|
--- |
|
language: |
|
- zh |
|
tags: |
|
- chatglm |
|
- pytorch |
|
- zh |
|
- Text2Text-Generation |
|
license: "apache-2.0" |
|
widget: |
|
- text: "对下面中文拼写纠错:\n少先队员因该为老人让坐。\n答:" |
|
|
|
--- |
|
|
|
# Chinese Spelling Correction LoRA Model |
|
ChatGLM3-6B中文纠错LoRA模型 |
|
|
|
`shibing624/chatglm3-6b-csc-chinese-lora` evaluate test data: |
|
|
|
The overall performance of shibing624/chatglm3-6b-csc-chinese-lora on CSC **test**: |
|
|
|
|prefix|input_text|target_text|pred| |
|
|:-- |:--- |:--- |:-- | |
|
|对下面文本纠错:|少先队员因该为老人让坐。|少先队员应该为老人让座。|少先队员应该为老人让座。| |
|
|
|
在CSC测试集上生成结果纠错准确率高,由于是基于ChatGLM3-6B模型,结果常常能带给人惊喜,不仅能纠错,还带有句子润色和改写功能。 |
|
|
|
|
|
## Usage |
|
|
|
本项目开源在 pycorrector 项目:[textgen](https://github.com/shibing624/pycorrector),可支持ChatGLM原生模型和LoRA微调后的模型,通过如下命令调用: |
|
|
|
Install package: |
|
```shell |
|
pip install -U pycorrector |
|
``` |
|
|
|
```python |
|
from pycorrector.gpt.gpt_model import GptModel |
|
model = GptModel("chatglm", "THUDM/chatglm3-6b", peft_name="shibing624/chatglm3-6b-csc-chinese-lora") |
|
r = model.predict(["对下面文本纠错:\n少先队员因该为老人让坐。"]) |
|
print(r) # ['少先队员应该为老人让座。'] |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [pycorrector](https://github.com/shibing624/pycorrector), you can use the model like this: |
|
|
|
First, you pass your input through the transformer model, then you get the generated sentence. |
|
|
|
Install package: |
|
``` |
|
pip install transformers |
|
``` |
|
|
|
```python |
|
import sys |
|
from peft import PeftModel |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
sys.path.append('..') |
|
|
|
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device_map='auto') |
|
model = PeftModel.from_pretrained(model, "shibing624/chatglm3-6b-csc-chinese-lora") |
|
model = model.half().cuda() # fp16 |
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True) |
|
|
|
sents = ['对下面中文拼写纠错:\n少先队员因该为老人让坐。', |
|
'对下面中文拼写纠错:\n下个星期,我跟我朋唷打算去法国玩儿。'] |
|
for s in sents: |
|
response = model.chat(tokenizer, s, max_length=128, eos_token_id=tokenizer.eos_token_id) |
|
print(response) |
|
``` |
|
|
|
output: |
|
```shell |
|
少先队员应该为老人让座。 |
|
下个星期,我跟我朋友打算去法国玩儿。 |
|
``` |
|
|
|
|
|
模型文件组成: |
|
``` |
|
chatglm3-6b-csc-chinese-lora |
|
├── adapter_config.json |
|
└── adapter_model.bin |
|
``` |
|
|
|
#### 训练参数: |
|
|
|
![loss](train_loss.png) |
|
|
|
- num_epochs: 5 |
|
- per_device_train_batch_size: 6 |
|
- learning_rate: 2e-05 |
|
- best steps: 25100 |
|
- train_loss: 0.0834 |
|
- lr_scheduler_type: linear |
|
- base model: THUDM/chatglm3-6b |
|
- warmup_steps: 50 |
|
- "save_strategy": "steps" |
|
- "save_steps": 500 |
|
- "save_total_limit": 10 |
|
- "bf16": false |
|
- "fp16": true |
|
- "optim": "adamw_torch" |
|
- "ddp_find_unused_parameters": false |
|
- "gradient_checkpointing": true |
|
- max_seq_length: 512 |
|
- max_length: 512 |
|
- prompt_template_name: vicuna |
|
- 6 * V100 32GB, training 48 hours |
|
|
|
### 训练数据集 |
|
训练集包括以下数据: |
|
|
|
- 中文拼写纠错数据集:https://huggingface.co/datasets/shibing624/CSC |
|
- 中文语法纠错数据集:https://github.com/shibing624/pycorrector/tree/llm/examples/data/grammar |
|
- 通用GPT4问答数据集:https://huggingface.co/datasets/shibing624/sharegpt_gpt4 |
|
|
|
|
|
如果需要训练GPT模型,请参考[https://github.com/shibing624/pycorrector](https://github.com/shibing624/pycorrector) |
|
|
|
|
|
|
|
## Citation |
|
|
|
```latex |
|
@software{pycorrector, |
|
author = {Ming Xu}, |
|
title = {pycorrector: Text Error Correction Tool}, |
|
year = {2023}, |
|
url = {https://github.com/shibing624/pycorrector}, |
|
} |
|
``` |
|
|