File size: 5,322 Bytes
bffe7b3
 
32d37f5
bffe7b3
 
 
 
7c2803a
 
 
 
 
 
32d37f5
bffe7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c2803a
bffe7b3
 
 
 
 
 
 
 
 
 
 
 
 
7c2803a
bffe7b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec0a6ec
cb74f9c
ec0a6ec
bffe7b3
ec0a6ec
cb74f9c
 
 
 
bffe7b3
 
cb74f9c
bffe7b3
 
cb74f9c
7c2803a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import logging
import os
import streamlit as st
from twilio.rest import Client
import os
import numpy as np
import hashlib
import tempfile
import os
import hashlib
from tqdm import tqdm
from zipfile import ZipFile
from urllib.request import urlopen


logger = logging.getLogger(__name__)


@st.cache_data
def get_ice_servers(name="twilio"):
    """Get ICE servers from Twilio.
    Returns:
        List of ICE servers.
    """
    if name == "twilio":
        # Ref: https://www.twilio.com/docs/stun-turn/api
        try:
            account_sid = os.environ["TWILIO_ACCOUNT_SID"]
            auth_token = os.environ["TWILIO_AUTH_TOKEN"]
        except KeyError:
            logger.warning("Twilio credentials are not set. Fallback to a free STUN server from Google.")
            return [{"urls": ["stun:stun.l.google.com:19302"]}]

        client = Client(account_sid, auth_token)

        token = client.tokens.create()

        return token.ice_servers

    elif name == "metered":
        try:
            username = os.environ["METERED_USERNAME"]
            credential = os.environ["METERED_CREDENTIAL"]
        except KeyError:
            logger.warning("Metered credentials are not set. Fallback to a free STUN server from Google.")
            return [{"urls": ["stun:stun.l.google.com:19302"]}]

        ice_servers = [
            {"url": "stun:a.relay.metered.ca:80", "urls": "stun:a.relay.metered.ca:80"},
            {
                "url": "turn:a.relay.metered.ca:80",
                "username": username,
                "urls": "turn:a.relay.metered.ca:80",
                "credential": credential,
            },
            {
                "url": "turn:a.relay.metered.ca:80?transport=tcp",
                "username": username,
                "urls": "turn:a.relay.metered.ca:80?transport=tcp",
                "credential": credential,
            },
            {
                "url": "turn:a.relay.metered.ca:443",
                "username": username,
                "urls": "turn:a.relay.metered.ca:443",
                "credential": credential,
            },
            {
                "url": "turn:a.relay.metered.ca:443?transport=tcp",
                "username": username,
                "urls": "turn:a.relay.metered.ca:443?transport=tcp",
                "credential": credential,
            },
        ]
        return ice_servers
    else:
        raise ValueError(f"Unknown name: {name}")


# Function to format floats within a list
def format_dflist(val):
    if isinstance(val, list):
        return [format_dflist(num) for num in val]
    if isinstance(val, np.ndarray):
        return np.asarray([format_dflist(num) for num in val])
    if isinstance(val, np.float32):
        return f"{val:.2f}"
    if isinstance(val, float):
        return f"{val:.2f}"
    else:
        return val


def rgb(r, g, b):
    return "#{:02x}{:02x}{:02x}".format(r, g, b)


def tflite_inference(model, img):
    """Inferences an image through the model with tflite interpreter on CPU
    :param model: a tflite.Interpreter loaded with a model
    :param img: image
    :return: list of outputs of the model
    """
    # Check if img is np.ndarray
    if not isinstance(img, np.ndarray):
        img = np.asarray(img)

    # Check if dim is 4
    if len(img.shape) == 3:
        img = np.expand_dims(img, axis=0)

    input_details = model.get_input_details()
    output_details = model.get_output_details()
    model.resize_tensor_input(input_details[0]["index"], img.shape)
    model.allocate_tensors()
    model.set_tensor(input_details[0]["index"], img.astype(np.float32))
    model.invoke()
    return [model.get_tensor(elem["index"]) for elem in output_details]


def get_file(origin, file_hash, is_zip=False):
    tmp_file = os.path.join(tempfile.gettempdir(), "FaceIDLight", origin.split("/")[-1])
    os.makedirs(os.path.dirname(tmp_file), exist_ok=True)
    if not os.path.exists(tmp_file):
        download = True
    else:
        hasher = hashlib.sha256()
        with open(tmp_file, "rb") as file:
            for chunk in iter(lambda: file.read(65535), b""):
                hasher.update(chunk)
        if not hasher.hexdigest() == file_hash:
            print(
                "A local file was found, but it seems to be incomplete or outdated because the file hash does not "
                "match the original value of " + file_hash + " so data will be downloaded."
            )
            download = True
        else:
            download = False

    if download:
        response = urlopen(origin)
        with tqdm.wrapattr(
            open(tmp_file, "wb"),
            "write",
            miniters=1,
            desc="Downloading " + origin.split("/")[-1] + " to: " + tmp_file,
            total=getattr(response, "length", None),
        ) as file:
            for chunk in response:
                file.write(chunk)
            file.close()
    if is_zip:
        with ZipFile(tmp_file, "r") as zipObj:
            zipObj.extractall(tmp_file.split(".")[0])
        tmp_file = os.path.join(tmp_file.split(".")[0])
    return tmp_file


def get_hash(filepath):
    hasher = hashlib.sha256()
    with open(filepath, "rb") as file:
        for chunk in iter(lambda: file.read(65535), b""):
            hasher.update(chunk)
    return hasher.hexdigest()