Spaces:
Sleeping
Sleeping
File size: 14,257 Bytes
44e30d2 88f47b3 5440a34 44e30d2 f4453f1 88f47b3 f4453f1 44e30d2 315a1bb 44e30d2 88f47b3 8ef1088 88f47b3 89c1167 88f47b3 315a1bb 82005ae e0cc8ec 88f47b3 315a1bb 88f47b3 6fc56b6 88f47b3 f4453f1 88f47b3 6a04cfd f4453f1 6a04cfd f4453f1 88f47b3 6a04cfd 315a1bb 6a04cfd f4453f1 88f47b3 6a04cfd 9b18251 6a04cfd f4453f1 6a04cfd f4453f1 6a04cfd ebbf257 88f47b3 6a04cfd 88f47b3 6a04cfd f4453f1 6a04cfd 88f47b3 6a04cfd 88f47b3 f4453f1 88f47b3 f4453f1 88f47b3 e0cc8ec 6a04cfd 88f47b3 6a04cfd 88f47b3 03f0f35 88f47b3 5bf6063 e65131a 88f47b3 5440a34 88f47b3 5440a34 3acc3fd 88f47b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import random
import os
import numpy as np
import gradio as gr
from PIL import Image
from groundingdino.util.inference import load_model as load_groundingdino_model
from groundingdino.util.inference import predict as grounding_dino_predict
import groundingdino.datasets.transforms as T
import torch
from torchvision.ops import box_convert
from torchvision.transforms.functional import to_tensor
from torchvision.transforms import GaussianBlur
import time
# ----------------------------
# DINOv2 Classifier Imports
# ----------------------------
import torch.nn as nn
from torchvision import transforms
import pandas as pd
from typing import List, Tuple
import copy
import matplotlib.pyplot as plt
# ----------------------------
# DINOv2 Classifier Definitions
# ----------------------------
# 1. PadToSquare Class
class PadToSquare:
"""
Pads an image to make it square by adding padding to the shorter side.
"""
def __init__(self, fill=0):
self.fill = fill
def __call__(self, img):
w, h = img.size
max_wh = max(w, h)
hp = (max_wh - w) // 2
vp = (max_wh - h) // 2
padding = (hp, vp, max_wh - w - hp, max_wh - h - vp)
return transforms.functional.pad(img, padding, fill=self.fill, padding_mode='constant')
# 2. DinoVisionTransformerClassifier Class (Modified to include entropy-based approach)
class DinoVisionTransformerClassifier(nn.Module):
"""
DINOv2 Vision Transformer-based classifier with entropy-based "Unknown" class handling.
"""
def __init__(self, num_classes, hidden_size=256, dropout_p=0.5, negative_slope=0.01):
super(DinoVisionTransformerClassifier, self).__init__()
# Load DINOv2 model from torch.hub
self.transformer = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14', pretrained=True)
self.transformer.norm = nn.Identity() # Remove existing normalization if necessary
# Batch Normalization after transformer
self.batch_norm1 = nn.BatchNorm1d(384) # 384 is the embedding size
# Classification head
self.classifier = nn.Sequential(
nn.Linear(384, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.LeakyReLU(negative_slope=negative_slope, inplace=True),
nn.Dropout(p=dropout_p),
nn.Linear(hidden_size, num_classes)
)
# Initialize weights
self._initialize_weights()
def forward(self, x):
features = self.transformer(x) # Forward pass through the transformer
features = self.batch_norm1(features) # Apply Batch Normalization
logits = self.classifier(features) # Forward pass through the classification head
return logits, features # Return both logits and features
def _initialize_weights(self):
# Initialize weights of the classifier layers
for m in self.classifier.modules():
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, a=0.01, mode='fan_in', nonlinearity='leaky_relu')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm1d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
# 3. Model Loading Function (Updated for Entropy-Based Classifier)
def load_model(model_path, device):
"""
Loads the trained model and class information from the saved checkpoint.
Args:
model_path (str): Path to the saved .pth model file.
device (torch.device): Device to load the model onto.
Returns:
model (nn.Module): The loaded PyTorch model.
class_names (List[str]): List of class names.
"""
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file '{model_path}' does not exist.")
checkpoint = torch.load(model_path, map_location=device)
class_names = checkpoint['class_names']
num_classes = len(class_names)
# Initialize the model architecture
model = DinoVisionTransformerClassifier(num_classes=num_classes)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval() # Set to evaluation mode
return model, class_names
# 4. Image Preprocessing Function (Updated to accept PIL Image directly)
def preprocess_image_pil(pil_image: Image.Image, transform: transforms.Compose) -> torch.Tensor:
"""
Applies the transformation pipeline to a PIL image.
Args:
pil_image (PIL.Image.Image): The image to preprocess.
transform (transforms.Compose): The transformation pipeline.
Returns:
torch.Tensor: The preprocessed image tensor.
"""
return transform(pil_image)
# ----------------------------
# Gradio App Definitions
# ----------------------------
# Automatically set device based on availability
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
PROMPT = "bug"
# Define a custom transform for Gaussian blur (Unused in current context)
def gaussian_blur(x, p=0.5, kernel_size_min=3, kernel_size_max=20, sigma_min=0.1, sigma_max=3):
if x.ndim == 4:
for i in range(x.shape[0]):
if random.random() < p:
kernel_size = random.randrange(kernel_size_min, kernel_size_max + 1, 2)
sigma = random.uniform(sigma_min, sigma_max)
x[i] = GaussianBlur(kernel_size=kernel_size, sigma=sigma)(x[i])
return x
# Custom Label Function (Unused in current context)
def custom_label_func(fpath):
# this directs the labels to be 2 levels up from the image folder
label = fpath.parents[2].name
return label
# Image loading function for GroundingDINO
def load_image(image_source):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = image_source.convert("RGB")
image_transformed, _ = transform(image_source, None)
return image_transformed
# Load GroundingDINO object detection model
od_model = load_groundingdino_model(
model_checkpoint_path="groundingdino_swint_ogc.pth",
model_config_path="GroundingDINO_SwinT_OGC.cfg.py",
device=DEVICE)
print("Object detection model loaded")
# Load DINOv2 classifier model (Updated to use the entropy-based classifier)
# Update MODEL_PATH to the path where your DINOv2 model checkpoint is stored
MODEL_PATH = 'dinov2_classifier_with_vos_unsure.pth' # Updated model path
dinov2_model, class_names = load_model(MODEL_PATH, torch.device(DEVICE))
print(f"DINOv2 Classification model loaded with {len(class_names)} classes.")
# Optionally, append "Unknown" to class names if needed
# Removed the line that appends "Unknown" as the model handles it via thresholding
# Replace specific class names if necessary
# Example: Replace "Scolotodes_schwarzi" with "Scolytodes_glaber"
target = "Scolotodes_schwarzi"
if target in class_names:
idx = class_names.index(target)
class_names[idx] = "Scolytodes_glaber"
print(f"Replaced '{target}' with 'Scolytodes_glaber' in class names.")
else:
print(f"'{target}' not found in class names. No replacement made.")
# Define the transformation pipeline for DINOv2 model
dinov2_transform = transforms.Compose([
transforms.Resize(224), # Resize smaller edge to 224
PadToSquare(), # Pad to make the image square
transforms.Resize((224, 224)), # Resize to 224x224
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], # Normalize with ImageNet mean
[0.229, 0.224, 0.225]) # Normalize with ImageNet std
])
# Object Detection Function
def detect_objects(og_image, model=od_model, prompt="bug . insect", device="cpu"):
TEXT_PROMPT = prompt
BOX_THRESHOLD = 0.15 # 35 Adjusted back to original value
TEXT_THRESHOLD = 0.15 # 25 Adjusted back to original value
DEVICE = device # cuda or cpu
# Convert numpy array to PIL Image if needed
if isinstance(og_image, np.ndarray):
og_image_obj = Image.fromarray(og_image)
else:
og_image_obj = og_image # Assuming og_image is already a PIL Image
# Transform the image
image_transformed = load_image(image_source = og_image_obj)
# Model prediction
boxes, logits, phrases = grounding_dino_predict(
model=model,
image=image_transformed,
caption=TEXT_PROMPT,
box_threshold=BOX_THRESHOLD,
text_threshold=TEXT_THRESHOLD,
device=DEVICE)
# Use og_image_obj directly for further processing
width, height = og_image_obj.size # Corrected to (width, height)
boxes_norm = boxes * torch.Tensor([width, height, width, height])
xyxy = box_convert(
boxes=boxes_norm,
in_fmt="cxcywh",
out_fmt="xyxy").numpy()
img_lst = []
for i in range(len(boxes_norm)):
crop_img = og_image_obj.crop((xyxy[i]))
img_lst.append(crop_img)
print(f"Detected {len(img_lst)} objects.")
return img_lst
# Inference/Class Prediction Function using the Entropy-Based DINOv2 Classifier
def classify_beetle(img: Image.Image, threshold=75.0):
"""
Classifies the input image using the DINOv2 classifier with entropy-based "Unknown" class.
Args:
img (PIL.Image.Image): The image to classify.
threshold (float): Confidence threshold to assign "Unknown".
Returns:
dict: The top 3 class labels with their corresponding confidence scores and "Unknown" if applicable.
"""
# Preprocess the image
input_tensor = preprocess_image_pil(img, dinov2_transform).unsqueeze(0).to(torch.device(DEVICE))
print(f"Input tensor shape: {input_tensor.shape}")
with torch.no_grad():
outputs, _ = dinov2_model(input_tensor)
print(f"Model outputs: {outputs}")
probabilities = torch.softmax(outputs, dim=1).cpu().numpy()[0] # p(x) in [0,1]
print(f"Probabilities (0-1 scale): {probabilities}")
# Calculate entropy
# Adding a small epsilon to avoid log(0)
epsilon = 1e-12
entropy = -np.sum(probabilities * np.log(probabilities + epsilon))
# Maximum entropy for uniform distribution
max_entropy = -np.sum((1.0 / len(probabilities)) * np.log(1.0 / len(probabilities)))
normalized_entropy = entropy / max_entropy # Normalize between 0 and 1
unknown_prob = normalized_entropy
print(f"Entropy: {entropy}, Normalized Entropy: {normalized_entropy}, Unknown Probability: {unknown_prob}")
# Convert probabilities to percentage for display
probabilities_percent = np.around(probabilities * 100, decimals=1)
print(f"Probabilities (Percentage): {probabilities_percent}")
# Get top 3 classes
top_indices = np.argsort(probabilities_percent)[-3:][::-1] # Indices of top 3 classes
top_probs = probabilities_percent[top_indices]
top_classes = [class_names[i] for i in top_indices]
# Initialize conf_dict with top 3 classes
conf_dict = {top_classes[i]: float(top_probs[i]) for i in range(len(top_classes))}
# Assign "Unknown" based on entropy and threshold
if top_probs[0] < threshold:
conf_dict["Unknown"] = float(np.around(unknown_prob, decimals=1))
print(f"Conf_dict: {conf_dict}")
return conf_dict
# Main Prediction Function for Gradio
def predict_beetle(img):
print("Detecting objects in the image...")
start_time = time.perf_counter() # Start timing
# Detect objects in the image
image_lst = detect_objects(og_image=img, model=od_model, prompt=PROMPT, device=DEVICE)
print(f"Detected {len(image_lst)} objects.")
# Initialize lists to hold results
output_lst = []
img_cnt = len(image_lst)
for i in range(img_cnt):
print(f"Classifying object {i+1}/{img_cnt}...")
conf_dict = classify_beetle(image_lst[i])
output_lst.append([image_lst[i], conf_dict])
print(f"Object {i+1} classified.")
end_time = time.perf_counter()
processing_time = end_time - start_time
print(f"Total processing duration: {processing_time:.2f} seconds")
return output_lst
# ----------------------------
# Gradio Interface Setup
# ----------------------------
sample_images_dir = "example_images"
# Sample images with labels
example_images = [
os.path.join(sample_images_dir, "example1.jpg"),
os.path.join(sample_images_dir, "example2.jpg"),
os.path.join(sample_images_dir, "example3.jpg"),
os.path.join(sample_images_dir, "mixed.jpg")
]
# Corresponding labels for the example images
example_labels = ["Example Beetles 1", "Example Beetles 2", "Example Beetles 3", "Example Beetles 4"]
with gr.Blocks() as demo:
gr.Markdown("<h1><center>Intelligent Bark Beetle Identifier (IBBI)</center></h1>")
with gr.Column(variant="panel"):
with gr.Row(variant="compact"):
inputs = gr.Image(label="Input Image")
# Add examples with labels
gr.Examples(
label="Select an example below if you have no images to upload.",
examples=example_images,
inputs=inputs,
examples_per_page=4,
example_labels=example_labels
)
btn = gr.Button("Classify", variant="primary")
# Set the gallery layout and height directly in the constructor
gallery = gr.Gallery(label="Classified Objects", show_label=True, elem_id="gallery", columns=4, height="auto")
# Define the output format for the gallery
def format_gallery(results):
formatted = []
for img, conf in results:
# Create a label string from the confidence dictionary
label_str = ", ".join([f"{k}: {v:.1f}%" for k, v in conf.items()])
# Append the image and label as a tuple
formatted.append((img, label_str))
return formatted
# Modify the click event to format the gallery
btn.click(
lambda img: format_gallery(predict_beetle(img)),
inputs,
gallery
)
# Launch the Gradio app
demo.launch(share=True, inline=True, debug=True, show_error=True)
|