File size: 12,436 Bytes
bf3038a a6fbdfa bf3038a 527a243 f96439f 42f608d aba5fd5 b03ad52 f96439f b03ad52 aba5fd5 b03ad52 aba5fd5 b03ad52 aba5fd5 b03ad52 aba5fd5 b03ad52 aba5fd5 b03ad52 aba5fd5 b03ad52 42f608d b03ad52 42f608d b03ad52 42f608d b03ad52 42f608d b03ad52 bf3038a b03ad52 01e59a7 b03ad52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import gradio as gr
import pandas as pd
from sentence_transformers import SentenceTransformer, util
from PyPDF2 import PdfReader
import docx
import re
import google.generativeai as genai
import concurrent.futures
from fuzzywuzzy import fuzz
from typing import List, Dict, Tuple, Any
from dataclasses import dataclass
import logging
from pathlib import Path
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class Config:
MAX_RESUMES: int = 10
MAX_LEADERSHIP_EXP: int = 10
MAX_MANAGEMENT_EXP: int = 10
MODEL_NAME: str = 'paraphrase-MiniLM-L6-v2'
GEMINI_MODEL: str = 'gemini-1.5-flash'
class ResumeAnalyzer:
def __init__(self):
self.config = Config()
self._initialize_models()
self.required_skills = self._load_required_skills()
self.role_hierarchy = self._load_role_hierarchy()
def _initialize_models(self) -> None:
"""Initialize the required models and API configurations."""
try:
self.sentence_model = SentenceTransformer(self.config.MODEL_NAME)
api_key = os.getenv('GOOGLE_API_KEY')
if not api_key:
raise ValueError("Google API key not found. Please set GOOGLE_API_KEY.")
genai.configure(api_key=api_key)
except Exception as e:
logger.error(f"Failed to initialize models: {str(e)}")
raise
@staticmethod
def _load_required_skills() -> List[str]:
"""Load the list of required leadership and management skills."""
return [
"strategic planning", "team management", "project management",
"decision making", "communication", "leadership",
"conflict resolution", "delegation", "performance management",
"budget management", "resource allocation", "staff development",
"change management", "risk management", "problem solving",
"negotiation", "executive leadership", "organizational skills",
"business development", "stakeholder management", "collaboration",
"emotional intelligence", "coaching", "mentoring",
"time management", "cross-functional team leadership", "innovation",
"organizational culture", "team motivation", "employee engagement",
"organizational design", "continuous improvement",
"decision-making under pressure", "adaptability", "accountability",
"team building", "succession planning", "strategic partnerships",
"executive presence", "influencing", "visionary leadership"
]
@staticmethod
def _load_role_hierarchy() -> Dict[str, int]:
"""Load the role hierarchy for scoring."""
return {
"CEO": 5, "CIO": 5, "CFO": 5, "COO": 5,
"Director": 4, "VP": 4, "Head": 4,
"Manager": 3, "Senior": 3,
"Team Lead": 2, "Lead": 2,
"Junior": 1, "Associate": 1
}
def extract_text_from_file(self, file_path: str) -> str:
"""Extract text content from various file formats."""
try:
file_path = Path(file_path)
if not file_path.exists():
raise FileNotFoundError(f"File not found: {file_path}")
ext = file_path.suffix.lower()
if ext == ".txt":
return file_path.read_text(encoding='utf-8')
elif ext == ".pdf":
with open(file_path, 'rb') as file:
reader = PdfReader(file)
return " ".join(page.extract_text() for page in reader.pages)
elif ext == ".docx":
doc = docx.Document(file_path)
return " ".join(para.text for para in doc.paragraphs)
else:
raise ValueError(f"Unsupported file format: {ext}")
except Exception as e:
logger.error(f"Error extracting text from {file_path}: {str(e)}")
return ""
def analyze_with_gemini(self, resume_text: str, job_desc: str) -> str:
"""Analyze resume using Gemini model."""
try:
prompt = f"""
Analyze the resume with respect to the job description.
Resume: {resume_text}
Job Description: {job_desc}
Please provide a structured analysis with the following information:
1. Candidate Name:
2. Email Address:
3. Contact Number:
4. Relevant Skills:
5. Educational Background:
6. Team Leadership Experience (years):
7. Management Experience (years):
8. Management Skills:
9. Match Percentage:
Summary of Qualifications:
•
•
•
•
•
"""
model = genai.GenerativeModel(self.config.GEMINI_MODEL)
response = model.generate_content(prompt)
return response.text.strip()
except Exception as e:
logger.error(f"Gemini analysis failed: {str(e)}")
raise
def extract_management_details(self, gemini_response: str) -> Tuple[int, int, str]:
"""Extract management experience details from Gemini response."""
try:
patterns = {
'leadership': r"Team Leadership Experience \(years\):\s*(\d+)",
'management': r"Management Experience \(years\):\s*(\d+)",
'skills': r"Management Skills\s*[:\-]?\s*(.*?)(?=\n|$)"
}
matches = {
key: re.search(pattern, gemini_response)
for key, pattern in patterns.items()
}
leadership_years = int(matches['leadership'].group(1)) if matches['leadership'] else 0
management_years = int(matches['management'].group(1)) if matches['management'] else 0
skills = matches['skills'].group(1) if matches['skills'] else ""
return leadership_years, management_years, skills
except Exception as e:
logger.error(f"Error extracting management details: {str(e)}")
return 0, 0, ""
def calculate_role_score(self, role_keywords: str) -> float:
"""Calculate seniority score based on role keywords."""
try:
seniority_score = 0
for keyword, score in self.role_hierarchy.items():
if fuzz.partial_ratio(keyword.lower(), role_keywords.lower()) > 80:
seniority_score = max(seniority_score, score)
return seniority_score
except Exception as e:
logger.error(f"Error calculating role score: {str(e)}")
return 0
def calculate_advanced_match(self, leadership_years: int, management_years: int,
skills: str, role_keywords: str) -> float:
"""Calculate overall match percentage using weighted criteria."""
try:
weights = {
'leadership': 0.35,
'management': 0.35,
'skills': 0.20,
'role': 0.10
}
leadership_score = min(leadership_years / self.config.MAX_LEADERSHIP_EXP, 1.0) * 100
management_score = min(management_years / self.config.MAX_MANAGEMENT_EXP, 1.0) * 100
role_score = self.calculate_role_score(role_keywords) * 20 # Scale to 100
skills_matched = sum(1 for skill in self.required_skills
if fuzz.partial_ratio(skill.lower(), skills.lower()) > 80)
skill_match_score = (skills_matched / len(self.required_skills)) * 100
overall_match = sum([
leadership_score * weights['leadership'],
management_score * weights['management'],
skill_match_score * weights['skills'],
role_score * weights['role']
])
return round(overall_match, 2)
except Exception as e:
logger.error(f"Error calculating advanced match: {str(e)}")
return 0.0
def process_resume(self, resume: Any, job_desc: str,
progress_callback: callable) -> Dict[str, Any]:
"""Process a single resume and return analysis results."""
try:
resume_text = self.extract_text_from_file(resume.name)
if not resume_text.strip():
return self._create_error_result(resume.name, "Failed to extract text from resume")
gemini_analysis = self.analyze_with_gemini(resume_text, job_desc)
leadership_years, management_years, skills = self.extract_management_details(gemini_analysis)
overall_match = self.calculate_advanced_match(
leadership_years, management_years, skills, gemini_analysis.lower()
)
result = {
"Resume": resume.name,
"Candidate Name": self._extract_field(gemini_analysis, "Candidate Name"),
"Email": self._extract_field(gemini_analysis, "Email Address"),
"Contact": self._extract_field(gemini_analysis, "Contact Number"),
"Overall Match Percentage": f"{overall_match}%",
"Gemini Analysis": gemini_analysis
}
if progress_callback:
progress_callback(1)
return result
except Exception as e:
logger.error(f"Error processing resume {resume.name}: {str(e)}")
return self._create_error_result(resume.name, str(e))
@staticmethod
def _extract_field(text: str, field: str) -> str:
"""Extract a specific field from the analysis text."""
pattern = f"{field}\\s*[:\\-]?\\s*(.*?)(?=\\n|$)"
match = re.search(pattern, text)
return match.group(1) if match else "N/A"
@staticmethod
def _create_error_result(resume_name: str, error_message: str) -> Dict[str, str]:
"""Create a standardized error result."""
return {
"Resume": resume_name,
"Candidate Name": "N/A",
"Email": "N/A",
"Contact": "N/A",
"Overall Match Percentage": "0.0%",
"Gemini Analysis": f"Analysis failed: {error_message}"
}
def analyze_resumes(self, resumes: List[Any], job_desc: str) -> pd.DataFrame:
"""Analyze multiple resumes in parallel."""
if len(resumes) > self.config.MAX_RESUMES:
return pd.DataFrame([{
"Error": f"Cannot process more than {self.config.MAX_RESUMES} resumes at once."
}])
progress = gr.Progress()
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.process_resume, resume, job_desc, progress.update)
for resume in resumes
]
results = [future.result() for future in concurrent.futures.as_completed(futures)]
return pd.DataFrame(results)
except Exception as e:
logger.error(f"Error in batch resume analysis: {str(e)}")
return pd.DataFrame([{"Error": f"Analysis failed: {str(e)}"}])
# Create Gradio interface
def create_interface():
analyzer = ResumeAnalyzer()
iface = gr.Interface(
fn=analyzer.analyze_resumes,
inputs=[
gr.File(
label="Upload Resumes (max 10)",
file_count="multiple"
),
gr.Textbox(
label="Enter Job Description",
placeholder="Paste the job description here..."
)
],
outputs=[
gr.DataFrame(label="Analysis Results")
],
title="Resume Analysis Tool",
description="Upload resumes and a job description to analyze candidates' leadership and management potential.",
examples=[],
cache_examples=False,
theme="default"
)
return iface
if __name__ == "__main__":
iface = create_interface()
iface.launch(
share=False,
debug=True,
) |