shibing624's picture
Create README.md
c61f3ec
|
raw
history blame
3.82 kB
metadata
language:
  - zh
tags:
  - chatglm
  - pytorch
  - zh
  - Text2Text-Generation
license: apache-2.0
widget:
  - text: |-
      对下面中文拼写纠错:
      少先队员因该为老人让坐。
      答:

Chinese Spelling Correction LoRA Model

ChatGLM3-6B中文纠错LoRA模型

shibing624/chatglm3-6b-csc-chinese-lora evaluate test data:

The overall performance of shibing624/chatglm3-6b-csc-chinese-lora on CSC test:

prefix input_text target_text pred
对下面文本纠错: 少先队员因该为老人让坐。 少先队员应该为老人让座。 少先队员应该为老人让座。

在CSC测试集上生成结果纠错准确率高,由于是基于ChatGLM3-6B模型,结果常常能带给人惊喜,不仅能纠错,还带有句子润色和改写功能。

Usage

本项目开源在 pycorrector 项目:textgen,可支持ChatGLM原生模型和LoRA微调后的模型,通过如下命令调用:

Install package:

pip install -U pycorrector
from pycorrector.gpt.gpt_model import GptModel
model = GptModel("chatglm", "THUDM/chatglm3-6b", peft_name="shibing624/chatglm3-6b-csc-chinese-lora")
r = model.predict(["对下面文本纠错:\n少先队员因该为老人让坐。"])
print(r) # ['少先队员应该为老人让座。']

Usage (HuggingFace Transformers)

Without pycorrector, you can use the model like this:

First, you pass your input through the transformer model, then you get the generated sentence.

Install package:

pip install transformers 
import sys
from peft import PeftModel
from transformers import AutoModel, AutoTokenizer

sys.path.append('..')

model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device_map='auto')
model = PeftModel.from_pretrained(model, "shibing624/chatglm3-6b-csc-chinese-lora")
model = model.half().cuda()  # fp16
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)

sents = ['对下面中文拼写纠错:\n少先队员因该为老人让坐。',
         '对下面中文拼写纠错:\n下个星期,我跟我朋唷打算去法国玩儿。']
for s in sents:
    response = model.chat(tokenizer, s, max_length=128, eos_token_id=tokenizer.eos_token_id)
    print(response)

output:

少先队员应该为老人让座。
下个星期,我跟我朋友打算去法国玩儿。

模型文件组成:

chatglm3-6b-csc-chinese-lora
    ├── adapter_config.json
    └── adapter_model.bin

训练参数:

loss

  • num_epochs: 5
  • per_device_train_batch_size: 6
  • learning_rate: 2e-05
  • best steps: 25100
  • train_loss: 0.0834
  • lr_scheduler_type: linear
  • base model: THUDM/chatglm3-6b
  • warmup_steps: 50
  • "save_strategy": "steps"
  • "save_steps": 500
  • "save_total_limit": 10
  • "bf16": false
  • "fp16": true
  • "optim": "adamw_torch"
  • "ddp_find_unused_parameters": false
  • "gradient_checkpointing": true
  • max_seq_length: 512
  • max_length: 512
  • prompt_template_name: vicuna
  • 6 * V100 32GB, training 48 hours

训练数据集

训练集包括以下数据:

如果需要训练GPT模型,请参考https://github.com/shibing624/pycorrector

Citation

@software{pycorrector,
  author = {Ming Xu},
  title = {pycorrector: Text Error Correction Tool},
  year = {2023},
  url = {https://github.com/shibing624/pycorrector},
}