Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for autoaugment.""" | |
from __future__ import absolute_import | |
from __future__ import division | |
# from __future__ import google_type_annotations | |
from __future__ import print_function | |
from absl.testing import parameterized | |
import tensorflow as tf | |
from official.vision.image_classification import augment | |
def get_dtype_test_cases(): | |
return [ | |
('uint8', tf.uint8), | |
('int32', tf.int32), | |
('float16', tf.float16), | |
('float32', tf.float32), | |
] | |
class TransformsTest(parameterized.TestCase, tf.test.TestCase): | |
"""Basic tests for fundamental transformations.""" | |
def test_to_from_4d(self, dtype): | |
for shape in [(10, 10), (10, 10, 10), (10, 10, 10, 10)]: | |
original_ndims = len(shape) | |
image = tf.zeros(shape, dtype=dtype) | |
image_4d = augment.to_4d(image) | |
self.assertEqual(4, tf.rank(image_4d)) | |
self.assertAllEqual(image, augment.from_4d(image_4d, original_ndims)) | |
def test_transform(self, dtype): | |
image = tf.constant([[1, 2], [3, 4]], dtype=dtype) | |
self.assertAllEqual(augment.transform(image, transforms=[1]*8), | |
[[4, 4], [4, 4]]) | |
def test_translate(self, dtype): | |
image = tf.constant( | |
[[1, 0, 1, 0], | |
[0, 1, 0, 1], | |
[1, 0, 1, 0], | |
[0, 1, 0, 1]], | |
dtype=dtype) | |
translations = [-1, -1] | |
translated = augment.translate(image=image, | |
translations=translations) | |
expected = [ | |
[1, 0, 1, 1], | |
[0, 1, 0, 0], | |
[1, 0, 1, 1], | |
[1, 0, 1, 1]] | |
self.assertAllEqual(translated, expected) | |
def test_translate_shapes(self, dtype): | |
translation = [0, 0] | |
for shape in [(3, 3), (5, 5), (224, 224, 3)]: | |
image = tf.zeros(shape, dtype=dtype) | |
self.assertAllEqual(image, augment.translate(image, translation)) | |
def test_translate_invalid_translation(self, dtype): | |
image = tf.zeros((1, 1), dtype=dtype) | |
invalid_translation = [[[1, 1]]] | |
with self.assertRaisesRegex(TypeError, 'rank 1 or 2'): | |
_ = augment.translate(image, invalid_translation) | |
def test_rotate(self, dtype): | |
image = tf.reshape(tf.cast(tf.range(9), dtype), (3, 3)) | |
rotation = 90. | |
transformed = augment.rotate(image=image, degrees=rotation) | |
expected = [[2, 5, 8], | |
[1, 4, 7], | |
[0, 3, 6]] | |
self.assertAllEqual(transformed, expected) | |
def test_rotate_shapes(self, dtype): | |
degrees = 0. | |
for shape in [(3, 3), (5, 5), (224, 224, 3)]: | |
image = tf.zeros(shape, dtype=dtype) | |
self.assertAllEqual(image, augment.rotate(image, degrees)) | |
class AutoaugmentTest(tf.test.TestCase): | |
def test_autoaugment(self): | |
"""Smoke test to be sure there are no syntax errors.""" | |
image = tf.zeros((224, 224, 3), dtype=tf.uint8) | |
augmenter = augment.AutoAugment() | |
aug_image = augmenter.distort(image) | |
self.assertEqual((224, 224, 3), aug_image.shape) | |
def test_randaug(self): | |
"""Smoke test to be sure there are no syntax errors.""" | |
image = tf.zeros((224, 224, 3), dtype=tf.uint8) | |
augmenter = augment.RandAugment() | |
aug_image = augmenter.distort(image) | |
self.assertEqual((224, 224, 3), aug_image.shape) | |
def test_all_policy_ops(self): | |
"""Smoke test to be sure all augmentation functions can execute.""" | |
prob = 1 | |
magnitude = 10 | |
replace_value = [128] * 3 | |
cutout_const = 100 | |
translate_const = 250 | |
image = tf.ones((224, 224, 3), dtype=tf.uint8) | |
for op_name in augment.NAME_TO_FUNC: | |
func, _, args = augment._parse_policy_info(op_name, | |
prob, | |
magnitude, | |
replace_value, | |
cutout_const, | |
translate_const) | |
image = func(image, *args) | |
self.assertEqual((224, 224, 3), image.shape) | |
if __name__ == '__main__': | |
tf.test.main() | |