File size: 9,298 Bytes
b3b8331
 
 
fc67519
 
 
f032afa
6b7a426
ef0ac6b
73b559a
 
31a9872
73b559a
 
 
b3b8331
 
c627b59
b3b8331
 
 
 
 
99c48ed
b3b8331
 
 
 
 
 
 
 
 
 
 
 
c627b59
 
 
 
 
 
 
 
 
 
 
b3b8331
 
 
 
 
 
 
 
 
 
67037c0
bae53d6
9e95735
b3b8331
 
 
 
 
 
 
 
 
 
 
 
 
3aaa4ea
99c48ed
b3b8331
 
 
 
 
 
 
 
 
 
 
 
c627b59
 
 
 
 
 
 
 
 
b3b8331
 
 
 
 
 
 
 
 
 
 
 
9e95735
bae53d6
67037c0
b3b8331
 
 
 
 
 
 
9e95735
b3b8331
fc67519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0aabc3c
fc67519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a68afb9
 
 
 
 
 
fc67519
26ecfef
 
f032afa
fc67519
11f6298
e7e958a
c659a19
11f6298
e7e958a
c659a19
fc67519
 
 
 
 
 
b3b8331
9e95735
73b559a
 
 
9e95735
658014d
 
9e95735
b3b8331
9e95735
b3b8331
9e95735
b3b8331
9e95735
b3b8331
9e95735
b3b8331
389d4d9
9407769
d249d36
9407769
658014d
 
 
 
 
d249d36
658014d
 
 
 
 
 
d249d36
658014d
58dd96a
658014d
 
 
 
9e95735
b3b8331
 
 
9e95735
 
73b559a
 
9e99cb0
9e95735
 
 
 
 
 
 
 
 
 
fc67519
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import streamlit as st
from PIL import Image
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
from pathlib import Path
import base64
import pandas as pd

def clear_text():
    st.session_state.text = st.session_state.widget
    st.session_state.widget = ""

    
def get_result_text_es_pt (list_entity, text, lang):
    result_words = []
    tmp_word = ""
    if lang == "es":
        punc_tags = ['¿', '?', '¡', '!', ',', '.', ':']
    else:
        punc_tags = ['?', '!', ',', '.', ':']
    
    for idx, entity in enumerate(list_entity): 
        tag = entity["entity"]
        word = entity["word"]
        start = entity["start"]
        end = entity["end"]
        
        # check punctuation
        punc_in = next((p for p in punc_tags if p in tag), "")
                
        subword = False
        # check subwords
        if word[0] == "#": 
            subword = True
            if tmp_word == "":
                p_s = list_entity[idx-1]["start"]
                p_e = list_entity[idx-1]["end"]
                tmp_word = text[p_s:p_e] + text[start:end]
            else: 
                tmp_word = tmp_word + text[start:end]
            word = tmp_word
        else:
            tmp_word = ""
            word = text[start:end]
            
        if tag == "l": 
            word = word 
        elif tag == "u":
            word = word.capitalize()
        # case with punctuation
        else:
            if tag[-1] == "l":
                word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
            elif tag[-1] == "u":
                word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)     
        
        if tag != "l":
            word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
		
        if subword == True: 
            result_words[-1] = word
        else:
            result_words.append(word)

    return " ".join(result_words)
            


def get_result_text_ca (list_entity, text):
    result_words = []
    punc_tags = ['?', '!', ',', '.', ':']
    tmp_word = ""
    for idx, entity in enumerate(list_entity): 
        start = entity["start"]
        end = entity["end"]
        tag = entity["entity"]
        word = entity["word"]
        
        # check punctuation
        punc_in = next((p for p in punc_tags if p in tag), "")
                
        subword = False
        # check subwords
        if word[0] != "Ġ": 
            subword = True
            if tmp_word == "":
                p_s = list_entity[idx-1]["start"]
                p_e = list_entity[idx-1]["end"]
                tmp_word = text[p_s:p_e] + text[start:end]
            else: 
                tmp_word = tmp_word + text[start:end]
            word = tmp_word
        else:
            tmp_word = ""
            word = text[start:end]
        
        if tag == "l": 
            word = word 
        elif tag == "u":
            word = word.capitalize()
        # case with punctuation
        else:
            if tag[-1] == "l":
                word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
            elif tag[-1] == "u":
                word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)     
        
        if tag != "l":
            word = '<span style="font-weight:bold; color:rgb(142, 208, 129);">' + word + '</span>'
			
        if subword == True: 
            result_words[-1] = word
        else:
            result_words.append(word)

    return " ".join(result_words)


def link(link, text, **style):
    return a(_href=link, _target="_blank", style=styles(**style))(text)

def layout(*args):

    style = """
    <style>
      # MainMenu {visibility: hidden;}
      footer {visibility: hidden;}
     .stApp { bottom: 105px; }
    </style>
    """

    style_div = styles(
        position="fixed",
        left=0,
        bottom=0,
        margin=px(0, 0, 0, 0),
        width=percent(100),
        color="black",
        text_align="center",
        height="auto",
        opacity=1
    )

    style_hr = styles(
        display="block",
        margin=px(4, 4, 8, 0),
        border_style="inset",
        border_width=px(2)
    )

    body = p()
    foot = div(
        style=style_div
    )(
        hr(
            style=style_hr
        ),
        body
    )

    st.markdown(style, unsafe_allow_html=True)

    for arg in args:
        if isinstance(arg, str):
            body(arg)

        elif isinstance(arg, HtmlElement):
            body(arg)

    st.markdown(str(foot), unsafe_allow_html=True)


def img_to_bytes(img_path):
    img_bytes = Path(img_path).read_bytes()
    encoded = base64.b64encode(img_bytes).decode()
    return encoded

    
def footer():
    logo_path = Path(__file__).with_name("vocali_logo.jpg").parent.absolute()
    funding_path = Path(__file__).with_name("logo_funding.png").parent.absolute()
    
    myargs = [
        "<img src='data:image/jpg;base64,{}' class='img-fluid' width='100' height='60'>".format(
        img_to_bytes(str(logo_path) + "/vocali_logo.jpg")
        ),
        "<img src='data:image/png;base64,{}' class='img-fluid' width='350' height='60'>".format(
        img_to_bytes(str(funding_path)  + "/logo_funding.png")
        ),
        br(),
        "This work was funded by the Spanish Government, the Spanish Ministry of Economy and Digital Transformation through the Digital Transformation through the 'Recovery, Transformation and Resilience Plan' and also funded by the European Union NextGenerationEU/PRTR through the research project 2021/C005/0015007",
    ]
    layout(*myargs)

    
if __name__ == "__main__":

    if "text" not in st.session_state:
        st.session_state.text = ""
    
    st.title('Sanivert Punctuation And Capitalization Restoration')
    st.markdown("The model restores the following punctuation -- [? ! , . :] and also the capitalization of words.")
    
    model_es = AutoModelForTokenClassification.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
    tokenizer_es = AutoTokenizer.from_pretrained("VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert")
    pipe_es = pipeline("token-classification", model=model_es, tokenizer=tokenizer_es)
	
    model_ca = AutoModelForTokenClassification.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
    tokenizer_ca = AutoTokenizer.from_pretrained("VOCALINLP/catalan_capitalization_punctuation_restoration_sanivert")
    pipe_ca = pipeline("token-classification", model=model_ca, tokenizer=tokenizer_ca)
	
    model_pt = AutoModelForTokenClassification.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
    tokenizer_pt = AutoTokenizer.from_pretrained("VOCALINLP/portuguese_capitalization_punctuation_restoration_sanivert")
    pipe_pt = pipeline("token-classification", model=model_pt, tokenizer=tokenizer_pt)

    st.caption('Text examples in Spanish')  
    
    data_spanish = [['has tenido alguna enfermedad en la última semana', '¿Has tenido alguna enfermedad en la última semana?'], 
                    ['el paciente presenta los siguientes síntomas náuseas vértigo disnea fiebre y dolor abdominal', 'El paciente presenta los siguientes síntomas: náuseas, vértigo, disnea, fiebre y dolor abdominal.']]

    st.table(pd.DataFrame(data_spanish, columns=['Input', 'Output']))

    st.caption('Text examples in Catalan')

    data = [['has tingut alguna malaltia a la darrera setmana', 'Has tingut alguna malaltia a la darrera setmana?'], 
          ["pacient presenta els següents símptomes nàusees vertigen dispnea febre i dolor abdominal", "Pacient presenta els següents símptomes: nàusees, vertigen, dispnea, febre i dolor abdominal."]]

    st.table(pd.DataFrame(data, columns=['Input', 'Output']))

    st.caption('Text examples in Portuguese')  

    data_pt = [['sofre da doença de parkinson', 'Sofre da doença de Parkinson?'], 
          ['o doente apresenta os seguintes sintomas náuseas vertigens dispneia febre e dor abdominal', 'O doente apresenta os seguintes sintomas: náuseas, vertigens, dispneia, febre e dor abdominal.']]

    st.table(pd.DataFrame(data_pt, columns=['Input', 'Output']))

    input_text = st.selectbox(
      label = "Choose an language",
      options = ["Spanish", "Portuguese", "Catalan"]
	)

    st.subheader("Enter the text to be analyzed.")
    st.text_input('Enter text', key='widget', on_change=clear_text) #text is stored in this variable 
    text = st.session_state.text
    print(text)
    if input_text == "Spanish": 
        result_pipe = pipe_es(text)
        out = get_result_text_es_pt(result_pipe, text, "es")
    elif input_text == "Portuguese": 
        result_pipe = pipe_pt(text)
        out = get_result_text_es_pt(result_pipe, text, "pt")
    elif input_text == "Catalan": 
        result_pipe = pipe_ca(text)
        out = get_result_text_ca(result_pipe, text)

    st.markdown(out, unsafe_allow_html=True)
    footer()