File size: 3,014 Bytes
d347764
 
 
 
 
167da29
d347764
 
 
 
 
 
 
 
 
 
c9d7c13
 
 
 
d347764
 
 
 
 
 
a7880e7
d347764
 
 
 
c9d7c13
 
 
 
 
 
3e3a9f6
d347764
 
 
 
3f57cb6
d347764
7e75b62
d347764
 
 
f805e49
 
c6f1d54
 
f805e49
 
 
 
c737803
 
 
d347764
51440fd
d347764
f805e49
 
d347764
c737803
 
 
51440fd
c737803
 
 
 
 
 
 
3946ba6
c737803
d347764
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset

from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer


device = "cuda:0" if torch.cuda.is_available() else "cpu"

# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)

# load text-to-speech checkpoint and speaker embeddings
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")

#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
#vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
model = VitsModel.from_pretrained("facebook/mms-tts-fra")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra")

embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)


def translate(audio):
    outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"})
    return outputs["text"]


def synthesise(text):
    #inputs = processor(text=text, return_tensors="pt")
    #speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
    #output = speech
    inputs = tokenizer(text, return_tensors="pt")
    speech = model(inputs["input_ids"])
    output = torch.squeeze(speech["waveform"].detach())
    return output


def speech_to_speech_translation(audio):
    translated_text = translate(audio)
    print(translated_text)
    synthesised_speech = synthesise(translated_text)
    synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
    return 16000, synthesised_speech


title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:

![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""

demo = gr.Blocks()

mic_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(sources="microphone", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    title=title,
    description=description,
)

file_translate = gr.Interface(
    fn=speech_to_speech_translation,
    inputs=gr.Audio(sources="upload", type="filepath"),
    outputs=gr.Audio(label="Generated Speech", type="numpy"),
    examples=[["./example.wav"]],
    title=title,
    description=description,
)

with demo:
    gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])

demo.launch()