000 0.7000 0.7731 0.7860 0.7731 0.7748
0.5184 5.7471 3500 0.6890 0.7801 0.7853 0.7801 0.7778
0.4781 6.5681 4000 0.6983 0.7768 0.7888 0.7768 0.7752
0.4078 7.3892 4500 0.6654 0.7916 0.7979 0.7916 0.7913
0.4012 8.2102 5000 0.6759 0.7908 0.8003 0.7908 0.7897
0.3964 9.0312 5500 0.6501 0.7937 0.7945 0.7937 0.7924
0.315 9.8522 6000 0.6744 0.7887 0.7932 0.7887 0.7866

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Tokenizers 0.20.3