File size: 7,523 Bytes
222fbf0
bb76c1f
9fa2182
 
519fcb9
c6a43c4
88a78a4
dd65136
 
 
f751163
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6017e
 
 
f751163
dd65136
 
 
e487754
dd65136
 
 
 
 
 
 
fea9443
dd65136
 
 
 
 
9d6017e
 
0dc382d
9d6017e
 
 
 
 
 
 
d3c4f72
9d6017e
 
 
 
 
 
0dc382d
 
 
 
9d6017e
 
 
 
 
 
 
 
 
 
 
 
 
8a2bd53
9d6017e
 
 
 
8a2bd53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6017e
8a2bd53
9d6017e
8a2bd53
 
 
 
 
 
 
 
9d6017e
 
 
 
 
 
 
8a2bd53
 
 
 
dd65136
 
 
 
 
 
9d6017e
8a2bd53
 
 
 
 
 
 
 
 
 
dd65136
 
 
f072863
dd65136
46fdaa6
 
 
 
dd65136
46fdaa6
dd65136
46fdaa6
 
146981e
 
 
 
 
c353ada
bb76c1f
 
4eac491
146981e
 
c353ada
 
46fdaa6
dd65136
519fcb9
46fdaa6
dd65136
 
 
bb76c1f
dd65136
 
 
fea9443
dd65136
 
 
 
9d6017e
8a2bd53
 
 
 
 
 
 
 
 
 
dd65136
46fdaa6
fea9443
46fdaa6
 
 
dd65136
 
 
 
fea9443
dd65136
 
 
edbcfa6
fea9443
 
 
 
 
 
758e952
fea9443
5a5a76f
edbcfa6
9d6017e
f072863
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import gradio as gr

from .data import test_equations
from .plots import replot, replot_pareto
from .processing import processing


def _data_layout():
    with gr.Tab("Example Data"):
        # Plot of the example data:
        with gr.Row():
            with gr.Column():
                example_plot = gr.Plot()
            with gr.Column():
                test_equation = gr.Radio(
                    test_equations, value=test_equations[0], label="Test Equation"
                )
                num_points = gr.Slider(
                    minimum=10,
                    maximum=1000,
                    value=200,
                    label="Number of Data Points",
                    step=1,
                )
                noise_level = gr.Slider(
                    minimum=0, maximum=1, value=0.05, label="Noise Level"
                )
                data_seed = gr.Number(value=0, label="Random Seed")
    with gr.Tab("Upload Data"):
        file_input = gr.File(label="Upload a CSV File")
        gr.Markdown(
            "The rightmost column of your CSV file will be used as the target variable."
        )

    return dict(
        file_input=file_input,
        test_equation=test_equation,
        num_points=num_points,
        noise_level=noise_level,
        data_seed=data_seed,
        example_plot=example_plot,
    )


def _settings_layout():
    with gr.Tab("Basic Settings"):
        binary_operators = gr.CheckboxGroup(
            choices=["+", "-", "*", "/", "^", "max", "min", "mod", "cond"],
            label="Binary Operators",
            value=["+", "-", "*", "/"],
        )
        unary_operators = gr.CheckboxGroup(
            choices=[
                "sin",
                "cos",
                "tan",
                "exp",
                "log",
                "square",
                "cube",
                "sqrt",
                "abs",
                "erf",
                "relu",
                "round",
                "sign",
            ],
            label="Unary Operators",
            value=["sin"],
        )
        niterations = gr.Slider(
            minimum=1,
            maximum=1000,
            value=40,
            label="Number of Iterations",
            step=1,
        )
        maxsize = gr.Slider(
            minimum=7,
            maximum=100,
            value=20,
            label="Maximum Complexity",
            step=1,
        )
        parsimony = gr.Number(
            value=0.0032,
            label="Parsimony Coefficient",
        )
    with gr.Tab("Advanced Settings"):
        populations = gr.Slider(
            minimum=2,
            maximum=100,
            value=15,
            label="Number of Populations",
            step=1,
        )
        population_size = gr.Slider(
            minimum=2,
            maximum=1000,
            value=33,
            label="Population Size",
            step=1,
        )
        ncycles_per_iteration = gr.Number(
            value=550,
            label="Cycles per Iteration",
        )
        elementwise_loss = gr.Radio(
            ["L2DistLoss()", "L1DistLoss()", "LogitDistLoss()", "HuberLoss()"],
            value="L2DistLoss()",
            label="Loss Function",
        )
        adaptive_parsimony_scaling = gr.Number(
            value=20.0,
            label="Adaptive Parsimony Scaling",
        )
        optimizer_algorithm = gr.Radio(
            ["BFGS", "NelderMead"],
            value="BFGS",
            label="Optimizer Algorithm",
        )
        optimizer_iterations = gr.Slider(
            minimum=1,
            maximum=100,
            value=8,
            label="Optimizer Iterations",
            step=1,
        )
        # Bool:
        batching = gr.Checkbox(
            value=False,
            label="Batching",
        )
        batch_size = gr.Slider(
            minimum=2,
            maximum=1000,
            value=50,
            label="Batch Size",
            step=1,
        )

    with gr.Tab("Gradio Settings"):
        plot_update_delay = gr.Slider(
            minimum=1,
            maximum=100,
            value=3,
            label="Plot Update Delay",
        )
        force_run = gr.Checkbox(
            value=False,
            label="Ignore Warnings",
        )
    return dict(
        binary_operators=binary_operators,
        unary_operators=unary_operators,
        niterations=niterations,
        maxsize=maxsize,
        force_run=force_run,
        plot_update_delay=plot_update_delay,
        parsimony=parsimony,
        populations=populations,
        population_size=population_size,
        ncycles_per_iteration=ncycles_per_iteration,
        elementwise_loss=elementwise_loss,
        adaptive_parsimony_scaling=adaptive_parsimony_scaling,
        optimizer_algorithm=optimizer_algorithm,
        optimizer_iterations=optimizer_iterations,
        batching=batching,
        batch_size=batch_size,
    )


def main():
    blocks = {}
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    blocks = {**blocks, **_data_layout()}
                with gr.Row():
                    blocks = {**blocks, **_settings_layout()}

            with gr.Column():
                with gr.Tab("Pareto Front"):
                    blocks["pareto"] = gr.Plot()
                with gr.Tab("Predictions"):
                    blocks["predictions_plot"] = gr.Plot()

                blocks["df"] = gr.Dataframe(
                    headers=["complexity", "loss", "equation"],
                    datatype=["number", "number", "str"],
                    wrap=True,
                    column_widths=[75, 75, 200],
                    interactive=False,
                )
                blocks["run"] = gr.Button()

        blocks["run"].click(
            processing,
            inputs=[
                blocks[k]
                for k in [
                    "file_input",
                    "force_run",
                    "test_equation",
                    "num_points",
                    "noise_level",
                    "data_seed",
                    "niterations",
                    "maxsize",
                    "binary_operators",
                    "unary_operators",
                    "plot_update_delay",
                    "parsimony",
                    "populations",
                    "population_size",
                    "ncycles_per_iteration",
                    "elementwise_loss",
                    "adaptive_parsimony_scaling",
                    "optimizer_algorithm",
                    "optimizer_iterations",
                    "batching",
                    "batch_size",
                ]
            ],
            outputs=blocks["df"],
        )

        # Any update to the equation choice will trigger a replot:
        eqn_components = [
            blocks["test_equation"],
            blocks["num_points"],
            blocks["noise_level"],
            blocks["data_seed"],
        ]
        for eqn_component in eqn_components:
            eqn_component.change(replot, eqn_components, blocks["example_plot"])

        # Update plot when dataframe is updated:
        blocks["df"].change(
            replot_pareto,
            inputs=[blocks["df"], blocks["maxsize"]],
            outputs=[blocks["pareto"]],
        )
        demo.load(replot, eqn_components, blocks["example_plot"])

    demo.launch(debug=True)


if __name__ == "__main__":
    main()