NCTCMumbai's picture
Upload 2571 files
0b8359d
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains the Domain Adaptation via Style Transfer (PixelDA) model components.
A number of details in the implementation make reference to one of the following
works:
- "Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks""
https://arxiv.org/abs/1511.06434
This paper makes several architecture recommendations:
1. Use strided convs in discriminator, fractional-strided convs in generator
2. batchnorm everywhere
3. remove fully connected layers for deep models
4. ReLu for all layers in generator, except tanh on output
5. LeakyReLu for everything in discriminator
"""
import functools
import math
# Dependency imports
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
from domain_adaptation.pixel_domain_adaptation import pixelda_task_towers
def create_model(hparams,
target_images,
source_images=None,
source_labels=None,
is_training=False,
noise=None,
num_classes=None):
"""Create a GAN model.
Arguments:
hparams: HParam object specifying model params
target_images: A `Tensor` of size [batch_size, height, width, channels]. It
is assumed that the images are [-1, 1] normalized.
source_images: A `Tensor` of size [batch_size, height, width, channels]. It
is assumed that the images are [-1, 1] normalized.
source_labels: A `Tensor` of size [batch_size] of categorical labels between
[0, num_classes]
is_training: whether model is currently training
noise: If None, model generates its own noise. Otherwise use provided.
num_classes: Number of classes for classification
Returns:
end_points dict with model outputs
Raises:
ValueError: unknown hparams.arch setting
"""
if num_classes is None and hparams.arch in ['resnet', 'simple']:
raise ValueError('Num classes must be provided to create task classifier')
if target_images.dtype != tf.float32:
raise ValueError('target_images must be tf.float32 and [-1, 1] normalized.')
if source_images is not None and source_images.dtype != tf.float32:
raise ValueError('source_images must be tf.float32 and [-1, 1] normalized.')
###########################
# Create latent variables #
###########################
latent_vars = dict()
if hparams.noise_channel:
noise_shape = [hparams.batch_size, hparams.noise_dims]
if noise is not None:
assert noise.shape.as_list() == noise_shape
tf.logging.info('Using provided noise')
else:
tf.logging.info('Using random noise')
noise = tf.random_uniform(
shape=noise_shape,
minval=-1,
maxval=1,
dtype=tf.float32,
name='random_noise')
latent_vars['noise'] = noise
####################
# Create generator #
####################
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose, slim.fully_connected],
normalizer_params=batch_norm_params(is_training,
hparams.batch_norm_decay),
weights_initializer=tf.random_normal_initializer(
stddev=hparams.normal_init_std),
weights_regularizer=tf.contrib.layers.l2_regularizer(
hparams.weight_decay)):
with slim.arg_scope([slim.conv2d], padding='SAME'):
if hparams.arch == 'dcgan':
end_points = dcgan(
target_images, latent_vars, hparams, scope='generator')
elif hparams.arch == 'resnet':
end_points = resnet_generator(
source_images,
target_images.shape.as_list()[1:4],
hparams=hparams,
latent_vars=latent_vars)
elif hparams.arch == 'residual_interpretation':
end_points = residual_interpretation_generator(
source_images, is_training=is_training, hparams=hparams)
elif hparams.arch == 'simple':
end_points = simple_generator(
source_images,
target_images,
is_training=is_training,
hparams=hparams,
latent_vars=latent_vars)
elif hparams.arch == 'identity':
# Pass through unmodified, besides changing # channels
# Used to calculate baseline numbers
# Also set `generator_steps=0` for baseline
if hparams.generator_steps:
raise ValueError('Must set generator_steps=0 for identity arch. Is %s'
% hparams.generator_steps)
transferred_images = source_images
source_channels = source_images.shape.as_list()[-1]
target_channels = target_images.shape.as_list()[-1]
if source_channels == 1 and target_channels == 3:
transferred_images = tf.tile(source_images, [1, 1, 1, 3])
if source_channels == 3 and target_channels == 1:
transferred_images = tf.image.rgb_to_grayscale(source_images)
end_points = {'transferred_images': transferred_images}
else:
raise ValueError('Unknown architecture: %s' % hparams.arch)
#####################
# Domain Classifier #
#####################
if hparams.arch in [
'dcgan', 'resnet', 'residual_interpretation', 'simple', 'identity',
]:
# Add a discriminator for these architectures
end_points['transferred_domain_logits'] = predict_domain(
end_points['transferred_images'],
hparams,
is_training=is_training,
reuse=False)
end_points['target_domain_logits'] = predict_domain(
target_images,
hparams,
is_training=is_training,
reuse=True)
###################
# Task Classifier #
###################
if hparams.task_tower != 'none' and hparams.arch in [
'resnet', 'residual_interpretation', 'simple', 'identity',
]:
with tf.variable_scope('discriminator'):
with tf.variable_scope('task_tower'):
end_points['source_task_logits'], end_points[
'source_quaternion'] = pixelda_task_towers.add_task_specific_model(
source_images,
hparams,
num_classes=num_classes,
is_training=is_training,
reuse_private=False,
private_scope='source_task_classifier',
reuse_shared=False)
end_points['transferred_task_logits'], end_points[
'transferred_quaternion'] = (
pixelda_task_towers.add_task_specific_model(
end_points['transferred_images'],
hparams,
num_classes=num_classes,
is_training=is_training,
reuse_private=False,
private_scope='transferred_task_classifier',
reuse_shared=True))
end_points['target_task_logits'], end_points[
'target_quaternion'] = pixelda_task_towers.add_task_specific_model(
target_images,
hparams,
num_classes=num_classes,
is_training=is_training,
reuse_private=True,
private_scope='transferred_task_classifier',
reuse_shared=True)
# Remove any endpoints with None values
return dict((k, v) for k, v in end_points.iteritems() if v is not None)
def batch_norm_params(is_training, batch_norm_decay):
return {
'is_training': is_training,
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
}
def lrelu(x, leakiness=0.2):
"""Relu, with optional leaky support."""
return tf.where(tf.less(x, 0.0), leakiness * x, x, name='leaky_relu')
def upsample(net, num_filters, scale=2, method='resize_conv', scope=None):
"""Performs spatial upsampling of the given features.
Args:
net: A `Tensor` of shape [batch_size, height, width, filters].
num_filters: The number of output filters.
scale: The scale of the upsampling. Must be a positive integer greater or
equal to two.
method: The method by which the features are upsampled. Valid options
include 'resize_conv' and 'conv2d_transpose'.
scope: An optional variable scope.
Returns:
A new set of features of shape
[batch_size, height*scale, width*scale, num_filters].
Raises:
ValueError: if `method` is not valid or
"""
if scale < 2:
raise ValueError('scale must be greater or equal to two.')
with tf.variable_scope(scope, 'upsample', [net]):
if method == 'resize_conv':
net = tf.image.resize_nearest_neighbor(
net, [net.shape.as_list()[1] * scale,
net.shape.as_list()[2] * scale],
align_corners=True,
name='resize')
return slim.conv2d(net, num_filters, stride=1, scope='conv')
elif method == 'conv2d_transpose':
return slim.conv2d_transpose(net, num_filters, scope='deconv')
else:
raise ValueError('Upsample method [%s] was not recognized.' % method)
def project_latent_vars(hparams, proj_shape, latent_vars, combine_method='sum'):
"""Generate noise and project to input volume size.
Args:
hparams: The hyperparameter HParams struct.
proj_shape: Shape to project noise (not including batch size).
latent_vars: dictionary of `'key': Tensor of shape [batch_size, N]`
combine_method: How to combine the projected values.
sum = project to volume then sum
concat = concatenate along last dimension (i.e. channel)
Returns:
If combine_method=sum, a `Tensor` of size `hparams.projection_shape`
If combine_method=concat and there are N latent vars, a `Tensor` of size
`hparams.projection_shape`, with the last channel multiplied by N
Raises:
ValueError: combine_method is not one of sum/concat
"""
values = []
for var in latent_vars:
with tf.variable_scope(var):
# Project & reshape noise to a HxWxC input
projected = slim.fully_connected(
latent_vars[var],
np.prod(proj_shape),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm)
values.append(tf.reshape(projected, [hparams.batch_size] + proj_shape))
if combine_method == 'sum':
result = values[0]
for value in values[1:]:
result += value
elif combine_method == 'concat':
# Concatenate along last axis
result = tf.concat(values, len(proj_shape))
else:
raise ValueError('Unknown combine_method %s' % combine_method)
tf.logging.info('Latent variables projected to size %s volume', result.shape)
return result
def resnet_block(net, hparams):
"""Create a resnet block."""
net_in = net
net = slim.conv2d(
net,
hparams.resnet_filters,
stride=1,
normalizer_fn=slim.batch_norm,
activation_fn=tf.nn.relu)
net = slim.conv2d(
net,
hparams.resnet_filters,
stride=1,
normalizer_fn=slim.batch_norm,
activation_fn=None)
if hparams.resnet_residuals:
net += net_in
return net
def resnet_stack(images, output_shape, hparams, scope=None):
"""Create a resnet style transfer block.
Args:
images: [batch-size, height, width, channels] image tensor to feed as input
output_shape: output image shape in form [height, width, channels]
hparams: hparams objects
scope: Variable scope
Returns:
Images after processing with resnet blocks.
"""
end_points = {}
if hparams.noise_channel:
# separate the noise for visualization
end_points['noise'] = images[:, :, :, -1]
assert images.shape.as_list()[1:3] == output_shape[0:2]
with tf.variable_scope(scope, 'resnet_style_transfer', [images]):
with slim.arg_scope(
[slim.conv2d],
normalizer_fn=slim.batch_norm,
kernel_size=[hparams.generator_kernel_size] * 2,
stride=1):
net = slim.conv2d(
images,
hparams.resnet_filters,
normalizer_fn=None,
activation_fn=tf.nn.relu)
for block in range(hparams.resnet_blocks):
net = resnet_block(net, hparams)
end_points['resnet_block_{}'.format(block)] = net
net = slim.conv2d(
net,
output_shape[-1],
kernel_size=[1, 1],
normalizer_fn=None,
activation_fn=tf.nn.tanh,
scope='conv_out')
end_points['transferred_images'] = net
return net, end_points
def predict_domain(images,
hparams,
is_training=False,
reuse=False,
scope='discriminator'):
"""Creates a discriminator for a GAN.
Args:
images: A `Tensor` of size [batch_size, height, width, channels]. It is
assumed that the images are centered between -1 and 1.
hparams: hparam object with params for discriminator
is_training: Specifies whether or not we're training or testing.
reuse: Whether to reuse variable scope
scope: An optional variable_scope.
Returns:
[batch size, 1] - logit output of discriminator.
"""
with tf.variable_scope(scope, 'discriminator', [images], reuse=reuse):
lrelu_partial = functools.partial(lrelu, leakiness=hparams.lrelu_leakiness)
with slim.arg_scope(
[slim.conv2d],
kernel_size=[hparams.discriminator_kernel_size] * 2,
activation_fn=lrelu_partial,
stride=2,
normalizer_fn=slim.batch_norm):
def add_noise(hidden, scope_num=None):
if scope_num:
hidden = slim.dropout(
hidden,
hparams.discriminator_dropout_keep_prob,
is_training=is_training,
scope='dropout_%s' % scope_num)
if hparams.discriminator_noise_stddev == 0:
return hidden
return hidden + tf.random_normal(
hidden.shape.as_list(),
mean=0.0,
stddev=hparams.discriminator_noise_stddev)
# As per the recommendation of the DCGAN paper, we don't use batch norm
# on the discriminator input (https://arxiv.org/pdf/1511.06434v2.pdf).
if hparams.discriminator_image_noise:
images = add_noise(images)
net = slim.conv2d(
images,
hparams.num_discriminator_filters,
normalizer_fn=None,
stride=hparams.discriminator_first_stride,
scope='conv1_stride%s' % hparams.discriminator_first_stride)
net = add_noise(net, 1)
block_id = 2
# Repeatedly stack
# discriminator_conv_block_size-1 conv layers with stride 1
# followed by a stride 2 layer
# Add (optional) noise at every point
while net.shape.as_list()[1] > hparams.projection_shape_size:
num_filters = int(hparams.num_discriminator_filters *
(hparams.discriminator_filter_factor**(block_id - 1)))
for conv_id in range(1, hparams.discriminator_conv_block_size):
net = slim.conv2d(
net,
num_filters,
stride=1,
scope='conv_%s_%s' % (block_id, conv_id))
if hparams.discriminator_do_pooling:
net = slim.conv2d(
net, num_filters, scope='conv_%s_prepool' % block_id)
net = slim.avg_pool2d(
net, kernel_size=[2, 2], stride=2, scope='pool_%s' % block_id)
else:
net = slim.conv2d(
net, num_filters, scope='conv_%s_stride2' % block_id)
net = add_noise(net, block_id)
block_id += 1
net = slim.flatten(net)
net = slim.fully_connected(
net,
1,
# Models with BN here generally produce noise
normalizer_fn=None,
activation_fn=None,
scope='fc_logit_out') # Returns logits!
return net
def dcgan_generator(images, output_shape, hparams, scope=None):
"""Transforms the visual style of the input images.
Args:
images: A `Tensor` of shape [batch_size, height, width, channels].
output_shape: A list or tuple of 3 elements: the output height, width and
number of channels.
hparams: hparams object with generator parameters
scope: Scope to place generator inside
Returns:
A `Tensor` of shape [batch_size, height, width, output_channels] which
represents the result of style transfer.
Raises:
ValueError: If `output_shape` is not a list or tuple or if it doesn't have
three elements or if `output_shape` or `images` arent square.
"""
if not isinstance(output_shape, (tuple, list)):
raise ValueError('output_shape must be a tuple or list.')
elif len(output_shape) != 3:
raise ValueError('output_shape must have three elements.')
if output_shape[0] != output_shape[1]:
raise ValueError('output_shape must be square')
if images.shape.as_list()[1] != images.shape.as_list()[2]:
raise ValueError('images height and width must match.')
outdim = output_shape[0]
indim = images.shape.as_list()[1]
num_iterations = int(math.ceil(math.log(float(outdim) / float(indim), 2.0)))
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose],
kernel_size=[hparams.generator_kernel_size] * 2,
stride=2):
with tf.variable_scope(scope or 'generator'):
net = images
# Repeatedly halve # filters until = hparams.decode_filters in last layer
for i in range(num_iterations):
num_filters = hparams.num_decoder_filters * 2**(num_iterations - i - 1)
net = slim.conv2d_transpose(net, num_filters, scope='deconv_%s' % i)
# Crop down to desired size (e.g. 32x32 -> 28x28)
dif = net.shape.as_list()[1] - outdim
low = dif / 2
high = net.shape.as_list()[1] - low
net = net[:, low:high, low:high, :]
# No batch norm on generator output
net = slim.conv2d(
net,
output_shape[2],
kernel_size=[1, 1],
stride=1,
normalizer_fn=None,
activation_fn=tf.tanh,
scope='conv_out')
return net
def dcgan(target_images, latent_vars, hparams, scope='dcgan'):
"""Creates the PixelDA model.
Args:
target_images: A `Tensor` of shape [batch_size, height, width, 3]
sampled from the image domain to which we want to transfer.
latent_vars: dictionary of 'key': Tensor of shape [batch_size, N]
hparams: The hyperparameter map.
scope: Surround generator component with this scope
Returns:
A dictionary of model outputs.
"""
proj_shape = [
hparams.projection_shape_size, hparams.projection_shape_size,
hparams.projection_shape_channels
]
source_volume = project_latent_vars(
hparams, proj_shape, latent_vars, combine_method='concat')
###################################################
# Transfer the source images to the target style. #
###################################################
with tf.variable_scope(scope, 'generator', [target_images]):
transferred_images = dcgan_generator(
source_volume,
output_shape=target_images.shape.as_list()[1:4],
hparams=hparams)
assert transferred_images.shape.as_list() == target_images.shape.as_list()
return {'transferred_images': transferred_images}
def resnet_generator(images, output_shape, hparams, latent_vars=None):
"""Creates a ResNet-based generator.
Args:
images: A `Tensor` of shape [batch_size, height, width, num_channels]
sampled from the image domain from which we want to transfer
output_shape: A length-3 array indicating the height, width and channels of
the output.
hparams: The hyperparameter map.
latent_vars: dictionary of 'key': Tensor of shape [batch_size, N]
Returns:
A dictionary of model outputs.
"""
with tf.variable_scope('generator'):
if latent_vars:
noise_channel = project_latent_vars(
hparams,
proj_shape=images.shape.as_list()[1:3] + [1],
latent_vars=latent_vars,
combine_method='concat')
images = tf.concat([images, noise_channel], 3)
transferred_images, end_points = resnet_stack(
images,
output_shape=output_shape,
hparams=hparams,
scope='resnet_stack')
end_points['transferred_images'] = transferred_images
return end_points
def residual_interpretation_block(images, hparams, scope):
"""Learns a residual image which is added to the incoming image.
Args:
images: A `Tensor` of size [batch_size, height, width, 3]
hparams: The hyperparameters struct.
scope: The name of the variable op scope.
Returns:
The updated images.
"""
with tf.variable_scope(scope):
with slim.arg_scope(
[slim.conv2d],
normalizer_fn=None,
kernel_size=[hparams.generator_kernel_size] * 2):
net = images
for _ in range(hparams.res_int_convs):
net = slim.conv2d(
net, hparams.res_int_filters, activation_fn=tf.nn.relu)
net = slim.conv2d(net, 3, activation_fn=tf.nn.tanh)
# Add the residual
images += net
# Clip the output
images = tf.maximum(images, -1.0)
images = tf.minimum(images, 1.0)
return images
def residual_interpretation_generator(images,
is_training,
hparams,
latent_vars=None):
"""Creates a generator producing purely residual transformations.
A residual generator differs from the resnet generator in that each 'block' of
the residual generator produces a residual image. Consequently, the 'progress'
of the model generation process can be directly observed at inference time,
making it easier to diagnose and understand.
Args:
images: A `Tensor` of shape [batch_size, height, width, num_channels]
sampled from the image domain from which we want to transfer. It is
assumed that the images are centered between -1 and 1.
is_training: whether or not the model is training.
hparams: The hyperparameter map.
latent_vars: dictionary of 'key': Tensor of shape [batch_size, N]
Returns:
A dictionary of model outputs.
"""
end_points = {}
with tf.variable_scope('generator'):
if latent_vars:
projected_latent = project_latent_vars(
hparams,
proj_shape=images.shape.as_list()[1:3] + [images.shape.as_list()[-1]],
latent_vars=latent_vars,
combine_method='sum')
images += projected_latent
with tf.variable_scope(None, 'residual_style_transfer', [images]):
for i in range(hparams.res_int_blocks):
images = residual_interpretation_block(images, hparams,
'residual_%d' % i)
end_points['transferred_images_%d' % i] = images
end_points['transferred_images'] = images
return end_points
def simple_generator(source_images, target_images, is_training, hparams,
latent_vars):
"""Simple generator architecture (stack of convs) for trying small models."""
end_points = {}
with tf.variable_scope('generator'):
feed_source_images = source_images
if latent_vars:
projected_latent = project_latent_vars(
hparams,
proj_shape=source_images.shape.as_list()[1:3] + [1],
latent_vars=latent_vars,
combine_method='concat')
feed_source_images = tf.concat([source_images, projected_latent], 3)
end_points = {}
###################################################
# Transfer the source images to the target style. #
###################################################
with slim.arg_scope(
[slim.conv2d],
normalizer_fn=slim.batch_norm,
stride=1,
kernel_size=[hparams.generator_kernel_size] * 2):
net = feed_source_images
# N convolutions
for i in range(1, hparams.simple_num_conv_layers):
normalizer_fn = None
if i != 0:
normalizer_fn = slim.batch_norm
net = slim.conv2d(
net,
hparams.simple_conv_filters,
normalizer_fn=normalizer_fn,
activation_fn=tf.nn.relu)
# Project back to right # image channels
net = slim.conv2d(
net,
target_images.shape.as_list()[-1],
kernel_size=[1, 1],
stride=1,
normalizer_fn=None,
activation_fn=tf.tanh,
scope='conv_out')
transferred_images = net
assert transferred_images.shape.as_list() == target_images.shape.as_list()
end_points['transferred_images'] = transferred_images
return end_points