File size: 9,822 Bytes
9c37e72 dba2773 9c37e72 1a16a58 9c37e72 0c5b55b 9c37e72 0c5b55b 9c37e72 1a16a58 9c37e72 0c5b55b 9c37e72 6e58c44 4834995 bd18577 2f51bd6 c75cc74 9eb1dec 9c37e72 234b51a 09d4214 06dd768 09d4214 0842639 baf370a 06dd768 9c37e72 2c22d61 9c37e72 1ecea99 fa73ddc 419e04c 9c37e72 9eb1dec dd55b25 8c11fa3 dd55b25 dec4937 6fe4e2e dd55b25 8c11fa3 dd55b25 10ef8bd dd55b25 c6ec27d 9eb1dec 9c37e72 9eb1dec 9531d63 9c37e72 9eb1dec 9c37e72 e113d20 3f6c2be 9c37e72 1a16a58 2c22d61 f1ae271 0a7287e 2c22d61 63c4e55 cb6a8b6 2bfe916 7b01ac0 06b5ba0 ea8c799 e0988f4 4c8e372 e8b7e7a 8cc1e8b 6e25163 dd55b25 3e4f1f9 dd55b25 ed0375d dd55b25 3e4f1f9 8c11fa3 f5aabdb 3e4f1f9 dd55b25 3e4f1f9 dd55b25 c6ec27d c08e6a6 1e17e2b cd370f7 c6ec27d cd370f7 1e17e2b cd370f7 fda8d0d 9eb1dec b9b4937 9eb1dec b9b4937 9eb1dec b9b4937 9eb1dec b9b4937 9eb1dec 4387995 2c22d61 c6ec27d c95ac40 9eb1dec b9b4937 c95ac40 b9b4937 9c37e72 0d9c3fb 9c37e72 b9b4937 ef54be3 9eb1dec ef54be3 9c37e72 b9b4937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
"""
#App: NLP App with Streamlit
Credits: Streamlit Team, Marc Skov Madsen(For Awesome-streamlit gallery)
Description
This is a Natural Language Processing(NLP) base Application that is useful for basic NLP tasks such as follows;
+ Tokenization(POS tagging) & Lemmatization(root mean) using Spacy
+ Named Entity Recognition(NER)/Trigger word detection using SpaCy
+ Sentiment Analysis using TextBlob
+ Document/Text Summarization using Gensim/T5 both for Bangla Extractive and English Abstructive.
This is built with Streamlit Framework, an awesome framework for building ML and NLP tools.
Purpose
To perform basic and useful NLP tasks with Streamlit, Spacy, Textblob, and Gensim
"""
# Core Pkgs
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#os.system('sudo apt-get install tesseract-ocr-eng')
#os.system('sudo apt-get install tesseract-ocr-ben')
#os.system('wget https://github.com/tesseract-ocr/tessdata/raw/main/ben.traineddata')
#os.system('gunzip ben.traineddata.gz ')
#os.system('sudo mv -v ben.traineddata /usr/local/share/tessdata/')
#os.system('pip install -q pytesseract')
#os.system('conda install -c conda-forge poppler')
import streamlit as st
st.set_page_config(page_title="Anomaly_Detection_Tool", layout="wide", initial_sidebar_state="expanded")
import torch
from transformers import AutoTokenizer, AutoModelWithLMHead, GPT2LMHeadModel
import docx2txt
from PIL import Image
from PyPDF2 import PdfFileReader
from pdf2image import convert_from_bytes
import pdfplumber
#from line_cor import mark_region
import pdf2image
# NLP Pkgs
from textblob import TextBlob
import spacy
#from gensim.summarization import summarize
import requests
import cv2
import numpy as np
import pytesseract
import line_cor
import altair as alt
#pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
from PIL import Image
#@st.experimental_singleton
@st.cache_resource(experimental_allow_widgets=True)
def read_pdf(file):
# images=pdf2image.convert_from_path(file)
# # print(type(images))
pdfReader = PdfFileReader(file)
count = pdfReader.numPages
all_page_text = " "
for i in range(count):
page = pdfReader.getPage(i)
# img = Image.open(page)
# img = Image.open(page)
# img = img.save("img.png")
# image_name = cv2.imread("img.png")
# # get co-ordinates to cr
# text = pytesseract.image_to_string(image_name, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(image_name)
all_page_text += page.extractText()+" "
return all_page_text
# def read_pdf_with_pdfplumber(file):
# all_page_text=" "
# # all_page_text = ""
# with pdfplumber.open(file) as pdf:
# page = pdf.pages[0]
# ge=page.to_image()
# img = Image.open(ge)
# img = img.save("img.png")
# image_name = cv2.imread("img.png")
# # get co-ordinates to c
# # return page.extract_text()
# # get co-ordinates to cr
# # # get co-ordinates to cr
# text = pytesseract.image_to_string(image_name, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(image_name)
# all_page_text += text + " " #page.extractText()
# return all_page_text
st.title("NLP APPLICATION")
#@st.experimental_singleton
@st.cache_resource(experimental_allow_widgets=True)
def text_analyzer(my_text):
nlp = spacy.load('en_core_web_sm')
docx = nlp(my_text)
# tokens = [ token.text for token in docx]
allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
return allData
#@st.experimental_singleton
@st.cache_resource(experimental_allow_widgets=True)
def load_models():
tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
model = GPT2LMHeadModel.from_pretrained('gpt2-large')
return tokenizer, model
# Function For Extracting Entities
#@st.experimental_singleton
@st.cache_resource(experimental_allow_widgets=True)
def entity_analyzer(my_text):
nlp = spacy.load('en_core_web_sm')
docx = nlp(my_text)
tokens = [ token.text for token in docx]
entities = [(entity.text,entity.label_)for entity in docx.ents]
allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)]
return allData
def main():
""" NLP Based Application with Streamlit """
st.markdown("""
#### Description
##This is a Natural Language Processing(NLP) base Application that is useful for basic NLP tasks such as follows:
+ Tokenization(POS tagging) & Lemmatization(root mean) using Spacy
+ Named Entity Recognition(NER)/Trigger word detection using SpaCy
+ Sentiment Analysis using TextBlob
+ Document/Text Summarization using T5 for English Abstractive.
""")
def change_photo_state():
st.session_state["photo"]="done"
st.subheader("Please, feed your image/text, features/services will appear automatically!")
message = st.text_input("Type your text here!")
camera_photo = st.camera_input("Take a photo, Containing English texts", on_change=change_photo_state)
uploaded_photo = st.file_uploader("Upload your PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
if "photo" not in st.session_state:
st.session_state["photo"]="not done"
if st.session_state["photo"]=="done" or message:
text=" "
if uploaded_photo and uploaded_photo.type=='application/pdf':
#file = uploaded_photo.read() # Read the data
#image_result = open(uploaded_photo.name, 'wb') # creates a writable image and later we can write the decoded result
#image_result.write(file)
tet = read_pdf(uploaded_photo)
#tet = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img)
values = st.slider('Select a approximate number of lines to see and summarize',value=[0, len(tet)//(7*10)])
text = tet[values[0]*7*10:values[1]*7*10] if values[0]!=len(tet)//(7*10) else tet[len(tet)//(7*10):]
st.success(text)
elif uploaded_photo:
img = Image.open(uploaded_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
# get co-ordinates to crop the image
#imag, lc = line_cor.mark_region(imge)
#st.success(*lc)
# c = lc
# cropping image img = image[y0:y1, x0:x1]
#imgg = imge[c[0][1]:c[1][1], c[0][0]:c[1][0]]
#plt.figure(figsize=(10,10))
# plt.imshow(img)
# convert the image to black and white for better OCR
#ret,thresh1 = cv2.threshold(imge,120,255,cv2.THRESH_BINARY)
# pytesseract image to string to get results
#text = str(pytesseract.image_to_string(img, config='--psm 6',lang="ben")) if st.checkbox("Bangla") else str(pytesseract.image_to_string(thresh1, config='--psm 6'))
text = pytesseract.image_to_string(img) #pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else
st.success(text)
elif camera_photo:
img = Image.open(camera_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
text = pytesseract.image_to_string(img) #pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img)
st.success(text)
elif uploaded_photo==None and camera_photo==None:
#our_image=load_image("image.jpg")
#img = cv2.imread("scholarly_text.jpg")
text = message
if st.checkbox("Show Named Entities English/Bangla"):
st.cache_data.clear()
entity_result = entity_analyzer(text)
st.json(entity_result)
if st.checkbox("Show Sentiment Analysis for English"):
st.cache_data.clear()
blob = TextBlob(text)
result_sentiment = blob.sentiment
st.success(result_sentiment)
if st.checkbox("Spell Corrections for English"):
st.cache_data.clear()
st.success(TextBlob(text).correct())
if st.checkbox("Text Generation"):
st.cache_data.clear()
tokenizer, model = load_models()
input_ids = tokenizer(text, return_tensors='pt').input_ids
st.text("Using Hugging Face Transformer, Contrastive Search ..")
output = model.generate(input_ids, max_length=128)
st.success(tokenizer.decode(output[0], skip_special_tokens=True))
# if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
# st.subheader("Summarize Your Text for English and Bangla Texts!")
# message = st.text_area("Enter the Text","Type please ..")
# st.text("Using Gensim Summarizer ..")
# st.success(message)
# summary_result = summarize(text)
# st.success(summary_result)
if st.checkbox("Mark to English Text Summarization!"):
#st.title("Summarize Your Text for English only!")
st.cache_data.clear()
tokenizer = AutoTokenizer.from_pretrained('t5-base')
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
#st.text("Using Google T5 Transformer ..")
inputs = tokenizer.encode("summarize: " + text,
return_tensors='pt',
max_length= 512,
truncation=True)
summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2)
summary = tokenizer.decode(summary_ids[0])
st.success(summary)
if st.button("refresh"):
st.cache_data.clear()
st.experimental_rerun()
if __name__ == '__main__':
main()
|