File size: 23,300 Bytes
6872779
 
 
 
 
 
 
 
 
 
 
 
 
38996f3
ed2cf1f
 
2089309
 
6872779
f611b2b
 
 
 
 
 
 
6872779
f611b2b
 
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f611b2b
 
 
6872779
 
 
f611b2b
6872779
 
 
 
 
 
 
 
 
 
2dae4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d709518
6872779
 
8db93dc
e09fb20
6872779
17064fb
6872779
17064fb
 
 
 
6872779
 
 
 
 
 
 
 
 
 
 
2dae4e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872779
d709518
6872779
99fb501
6872779
 
 
f611b2b
6872779
 
 
 
 
2dae4e3
 
 
6872779
 
99fb501
6872779
2dae4e3
99fb501
 
 
 
 
 
6872779
99fb501
 
 
 
 
 
6872779
 
99fb501
2dae4e3
99fb501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872779
 
 
 
 
 
 
 
 
 
 
 
2dae4e3
6872779
 
 
 
99fb501
6872779
 
 
2dae4e3
f611b2b
d709518
6872779
f611b2b
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f611b2b
6872779
f611b2b
6872779
f611b2b
6872779
f611b2b
6872779
f611b2b
6872779
f611b2b
6872779
f611b2b
6872779
f611b2b
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99fb501
6872779
 
 
 
f611b2b
99fb501
f611b2b
 
6872779
d709518
6872779
f611b2b
 
 
6872779
 
 
 
 
 
 
 
2dae4e3
6872779
 
 
 
f611b2b
6872779
 
 
f611b2b
 
 
6872779
 
 
 
 
 
2dae4e3
6872779
 
 
2dae4e3
 
 
d709518
 
2dae4e3
d709518
 
 
 
 
 
 
 
 
 
 
6872779
d709518
 
 
 
 
 
 
6872779
d709518
 
 
6872779
d709518
6872779
d709518
 
6872779
d709518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872779
 
 
2dae4e3
6872779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99fb501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6872779
99fb501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e67ebd2
6872779
99fb501
 
 
 
 
 
 
6872779
99fb501
 
2dae4e3
99fb501
 
 
 
6872779
99fb501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26e24a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import requests
import pandas as pd
from io import StringIO
import streamlit as st
import os
import plotly.express as px
import plotly.graph_objects as go
import plotly.colors as pc
import numpy as np
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.stattools import acf
from statsmodels.graphics.tsaplots import plot_acf
import matplotlib.pyplot as plt
from datetime import datetime
import folium
import seaborn as sns
from streamlit_folium import st_folium


def get_current_time():
    now = datetime.now()
    current_hour = now.hour
    current_minute = now.minute
    # Return the hour and a boolean indicating if it is after the 10th minute
    return current_hour, current_minute >= 10

##GET ALL FILES FROM GITHUB
@st.cache_data(show_spinner=False)
def load_GitHub(github_token, file_name, hour, after_10_min):
    url = f'https://raw.githubusercontent.com/margaridamascarenhas/Transparency_Data/main/{file_name}'
    headers = {'Authorization': f'token {github_token}'}

    response = requests.get(url, headers=headers)

    if response.status_code == 200:
        csv_content = StringIO(response.text)
        df = pd.read_csv(csv_content)
        if 'Date' in df.columns:
            df['Date'] = pd.to_datetime(df['Date'])  # Convert 'Date' column to datetime
            df.set_index('Date', inplace=True)  # Set 'Date' column as the index
            #df.to_csv(file_name) 
        return df
    else:
        print(f"Failed to download {file_name}. Status code: {response.status_code}")
        return None
        
@st.cache_data(show_spinner=False)
def load_forecast(github_token, hour, after_10_min):
    predictions_dict = {}
    for hour in range(24):
        file_name = f'Predictions_{hour}h.csv'
        df = load_GitHub(github_token, file_name, hour, after_10_min) 
        if df is not None:
            predictions_dict[file_name] = df
    return predictions_dict

def convert_European_time(data, time_zone):
    data.index = pd.to_datetime(data.index, utc=True)
    data.index = data.index.tz_convert(time_zone)
    data.index = data.index.tz_localize(None)
    return data

def simplify_model_names(df):
    # Define the mapping of complex names to simpler ones
    replacements = {
        r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
        r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
        r'\.Naive\.\dD': '.Naive',
    }
    
    # Apply the replacements
    for original, simplified in replacements.items():
        df.columns = df.columns.str.replace(original, simplified, regex=True)
    
    return df

def simplify_model_names_in_index(df):
    # Define the mapping of complex names to simpler ones
    replacements = {
        r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
        r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
        r'\.Naive\.\dD': '.Naive',
    }

    # Apply the replacements to the DataFrame index
    for original, simplified in replacements.items():
        df.index = df.index.str.replace(original, simplified, regex=True)
    
    return df

github_token = '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'

if github_token:
    hour, after_10_min=get_current_time()
    forecast_dict = load_forecast(github_token, hour, after_10_min)

    historical_forecast=load_GitHub(github_token, 'Historical_forecast.csv', hour, after_10_min)

    Data_BE=load_GitHub(github_token, 'BE_Elia_Entsoe_UTC.csv', hour, after_10_min)
    Data_FR=load_GitHub(github_token, 'FR_Entsoe_UTC.csv', hour, after_10_min)
    Data_NL=load_GitHub(github_token, 'NL_Entsoe_UTC.csv', hour, after_10_min)
    Data_DE=load_GitHub(github_token, 'DE_Entsoe_UTC.csv', hour, after_10_min)
    
    Data_BE=convert_European_time(Data_BE, 'Europe/Brussels')
    Data_FR=convert_European_time(Data_FR, 'Europe/Paris')
    Data_NL=convert_European_time(Data_NL, 'Europe/Amsterdam')
    Data_DE=convert_European_time(Data_DE, 'Europe/Berlin')


else:
    print("Please enter your GitHub Personal Access Token to proceed.")


# Main layout of the app
col1, col2 = st.columns([5, 2])  # Adjust the ratio to better fit your layout needs
with col1:
    st.title("Transparency++")

with col2:
    upper_space = col2.empty()
    upper_space = col2.empty()
    col2_1, col2_2 = st.columns(2)  # Create two columns within the right column for side-by-side images
    with col2_1:
        st.image("KU_Leuven_logo.png", width=100)   # Adjust the path and width as needed
    with col2_2:
        st.image("energyville_logo.png", width=100) 

upper_space.markdown("""
   
   
""", unsafe_allow_html=True)



countries = {
    'Overall': 'Overall',
    'Netherlands': 'NL',
    'Germany': 'DE',
    'France': 'FR',
    'Belgium': 'BE',
}


st.sidebar.header('Filters')

st.sidebar.subheader("Select Country")
st.sidebar.caption("Choose the country for which you want to display data or forecasts.")

selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))

# Ensure the date range provides two dates


# Sidebar with radio buttons for different sections
if selected_country != 'Overall':
    st.sidebar.subheader("Section")
    st.sidebar.caption("Select the type of information you want to explore.")
    section = st.sidebar.radio('', ['Data Quality', 'Forecasts Quality', 'Insights'], index=1)
    date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:", 
                                   value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))
    if len(date_range) == 2:
        start_date = pd.Timestamp(date_range[0])
        end_date = pd.Timestamp(date_range[1])
    else:
        st.error("Please select a valid date range.")
        st.stop()

else:
    section = None  # No section is shown when "Overall" is selected

if selected_country == 'Overall':
    data = None  # You can set data to None or a specific dataset based on your logic
    section = None  # No section selected when "Overall" is chosen
else:
    country_code = countries[selected_country]
    if country_code == 'BE':
        data = Data_BE
        weather_columns = ['Temperature', 'Wind Speed Onshore', 'Wind Speed Offshore']
        data['Temperature'] = data['temperature_2m_8']
        data['Wind Speed Offshore'] = data['wind_speed_100m_4']
        data['Wind Speed Onshore'] = data['wind_speed_100m_8']

    elif country_code == 'DE':
        data = Data_DE
        weather_columns = ['Temperature', 'Wind Speed']
        data['Temperature'] = data['temperature_2m']
        data['Wind Speed'] = data['wind_speed_100m']

    elif country_code == 'NL':
        data = Data_NL
        weather_columns = ['Temperature', 'Wind Speed']
        data['Temperature'] = data['temperature_2m']
        data['Wind Speed'] = data['wind_speed_100m']

    elif country_code == 'FR':
        data = Data_FR
        weather_columns = ['Temperature', 'Wind Speed']
        data['Temperature'] = data['temperature_2m']
        data['Wind Speed'] = data['wind_speed_100m']

def add_feature(df2, df_main):
    #df_main.index = pd.to_datetime(df_main.index)
    #df2.index = pd.to_datetime(df2.index)
    df_combined = df_main.combine_first(df2)
    last_date_df1 = df_main.index.max()
    first_date_df2 = df2.index.min()
    if first_date_df2 == last_date_df1 + pd.Timedelta(hours=1):
        df_combined = pd.concat([df_main, df2[df2.index > last_date_df1]], axis=0)
    #df_combined.reset_index(inplace=True)
    return df_combined
#data.index = data.index.tz_localize('UTC')


forecast_columns = [
    'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']

if section == 'Data Quality':
   
    st.header('Data Quality')
    
    st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.')
    data_quality=data.iloc[:-28]

    # Report % of missing values
    missing_values = data_quality[forecast_columns].isna().mean() * 100
    missing_values = missing_values.round(2)

    installed_capacities = {
        'FR': { 'Solar': 17419, 'Wind Offshore': 1483, 'Wind Onshore': 22134},
        'DE': { 'Solar': 73821, 'Wind Offshore': 8386, 'Wind Onshore': 59915},
        'BE': { 'Solar': 8789, 'Wind Offshore': 2262, 'Wind Onshore': 3053},  
        'NL': { 'Solar': 22590, 'Wind Offshore': 3220, 'Wind Onshore': 6190},  
    }

    if country_code not in installed_capacities:
        st.error(f"Installed capacities not defined for country code '{country_code}'.")
        st.stop()


    # Report % of extreme, impossible values for the selected country
    capacities = installed_capacities[country_code]
    extreme_values = {}

    for col in forecast_columns:
            if 'Solar_entsoe' in col:
                extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100
            elif 'Solar_forecast_entsoe' in col:
                extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Solar'])).mean() * 100
            elif 'Wind_onshore_entsoe' in col:
                extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100
            elif 'Wind_onshore_forecast_entsoe' in col:
                extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Onshore'])).mean() * 100
            elif 'Wind_offshore_entsoe' in col:
                extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100
            elif 'Wind_offshore_forecast_entsoe' in col:
                extreme_values[col] = ((data_quality[col] < 0) | (data_quality[col] > capacities['Wind Offshore'])).mean() * 100
            elif 'Load_entsoe' in col:
                extreme_values[col] = ((data_quality[col] < 0)).mean() * 100
            elif 'Load_forecast_entsoe' in col:
                extreme_values[col] = ((data_quality[col] < 0)).mean() * 100


    extreme_values = pd.Series(extreme_values).round(2)

    # Combine all metrics into one DataFrame
    metrics_df = pd.DataFrame({
    'Missing Values (%)': missing_values,
    'Extreme/Nonsensical Values (%)': extreme_values,
    })

    st.markdown(
    """
    <style>
    .dataframe {font-size: 45px !important;}
    </style>
    """,
    unsafe_allow_html=True
    )

    st.dataframe(metrics_df)

    st.write('<b><u>Missing values (%)</u></b>: Percentage of missing values in the dataset', unsafe_allow_html=True)
    st.write('<b><u>Extreme/Nonsensical values (%)</u></b>: Values that are considered implausible such as negative or out-of-bound values i.e., (generation<0) or (generation>capacity)', unsafe_allow_html=True)

# Section 2: Forecasts
elif section == 'Forecasts Quality':
   
    st.header('Forecast Quality')
    
    # Time series for last 1 week
    last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))]
    st.write('The below plots show the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform from the past week.')

    num_per_var=2

    forecast_columns_line=forecast_columns

    for i in range(0, len(forecast_columns_line), num_per_var):
        actual_col = forecast_columns_line[i]
        forecast_col = forecast_columns_line[i + 1]

        if forecast_col in data.columns:
            fig = go.Figure()
            fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual'))
            fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E'))
            fig.update_layout(title=f'Forecasts vs Actual for {actual_col}', xaxis_title='Date', yaxis_title='Value [MW]')
        
            st.plotly_chart(fig)
    

    # Scatter plots for error distribution
    st.subheader('Error Distribution')
    st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
    data_2024 = data[data.index.year > 2023]
    for i in range(0, len(forecast_columns), 2):
        actual_col = forecast_columns[i]
        forecast_col = forecast_columns[i + 1]
        if forecast_col in data_2024.columns:
            obs = data_2024[actual_col]
            pred = data_2024[forecast_col]
            error = pred - obs

            fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
            fig.update_layout(title=f'Error Distribution for {forecast_col}')
            st.plotly_chart(fig)

    
        
    st.subheader('Accuracy Metrics (Sorted by rMAE):')

    output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar."
    st.write(output_text)
    
    data = data.loc[start_date:end_date]
    accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])

    for i in range(0, len(forecast_columns), 2):
        actual_col = forecast_columns[i]
        forecast_col = forecast_columns[i + 1]
        if forecast_col in data.columns:
            obs = data[actual_col]
            pred = data[forecast_col]
            error = pred - obs
            
            mae = round(np.mean(np.abs(error)),2)
            if 'Load' in actual_col:
                persistence = obs.shift(168)  # Weekly persistence
            else:
                persistence = obs.shift(24)  # Daily persistence
            
            # Using the whole year's data for rMAE calculations
            rmae = round(mae / np.mean(np.abs(obs - persistence)),2)
            
            row_label = 'Load' if 'Load' in actual_col else 'Solar' if 'Solar' in actual_col else 'Wind Offshore' if 'Wind_offshore' in actual_col else 'Wind Onshore'
            accuracy_metrics.loc[row_label] = [mae, rmae]

    accuracy_metrics.dropna(how='all', inplace=True)# Sort by rMAE (second column)
    accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True)
    accuracy_metrics = accuracy_metrics.round(4)

    col1, col2 = st.columns([3, 2])

    with col1:
        st.dataframe(accuracy_metrics)

    with col2:
        st.markdown("""
            <style>
            .big-font {
                font-size: 20px;
                font-weight: 500;
            }
            </style>
            <div class="big-font">
            Equations
            </div>
            """, unsafe_allow_html=True)

        st.markdown(r"""
        $\text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$
        
                    
        $\text{rMAE} = \frac{\text{MAE}}{MAE_{\text{Persistence Model}}}$
                    
        """)


    st.subheader('ACF plots of Errors')
    st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.')

    for i in range(0, len(forecast_columns), 2):
        actual_col = forecast_columns[i]
        forecast_col = forecast_columns[i + 1]
        if forecast_col in data.columns:
            obs = data[actual_col]
            pred = data[forecast_col]
            error = pred - obs

            st.write(f"**ACF of Errors for {actual_col}**")
            fig, ax = plt.subplots(figsize=(10, 5))
            plot_acf(error.dropna(), ax=ax)
            st.pyplot(fig)

            acf_values = acf(error.dropna(), nlags=240)
        
# Section 3: Insights
elif section == 'Insights':
    st.header("Insights")
    st.write("""
    This section provides insights derived from the data and forecasts.
    You can visualize trends, anomalies, and other important findings.
    """)

    # Scatter plots for correlation between wind, solar, and load
    st.subheader('Correlation between Wind, Solar, Load and Weather Features')
    st.write('The below scatter plots are made for checking whether there exists a correlation between the data fields obtained: Solar, Wind, Load and Weather Features.')

    selected_columns=['Load_entsoe', 'Solar_entsoe', 'Wind_offshore_entsoe', 'Wind_onshore_entsoe'] + weather_columns
    selected_df=data[selected_columns]
    selected_df.columns = [col.replace('_entsoe', '').replace('_', ' ') for col in selected_df.columns]
    selected_df = selected_df.dropna()
    print(selected_df)
    sns.set_theme(style="ticks")
    pairplot_fig = sns.pairplot(selected_df)

    # Display the pairplot in Streamlit
    st.pyplot(pairplot_fig)

elif selected_country == 'Overall':
    st.subheader("Net Load Error Map")
    st.write("""
        The net load error map highlights the error in the forecasted versus actual net load for each country. 
        Hover over each country to see details on the latest net load error and the timestamp of the last recorded data.
    """)
    
    def plot_net_load_error_map(data_dict):
        # Define forecast columns used in calculation

        def calculate_net_load_error(df):
            filter_df = df[forecast_columns].dropna()
            net_load = filter_df['Load_entsoe'] - filter_df['Wind_onshore_entsoe'] - filter_df['Wind_offshore_entsoe'] - filter_df['Solar_entsoe']
            net_load_forecast = filter_df['Load_forecast_entsoe'] - filter_df['Wind_onshore_forecast_entsoe'] - filter_df['Wind_offshore_forecast_entsoe'] - filter_df['Solar_forecast_entsoe']
            error = (net_load - net_load_forecast).iloc[-1]
            date = filter_df.index[-1].strftime("%Y-%m-%d %H:%M")  # Get the latest date in string format
            return error, date

        # Calculate net load errors and dates for each country
        net_load_errors = {country_name: calculate_net_load_error(data) for country_name, data in data_dict.items()}

        # Create DataFrame for Folium with additional date column
        df_net_load_error = pd.DataFrame({
            'country': list(net_load_errors.keys()),
            'net_load_error': [v[0] for v in net_load_errors.values()],
            'date': [v[1] for v in net_load_errors.values()]
        })

        # Load the GeoJSON file
        geojson_url = "https://raw.githubusercontent.com/python-visualization/folium/master/examples/data/world-countries.json"
        geo_data = requests.get(geojson_url).json()

        # Filter GeoJSON to only include the selected countries
        selected_countries = list(data_dict.keys())  # Get the list of selected countries (Belgium, France, Germany, Netherlands)
        filtered_geojson = {
            "type": "FeatureCollection",
            "features": [feature for feature in geo_data["features"] if feature["properties"]["name"] in selected_countries]
        }

        # Merge the geojson with the error and date data
        for feature in filtered_geojson["features"]:
            country_name = feature["properties"]["name"]
            row = df_net_load_error[df_net_load_error['country'] == country_name]
            if not row.empty:
                feature["properties"]["net_load_error"] = row.iloc[0]["net_load_error"]
                feature["properties"]["date"] = row.iloc[0]["date"]

        # Initialize the Folium map centered on Central Europe
        m = folium.Map(location=[51, 10], zoom_start=5, tiles="cartodb positron")

        # Add choropleth layer to map net load errors by country
        folium.Choropleth(
            geo_data=filtered_geojson,
            name="choropleth",
            data=df_net_load_error,
            columns=["country", "net_load_error"],
            key_on="feature.properties.name",
            fill_color="RdYlBu",  # Use a more vibrant color palette
            fill_opacity=0.7,
            line_opacity=0.5,
            line_color="black",  # Neutral border color
            legend_name="Net Load Error"
        ).add_to(m)

        # Add a GeoJson layer with custom tooltip for country, error, and date
        folium.GeoJson(
            filtered_geojson,
            style_function=lambda x: {'fillOpacity': 0, 'color': 'black', 'weight': 0},
            tooltip=folium.GeoJsonTooltip(
                fields=["name", "net_load_error", "date"],
                aliases=["Country:", "Net Load Error:", "Date:"],
                localize=True
            )
        ).add_to(m)

        # Display Folium map in Streamlit
        

    # Data dictionary with full country names
    data_dict = {
        'Belgium': Data_BE,
        'France': Data_FR,
        'Germany': Data_DE,
        'Netherlands': Data_NL
    }

    # Call the function to plot the map
    plot_net_load_error_map(data_dict)

    st.subheader("rMAE of Forecasts published on ENTSO-E TP")
    st.write("""
        The radar chart below compares the forecast accuracy across Load, Onshore Wind, Offshore Wind, and Solar for each country. 
    """)

    def calculate_mae(actual, forecast):
        return np.mean(np.abs(actual - forecast))

    # Function to calculate persistence MAE
    def calculate_persistence_mae(data, shift_hours):
        return np.mean(np.abs(data - data.shift(shift_hours)))

    # Function to calculate rMAE for each country
    def calculate_rmae_for_country(df):
        rmae = {}
        rmae['Load'] = calculate_mae(df['Load_entsoe'], df['Load_forecast_entsoe']) / calculate_persistence_mae(df['Load_entsoe'], 168)
        rmae['Wind_onshore'] = calculate_mae(df['Wind_onshore_entsoe'], df['Wind_onshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_onshore_entsoe'], 24)
        rmae['Wind_offshore'] = calculate_mae(df['Wind_offshore_entsoe'], df['Wind_offshore_forecast_entsoe']) / calculate_persistence_mae(df['Wind_offshore_entsoe'], 24)
        rmae['Solar'] = calculate_mae(df['Solar_entsoe'], df['Solar_forecast_entsoe']) / calculate_persistence_mae(df['Solar_entsoe'], 24)
        return rmae

    # Function to create rMAE DataFrame
    def create_rmae_dataframe(data_dict):
        rmae_values = {'Country': [], 'Load': [], 'Wind_onshore': [], 'Wind_offshore': [], 'Solar': []}
        for country_name, df in data_dict.items():
            df_filtered = df[forecast_columns].dropna()
            rmae = calculate_rmae_for_country(df_filtered)
            rmae_values['Country'].append(country_name)
            for key in rmae:
                rmae_values[key].append(rmae[key])
        return pd.DataFrame(rmae_values)

    # Function to plot radar chart
    def plot_rmae_radar_chart(rmae_df):
        fig = go.Figure()
        angles = ['Load', 'Wind_onshore', 'Wind_offshore', 'Solar']
        for _, row in rmae_df.iterrows():
            fig.add_trace(go.Scatterpolar(r=[row[angle] for angle in angles], theta=angles, fill='toself', name=row['Country']))
        fig.update_layout(polar=dict(radialaxis=dict(visible=True, range=[0, 2])), showlegend=True, title="rMAE Radar Chart by Country")
        st.plotly_chart(fig)

    # Main execution to create and display radar plot
    rmae_df = create_rmae_dataframe(data_dict)
    plot_rmae_radar_chart(rmae_df)