|
--- |
|
language: ja |
|
license: cc-by-sa-4.0 |
|
tags: |
|
- sentence-transformers |
|
- sentence-bert |
|
- feature-extraction |
|
- sentence-similarity |
|
--- |
|
|
|
This is a Japanese+English sentence-BERT model. |
|
|
|
日本語+英語用Sentence-BERTモデルです。 |
|
[日本語のみバージョン](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と比べて、手元の非公開データセットでは日本語の精度が0.8pt低く、英語STSbenchmarkでは精度が8.3pt高い(Cosine-Similarity Spearmanが79.11%)結果が得られました。 |
|
|
|
事前学習済みモデルとして[cl-tohoku/bert-base-japanese-whole-word-masking](https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking)を利用しました。 |
|
推論の実行にはfugashiとipadicが必要です(pip install fugashi ipadic)。 |
|
|
|
|
|
# 日本語のみバージョンの解説 |
|
|
|
https://qiita.com/sonoisa/items/1df94d0a98cd4f209051 |
|
|
|
モデル名を"sonoisa/sentence-bert-base-ja-en-mean-tokens"に書き換えれば、本モデルを利用した挙動になります。 |
|
|
|
|
|
# 使い方 |
|
|
|
```python |
|
from transformers import BertJapaneseTokenizer, BertModel |
|
import torch |
|
|
|
|
|
class SentenceBertJapanese: |
|
def __init__(self, model_name_or_path, device=None): |
|
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path) |
|
self.model = BertModel.from_pretrained(model_name_or_path) |
|
self.model.eval() |
|
|
|
if device is None: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.device = torch.device(device) |
|
self.model.to(device) |
|
|
|
def _mean_pooling(self, model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
@torch.no_grad() |
|
def encode(self, sentences, batch_size=8): |
|
all_embeddings = [] |
|
iterator = range(0, len(sentences), batch_size) |
|
for batch_idx in iterator: |
|
batch = sentences[batch_idx:batch_idx + batch_size] |
|
|
|
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", |
|
truncation=True, return_tensors="pt").to(self.device) |
|
model_output = self.model(**encoded_input) |
|
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu') |
|
|
|
all_embeddings.extend(sentence_embeddings) |
|
|
|
# return torch.stack(all_embeddings).numpy() |
|
return torch.stack(all_embeddings) |
|
|
|
|
|
MODEL_NAME = "sonoisa/sentence-bert-base-ja-en-mean-tokens" |
|
model = SentenceBertJapanese(MODEL_NAME) |
|
|
|
sentences = ["暴走したAI", "暴走した人工知能"] |
|
sentence_embeddings = model.encode(sentences, batch_size=8) |
|
|
|
print("Sentence embeddings:", sentence_embeddings) |
|
``` |
|
|