Spaces:
Paused
Paused
File size: 8,629 Bytes
60b53a6 33f0de1 6696db2 33f0de1 60b53a6 3c28324 f18c3eb 2deee43 9787d82 33f0de1 ea35578 2759f98 33f0de1 19de71a 6696db2 60b53a6 2deee43 33f0de1 60b53a6 3c28324 33f0de1 bdd35f2 8869d77 f18c3eb 2deee43 984dc97 2deee43 8869d77 2deee43 f18c3eb bdd35f2 6696db2 f18c3eb 3226776 33f0de1 6696db2 bdd35f2 2deee43 33f0de1 bdd35f2 bc7e16f bdd35f2 3226776 2deee43 f18c3eb 2deee43 3226776 f18c3eb 2deee43 3226776 bdd35f2 f18c3eb 63afc3f f18c3eb 0c7cad3 f18c3eb 3226776 2deee43 3226776 2deee43 3226776 f18c3eb bdd35f2 3226776 33f0de1 f18c3eb 74a6012 f18c3eb 2deee43 f18c3eb 33f0de1 60b53a6 33f0de1 bdd35f2 3226776 19de71a 33f0de1 2deee43 33f0de1 0c7cad3 3226776 33f0de1 3226776 33f0de1 f18c3eb 33f0de1 2deee43 3c28324 3226776 33f0de1 3226776 f18c3eb 33f0de1 3c28324 33f0de1 f18c3eb 60b53a6 0c7cad3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import time
from langdetect import detect
# Authentification
login(token=os.environ["HF_TOKEN"])
# Liste des modèles
models = [
"meta-llama/Llama-2-13b-hf",
"meta-llama/Llama-2-7b-hf",
"meta-llama/Llama-2-70b-hf",
"meta-llama/Meta-Llama-3-8B",
"meta-llama/Llama-3.2-3B",
"meta-llama/Llama-3.1-8B",
"mistralai/Mistral-7B-v0.1",
"mistralai/Mixtral-8x7B-v0.1",
"mistralai/Mistral-7B-v0.3",
"google/gemma-2-2b",
"google/gemma-2-9b",
"google/gemma-2-27b",
"croissantllm/CroissantLLMBase"
]
# Dictionnaire des langues supportées par modèle
model_languages = {
"meta-llama/Llama-2-13b-hf": ["en"],
"meta-llama/Llama-2-7b-hf": ["en"],
"meta-llama/Llama-2-70b-hf": ["en"],
"meta-llama/Meta-Llama-3-8B": ["en"],
"meta-llama/Llama-3.2-3B": ["en", "de", "fr", "it", "pt", "hi", "es", "th"],
"meta-llama/Llama-3.1-8B": ["en", "de", "fr", "it", "pt", "hi", "es", "th"],
"mistralai/Mistral-7B-v0.1": ["en"],
"mistralai/Mixtral-8x7B-v0.1": ["en", "fr", "it", "de", "es"],
"mistralai/Mistral-7B-v0.3": ["en"],
"google/gemma-2-2b": ["en"],
"google/gemma-2-9b": ["en"],
"google/gemma-2-27b": ["en"],
"croissantllm/CroissantLLMBase": ["en", "fr"]
}
# Variables globales
model = None
tokenizer = None
def load_model(model_name, progress=gr.Progress()):
global model, tokenizer
try:
progress(0, desc="Chargement du tokenizer")
tokenizer = AutoTokenizer.from_pretrained(model_name)
progress(0.5, desc="Chargement du modèle")
# Configuration générique pour tous les modèles
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
low_cpu_mem_usage=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
progress(1.0, desc="Modèle chargé")
return f"Modèle {model_name} chargé avec succès."
except Exception as e:
return f"Erreur lors du chargement du modèle : {str(e)}"
def ensure_token_display(token):
"""Assure que le token est affiché correctement."""
if token.isdigit() or (token.startswith('-') and token[1:].isdigit()):
return tokenizer.decode([int(token)])
return token
def analyze_next_token(input_text, temperature, top_p, top_k):
global model, tokenizer
if model is None or tokenizer is None:
return "Veuillez d'abord charger un modèle.", None, None
# Détection de la langue
detected_lang = detect(input_text)
if detected_lang not in model_languages.get(model.config._name_or_path, []):
return f"Langue détectée ({detected_lang}) non supportée par ce modèle.", None, None
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
try:
with torch.no_grad():
outputs = model(**inputs)
last_token_logits = outputs.logits[0, -1, :]
probabilities = torch.nn.functional.softmax(last_token_logits / temperature, dim=-1)
top_k = min(top_k, probabilities.size(-1))
top_probs, top_indices = torch.topk(probabilities, top_k)
top_words = [ensure_token_display(tokenizer.decode([idx.item()])) for idx in top_indices]
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
prob_text = "Prochains tokens les plus probables :\n\n"
for word, prob in prob_data.items():
prob_text += f"{word}: {prob:.2%}\n"
prob_plot = plot_probabilities(prob_data)
attention_plot = plot_attention(inputs["input_ids"][0], last_token_logits)
return prob_text, attention_plot, prob_plot
except Exception as e:
return f"Erreur lors de l'analyse : {str(e)}", None, None
def generate_text(input_text, temperature, top_p, top_k):
global model, tokenizer
if model is None or tokenizer is None:
return "Veuillez d'abord charger un modèle."
# Détection de la langue
detected_lang = detect(input_text)
if detected_lang not in model_languages.get(model.config._name_or_path, []):
return f"Langue détectée ({detected_lang}) non supportée par ce modèle."
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
try:
outputs = model.generate(
**inputs,
max_new_tokens=50,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
except Exception as e:
return f"Erreur lors de la génération : {str(e)}"
def plot_probabilities(prob_data):
words = list(prob_data.keys())
probs = list(prob_data.values())
fig, ax = plt.subplots(figsize=(12, 6))
bars = ax.bar(range(len(words)), probs, color='lightgreen')
ax.set_title("Probabilités des tokens suivants les plus probables")
ax.set_xlabel("Tokens")
ax.set_ylabel("Probabilité")
ax.set_xticks(range(len(words)))
ax.set_xticklabels(words, rotation=45, ha='right')
for i, (bar, word) in enumerate(zip(bars, words)):
height = bar.get_height()
ax.text(i, height, f'{height:.2%}',
ha='center', va='bottom', rotation=0)
plt.tight_layout()
return fig
def plot_attention(input_ids, last_token_logits):
input_tokens = [ensure_token_display(tokenizer.decode([id])) for id in input_ids]
attention_scores = torch.nn.functional.softmax(last_token_logits, dim=-1)
top_k = min(len(input_tokens), 10)
top_attention_scores, _ = torch.topk(attention_scores, top_k)
fig, ax = plt.subplots(figsize=(14, 7))
sns.heatmap(top_attention_scores.unsqueeze(0).cpu().numpy(), annot=True, cmap="YlOrRd", cbar=True, ax=ax, fmt='.2%')
ax.set_xticklabels(input_tokens[-top_k:], rotation=45, ha="right", fontsize=10)
ax.set_yticklabels(["Attention"], rotation=0, fontsize=10)
ax.set_title("Scores d'attention pour les derniers tokens", fontsize=16)
cbar = ax.collections[0].colorbar
cbar.set_label("Score d'attention", fontsize=12)
cbar.ax.tick_params(labelsize=10)
plt.tight_layout()
return fig
def reset():
global model, tokenizer
model = None
tokenizer = None
return "", 1.0, 1.0, 50, None, None, None, None
with gr.Blocks() as demo:
gr.Markdown("# Analyse et génération de texte avec LLM")
with gr.Accordion("Sélection du modèle"):
model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle")
load_button = gr.Button("Charger le modèle")
load_output = gr.Textbox(label="Statut du chargement")
with gr.Row():
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
input_text = gr.Textbox(label="Texte d'entrée", lines=3)
analyze_button = gr.Button("Analyser le prochain token")
next_token_probs = gr.Textbox(label="Probabilités du prochain token")
with gr.Row():
attention_plot = gr.Plot(label="Visualisation de l'attention")
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
generate_button = gr.Button("Générer la suite du texte")
generated_text = gr.Textbox(label="Texte généré")
reset_button = gr.Button("Réinitialiser")
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
analyze_button.click(analyze_next_token,
inputs=[input_text, temperature, top_p, top_k],
outputs=[next_token_probs, attention_plot, prob_plot])
generate_button.click(generate_text,
inputs=[input_text, temperature, top_p, top_k],
outputs=[generated_text])
reset_button.click(reset,
outputs=[input_text, temperature, top_p, top_k, next_token_probs, attention_plot, prob_plot, generated_text])
if __name__ == "__main__":
demo.launch()
|