Spaces:
Paused
Paused
File size: 6,618 Bytes
60b53a6 33f0de1 6696db2 33f0de1 60b53a6 3c28324 60b53a6 3c28324 9787d82 33f0de1 ea35578 2759f98 33f0de1 19de71a 6696db2 60b53a6 33f0de1 60b53a6 3c28324 33f0de1 bdd35f2 3c28324 391d3d3 3c28324 bdd35f2 6696db2 3226776 33f0de1 6696db2 bdd35f2 391d3d3 33f0de1 bdd35f2 bc7e16f bdd35f2 3226776 74a6012 3226776 74a6012 3226776 bc7e16f bdd35f2 74a6012 63afc3f bc7e16f 0c7cad3 bc7e16f 3226776 391d3d3 3226776 3c28324 3226776 3c28324 bdd35f2 3226776 33f0de1 74a6012 33f0de1 60b53a6 bc7e16f 3c28324 bc7e16f e1ef0ab 74a6012 3c28324 33f0de1 bdd35f2 3226776 19de71a 33f0de1 bc7e16f 33f0de1 0c7cad3 3226776 33f0de1 3226776 33f0de1 3c28324 bd87014 3c28324 33f0de1 63afc3f 3c28324 3226776 33f0de1 3226776 bd87014 33f0de1 3c28324 33f0de1 bd87014 60b53a6 0c7cad3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import time
# Authentification
login(token=os.environ["HF_TOKEN"])
# Liste des modèles
models = [
"meta-llama/Llama-2-13b-hf",
"meta-llama/Llama-2-7b-hf",
"meta-llama/Llama-2-70b-hf",
"meta-llama/Meta-Llama-3-8B",
"meta-llama/Llama-3.2-3B",
"meta-llama/Llama-3.1-8B",
"mistralai/Mistral-7B-v0.1",
"mistralai/Mixtral-8x7B-v0.1",
"mistralai/Mistral-7B-v0.3",
"google/gemma-2-2b",
"google/gemma-2-9b",
"google/gemma-2-27b",
"croissantllm/CroissantLLMBase"
]
# Variables globales
model = None
tokenizer = None
def load_model(model_name, progress=gr.Progress()):
global model, tokenizer
try:
for i in progress.tqdm(range(100)):
time.sleep(0.01) # Simuler le chargement
if i == 25:
tokenizer = AutoTokenizer.from_pretrained(model_name)
elif i == 75:
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
device_map="cpu",
attn_implementation="eager"
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return f"Modèle {model_name} chargé avec succès."
except Exception as e:
return f"Erreur lors du chargement du modèle : {str(e)}"
def analyze_next_token(input_text, temperature, top_p, top_k):
global model, tokenizer
if model is None or tokenizer is None:
return "Veuillez d'abord charger un modèle.", None, None
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
try:
with torch.no_grad():
outputs = model(**inputs)
last_token_logits = outputs.logits[0, -1, :]
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
top_k = 5
top_probs, top_indices = torch.topk(probabilities, top_k)
top_words = [tokenizer.decode([idx.item()]).strip() for idx in top_indices]
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
prob_plot = plot_probabilities(prob_data)
prob_text = "\n".join([f"{word}: {prob:.4f}" for word, prob in prob_data.items()])
attention_heatmap = plot_attention_alternative(inputs["input_ids"][0], last_token_logits)
return prob_text, attention_heatmap, prob_plot
except Exception as e:
return f"Erreur lors de l'analyse : {str(e)}", None, None
def generate_text(input_text, temperature, top_p, top_k):
global model, tokenizer
if model is None or tokenizer is None:
return "Veuillez d'abord charger un modèle."
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
try:
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=1,
temperature=temperature,
top_p=top_p,
top_k=top_k
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text # Retourne l'input + le nouveau mot
except Exception as e:
return f"Erreur lors de la génération : {str(e)}"
def plot_probabilities(prob_data):
words = list(prob_data.keys())
probs = list(prob_data.values())
fig, ax = plt.subplots(figsize=(10, 5))
sns.barplot(x=words, y=probs, ax=ax)
ax.set_title("Probabilités des tokens suivants les plus probables")
ax.set_xlabel("Tokens")
ax.set_ylabel("Probabilité")
plt.xticks(rotation=45)
plt.tight_layout()
return fig
def plot_attention_alternative(input_ids, last_token_logits):
input_tokens = tokenizer.convert_ids_to_tokens(input_ids)
attention_scores = torch.nn.functional.softmax(last_token_logits, dim=-1)
top_k = min(len(input_tokens), 10) # Limiter à 10 tokens pour la lisibilité
top_attention_scores, _ = torch.topk(attention_scores, top_k)
fig, ax = plt.subplots(figsize=(12, 6))
sns.heatmap(top_attention_scores.unsqueeze(0).numpy(), annot=True, cmap="YlOrRd", cbar=False, ax=ax)
ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right")
ax.set_yticklabels(["Attention"], rotation=0)
ax.set_title("Scores d'attention pour les derniers tokens")
plt.tight_layout()
return fig
def reset():
global model, tokenizer
model = None
tokenizer = None
return "", 1.0, 1.0, 50, None, None, None, None
with gr.Blocks() as demo:
gr.Markdown("# Analyse et génération de texte")
with gr.Accordion("Sélection du modèle"):
model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle")
load_button = gr.Button("Charger le modèle")
load_output = gr.Textbox(label="Statut du chargement")
with gr.Row():
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
input_text = gr.Textbox(label="Texte d'entrée", lines=3)
analyze_button = gr.Button("Analyser le prochain token")
next_token_probs = gr.Textbox(label="Probabilités du prochain token")
with gr.Row():
attention_plot = gr.Plot(label="Visualisation de l'attention")
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
generate_button = gr.Button("Générer le prochain mot")
generated_text = gr.Textbox(label="Texte généré")
reset_button = gr.Button("Réinitialiser")
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
analyze_button.click(analyze_next_token,
inputs=[input_text, temperature, top_p, top_k],
outputs=[next_token_probs, attention_plot, prob_plot])
generate_button.click(generate_text,
inputs=[input_text, temperature, top_p, top_k],
outputs=[generated_text])
reset_button.click(reset,
outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_plot, prob_plot, generated_text])
if __name__ == "__main__":
demo.launch()
|