Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,357 Bytes
57218c8 0edd51d d5cdaf8 0edd51d 8a50ffc 793156d d49eeee 57218c8 d5cdaf8 d49eeee 57218c8 fabbd5e 0edd51d d5cdaf8 0edd51d 41548b6 89539f7 0edd51d 89539f7 0edd51d 5b8ee78 8a50ffc 89539f7 57218c8 89539f7 d8fa9a9 57218c8 b6711e8 d49eeee d5cdaf8 099787c d5cdaf8 d49eeee 52ca30c d49eeee d5cdaf8 57218c8 41548b6 d5cdaf8 57218c8 099787c 57218c8 099787c 57218c8 4dc3375 57218c8 4dc3375 57218c8 d49eeee 57218c8 099787c f8301d9 20eb88b 3a88736 0c0b5eb 2fe4fe9 864a3e0 3a88736 7e9d235 cc1cae8 229d8d7 cc1cae8 3ab9228 f864b44 bfe822e 099787c 51faa3e 0edd51d d5cdaf8 89539f7 0edd51d 4d87d48 0edd51d 89539f7 f864b44 7b0f2e1 e629eb6 89539f7 4612ee1 ef620c0 af57298 5119c67 4612ee1 ef2ac8b 099787c 89539f7 d5cdaf8 89539f7 099787c 0edd51d 57218c8 099787c 57218c8 b6711e8 099787c 0edd51d 099787c 57218c8 0edd51d 59bd43d 0edd51d 59bd43d 57218c8 b6711e8 d49eeee 1ea0405 099787c 41548b6 d49eeee 52ca30c d49eeee 59bd43d 0edd51d 89539f7 0edd51d 89539f7 57218c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
#!/usr/bin/env python
from __future__ import annotations
import requests
import os
import random
import gradio as gr
import numpy as np
import spaces
import torch
import cv2
import xformers
import triton
from PIL import Image
from io import BytesIO
from diffusers.utils import load_image
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, EulerDiscreteScheduler, DPMSolverMultistepScheduler
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>β οΈ This space is running on the CPU. This demo doesn't work on CPU π! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
num_inference_steps_base: int = 25,
use_vae: bool = False,
use_lora: bool = False,
use_lora2: bool = False,
model = 'stabilityai/stable-diffusion-xl-base-1.0',
vaemodel = 'madebyollin/sdxl-vae-fp16-fix',
lora = '',
lora2 = '',
lora_scale: float = 0.7,
lora_scale2: float = 0.7,
use_img2img: bool = False,
):
if torch.cuda.is_available():
if not use_img2img:
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
if use_vae:
vae = AutoencoderKL.from_pretrained(vaemodel, torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
if use_lora:
pipe.load_lora_weights(lora)
pipe.fuse_lora(lora_scale)
if use_lora2:
pipe.load_lora_weights(lora, adapter_name="1")
pipe.load_lora_weights(lora2, adapter_name="2")
pipe.set_adapters(["1", "2"], adapter_weights=[lora_scale, lora_scale2])
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
return pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="pil",
).images[0]
theme = gr.themes.Monochrome(
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
)
with gr.Blocks(theme=theme, css="style.css") as demo:
gr.HTML()
gr.Markdown("""# Squaad AI π§
### Run Stable Diffusion for free, in seconds
<small>Squaad AI was a free Artificial Intelligence website that brought together the best of the AI world in one place. Unfortunately, it had to cease operations after facing compatibility issues. This space is intended to make its legacy available as open source and allow anyone to run SD in a simple and free way.</small>
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<a target="_blank" href="https://discord.gg/CqXVwGDqFC"><img src="https://img.shields.io/badge/discord-join%20now-blue.svg?logo=discord" alt="discord.gg/CqXVwGDqFC"></a>
<a href="https://www.buymeacoffee.com/squaadai" target="_blank" style="margin-top: 10px;"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: auto !important;width: 130px !important;" ></a>
</div>""", elem_id="main_title")
with gr.Group():
model = gr.Text(label='Model', value='stabilityai/stable-diffusion-xl-base-1.0', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0', info='Enter the HUB path for this model! The model must be converted to diffusers to work. We recommend SG161222/RealVisXL_V4.0 for realistic generations, for example. By default, SDXL 1.0 (stabilityai/stable-diffusion-xl-base-1.0) will be used.')
vaemodel = gr.Text(label='VAE', placeholder='e.g. madebyollin/sdxl-vae-fp16-fix', info='You can use the VAE that suits you best! Using an unfamiliar VAE or one that is not from the same base model mentioned above will result in errors or distorted images. You must enable "Use VAE" in advanced settings if you want to use a VAE.')
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps_base = gr.Slider(
info="Number of denoising steps",
label="Number of inference steps",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row():
prompt = gr.Text(
placeholder="Input prompt",
label="Prompt",
show_label=False,
max_lines=1,
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_vae = gr.Checkbox(label='Use VAE', value=False)
use_lora = gr.Checkbox(label='Use Lora 1', value=False)
use_lora2 = gr.Checkbox(label='Use Lora 2', value=False)
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
with gr.Group():
gr.Markdown("""### LoRAs
<small>To activate the use of LoRAs, you should check only the 'Use 1 LoRA' checkbox if you want to use just one LoRA, and only the 'Use 2 LoRAs' checkbox if you want to use 2 LoRAs (i.e., blend styles)! It's important that all LoRAs are from the same base version of the selected model. For example, if the model is SDXL 1.0, the LoRA must also be.</small>"""
)
lora = gr.Text(label='LoRA 1', placeholder='e.g. nerijs/pixel-art-xl', visible=False)
lora2 = gr.Text(label='LoRA 2', placeholder='e.g. nerijs/pixel-art-xl', visible=False)
lora_scale = gr.Slider(
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
label="Lora Scale 1",
minimum=0.01,
maximum=1,
step=0.01,
value=0.7,
visible=False,
)
lora_scale2 = gr.Slider(
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
label="Lora Scale 2",
minimum=0.01,
maximum=1,
step=0.01,
value=0.7,
visible=False,
)
with gr.Group():
negative_prompt = gr.Text(
placeholder="Input Negative Prompt",
label="Negative prompt",
max_lines=1,
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Group():
guidance_scale_base = gr.Slider(
info="Scale for classifier-free guidance",
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_vae.change(
fn=lambda x: gr.update(visible=x),
inputs=use_vae,
outputs=vaemodel,
queue=False,
api_name=False,
)
use_lora.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
inputs=use_lora,
outputs=[lora, lora_scale],
queue=False,
api_name=False,
)
use_lora2.change(
fn=lambda x: [gr.update(visible=x), gr.update(visible=x), gr.update(visible=x), gr.update(visible=x)],
inputs=use_lora2,
outputs=[lora, lora2, lora_scale, lora_scale2],
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale_base,
num_inference_steps_base,
use_vae,
use_lora,
use_lora2,
model,
vaemodel,
lora,
lora2,
lora_scale,
lora_scale2,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |