File size: 11,088 Bytes
c8763bd
 
 
4cfc121
c8763bd
 
a894537
0f1bf97
 
 
c382b2a
483e3a1
0f1bf97
 
 
 
fbc8c87
0f1bf97
 
a894537
 
0f1bf97
c8763bd
 
 
d262fb3
708b21b
c8763bd
a894537
0321f62
 
 
a894537
dcfabfb
6db5c25
0321f62
bf397e6
0f1bf97
0321f62
 
804d27e
0321f62
a894537
dcfabfb
a894537
0321f62
a894537
 
 
0f1bf97
 
 
0321f62
0f1bf97
0321f62
ad86e2e
223c247
0321f62
 
0f1bf97
0321f62
efc3d5b
d262fb3
c8763bd
 
0321f62
e2c5bda
 
 
0321f62
 
 
 
 
 
a894537
223c247
0321f62
 
bf397e6
0321f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5490c7c
 
b3a1bf0
 
 
c3c27bd
e89d633
0321f62
e89d633
c3c27bd
 
 
5490c7c
e89d633
a600c79
e89d633
a600c79
e89d633
b3a1bf0
0321f62
e89d633
a894537
0f1bf97
e89d633
c8763bd
 
b3a1bf0
8e8c463
0f1bf97
a894537
0321f62
 
0f1bf97
0321f62
b3a1bf0
8e8c463
5236273
8e8c463
0321f62
0f1bf97
 
 
 
8e8c463
0321f62
fbbd324
 
8985298
d3abea5
5643bcb
 
0f1bf97
 
0321f62
 
0f1bf97
 
8e8c463
 
 
 
97058d0
c4dcfe7
 
 
 
 
0321f62
 
97058d0
b3a1bf0
 
a894537
0f1bf97
 
e2d1670
 
 
 
 
 
 
 
 
 
 
a894537
0321f62
b3a1bf0
 
 
 
 
 
0321f62
 
 
 
8e8c463
 
c8763bd
 
8e8c463
c8763bd
8e8c463
5721994
c8763bd
0321f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c796580
4cfc121
0321f62
 
 
 
 
 
 
 
 
 
 
 
b3a1bf0
0321f62
 
 
 
 
 
 
d262fb3
c796580
d262fb3
c8763bd
0f1bf97
 
 
 
 
 
c8763bd
d262fb3
 
c8763bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler

from src.assets.css_html_js import custom_css, custom_js
from src.assets.text_content import (
    TITLE,
    INTRODUCTION_TEXT,
    ABOUT_TEXT,
    EXAMPLE_CONFIG_TEXT,
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
)
from src.utils import (
    change_tab,
    restart_space,
    load_dataset_repo,
    process_model_name,
    process_model_type,
)


LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)

ALL_COLUMNS_MAPPING = {
    "weight_class": "Weight Class πŸ‹οΈ",
    "model_type": "LLM Type πŸ€—",
    "best_scored_model": "Best Scored LLM πŸ†",
    #
    "backend.name": "Backend 🏭",
    "backend.torch_dtype": "Dtype πŸ“₯",
    "quantization": "Quantization πŸ—œοΈ",
    "optimizations": "Optimizations πŸ› οΈ",
    #
    "best_score": "Best Score (%) ⬆️",
    "generate.peak_memory(MB)": "Memory (MB) ⬇️",
    "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
    "generate.energy_consumption(kWh/token)": "Energy (kWh/token) ⬇️",
    #
}
ALL_COLUMNS_DATATYPES = [
    "str",
    "str",
    "str",
    #
    "str",
    "str",
    "str",
    "str",
    #
    "str",
    "number",
    "number",
    "number",
    #
]
SORTING_COLUMN = ["perf_distance"]

llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)


def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
    if llm_perf_dataset_repo:
        llm_perf_dataset_repo.git_pull()

    # load data
    benchmark_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
    clusters_df = pd.read_csv("./llm-perf-dataset/Clustered-Open-LLM-Leaderboard.csv")
    # merge on model
    merged_df = benchmark_df.merge(
        clusters_df, left_on="model", right_on="best_scored_model"
    )
    # add optimizations
    merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply(
        lambda x: "BetterTransformer" if x else "None"
    )
    # add quantization scheme
    merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply(
        lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
    )
    # distance to 100% score, normalized to 0, 1
    score_distance = (100 - merged_df["best_score"]) / 100
    # distance to 0s latency, normalized to 0, 1
    latency_distance = merged_df["generate.latency(s)"] / (
        merged_df["generate.latency(s)"].max() - merged_df["generate.latency(s)"].min()
    )
    # distance to 0MB memory
    memory_distance = merged_df["forward.peak_memory(MB)"] / (
        merged_df["forward.peak_memory(MB)"].max()
        - merged_df["forward.peak_memory(MB)"].min()
    )
    # add perf distance
    merged_df["perf_distance"] = (
        score_distance**2 + latency_distance**2 + memory_distance**2
    ) ** 0.5

    return merged_df


def get_benchmark_table(bench_df):
    # add * to quantized models score
    copy_df = bench_df.copy()
    # add * to quantized models score since we can't garantee the score is the same
    copy_df["best_score"] = copy_df.apply(
        lambda x: f"{x['best_score']}**" if x["quantized"] else x["best_score"],
        axis=1,
    )
    # sort
    copy_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True)
    # filter
    copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())]
    # rename
    copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
    # transform
    copy_df["LLM Type πŸ€—"] = copy_df["LLM Type πŸ€—"].apply(process_model_type)
    copy_df["Best Scored Model πŸ†"] = copy_df["Best Scored Model πŸ†"].apply(
        process_model_name
    )
    return copy_df


def get_benchmark_plot(bench_df):
    fig = px.scatter(
        bench_df,
        y="best_score",
        x="generate.throughput(tokens/s)",
        size="generate.peak_memory(MB)",
        color="model_type",
        custom_data=list(ALL_COLUMNS_MAPPING.keys()),
        color_discrete_sequence=px.colors.qualitative.Light24,
    )
    fig.update_layout(
        title={
            "text": "Model Score vs. Latency vs. Memory",
            "y": 0.95,
            "x": 0.5,
            "xanchor": "center",
            "yanchor": "top",
        },
        xaxis_title="Generation Throughput (tokens/s)",
        yaxis_title="Open LLM Score (%)",
        legend_title="Model Type",
        width=1200,
        height=600,
    )
    fig.update_traces(
        hovertemplate="<br>".join(
            [
                f"<b>{ALL_COLUMNS_MAPPING[key]}:</b> %{{customdata[{i}]}}"
                for i, key in enumerate(ALL_COLUMNS_MAPPING.keys())
            ]
        )
    )
    return fig


def filter_query(
    text,
    backends,
    datatypes,
    optimizations,
    score,
    memory,
    benchmark="Succeeded-1xA100-80GB",
):
    raw_df = get_benchmark_df(benchmark=benchmark)
    filtered_df = raw_df[
        raw_df["best_scored_model"].str.lower().str.contains(text.lower())
        & raw_df["backend.name"].isin(backends)
        & raw_df["backend.torch_dtype"].isin(datatypes)
        & (
            pd.concat(
                [
                    raw_df["optimizations"].str.contains(optimization)
                    for optimization in optimizations
                ],
                axis=1,
            ).any(axis="columns")
            if len(optimizations) > 0
            else True
        )
        & (raw_df["best_score"] >= score)
        & (raw_df["forward.peak_memory(MB)"] <= memory)
    ]
    filtered_table = get_benchmark_table(filtered_df)
    filtered_plot = get_benchmark_plot(filtered_df)
    return filtered_table, filtered_plot


# Dataframes
A100_df = get_benchmark_df(benchmark="Succeeded-1xA100-80GB")
A100_table = get_benchmark_table(A100_df)
A100_plot = get_benchmark_plot(A100_df)

# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
    # leaderboard title
    gr.HTML(TITLE)
    # introduction text
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")

    # leaderboard tabs
    with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
        with gr.TabItem("πŸ–₯️ A100-80GB Benchmark πŸ†", id=0):
            gr.HTML(
                "πŸ‘‰ Scroll to the right πŸ‘‰ for more columns.", elem_id="descriptive-text"
            )
            # Original leaderboard table
            A100_leaderboard = gr.components.Dataframe(
                value=A100_table,
                datatype=ALL_COLUMNS_DATATYPES,
                headers=list(ALL_COLUMNS_MAPPING.values()),
                elem_id="1xA100-table",
            )

        with gr.TabItem("πŸ–₯️ A100-80GB Plot πŸ“Š", id=1):
            gr.HTML(
                "πŸ‘† Hover over the points πŸ‘† for additional information.",
                elem_id="descriptive-text",
            )
            # Original leaderboard plot
            A100_plotly = gr.components.Plot(
                value=A100_plot,
                elem_id="1xA100-plot",
                show_label=False,
            )

        with gr.TabItem("Control Panel πŸŽ›οΈ", id=2):
            gr.HTML(
                "Use this control panel to filter the leaderboard's table and plot.",
                elem_id="descriptive-text",
            )
            # control panel interface
            with gr.Row():
                with gr.Column(scale=1):
                    search_bar = gr.Textbox(
                        label="Model πŸ€—",
                        info="πŸ” Search for a model name",
                        elem_id="search-bar",
                    )
                with gr.Column(scale=1):
                    with gr.Box():
                        score_slider = gr.Slider(
                            label="Open LLM Score πŸ“ˆ",
                            info="🎚️ Slide to minimum Open LLM score",
                            value=0,
                            elem_id="threshold-slider",
                        )
                with gr.Column(scale=1):
                    with gr.Box():
                        memory_slider = gr.Slider(
                            label="Peak Memory (MB) πŸ“ˆ",
                            info="🎚️ Slide to maximum Peak Memory",
                            minimum=0,
                            maximum=80 * 1024,
                            value=80 * 1024,
                            elem_id="memory-slider",
                        )

            with gr.Row():
                with gr.Column(scale=1):
                    backend_checkboxes = gr.CheckboxGroup(
                        label="Backends 🏭",
                        choices=["pytorch", "onnxruntime"],
                        value=["pytorch", "onnxruntime"],
                        info="β˜‘οΈ Select the backends",
                        elem_id="backend-checkboxes",
                    )
                with gr.Column(scale=1):
                    datatype_checkboxes = gr.CheckboxGroup(
                        label="Dtypes πŸ“₯",
                        choices=["float32", "float16"],
                        value=["float32", "float16"],
                        info="β˜‘οΈ Select the load dtypes",
                        elem_id="dtype-checkboxes",
                    )
                with gr.Column(scale=2):
                    optimizations_checkboxes = gr.CheckboxGroup(
                        label="Optimizations πŸ› οΈ",
                        choices=["None", "BetterTransformer"],
                        value=["None", "BetterTransformer"],
                        info="β˜‘οΈ Select the optimizations",
                        elem_id="optimizations-checkboxes",
                    )

            with gr.Row():
                filter_button = gr.Button(
                    value="Filter πŸš€",
                    elem_id="filter-button",
                )

        with gr.TabItem("About πŸ“–", id=3):
            gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text")
            gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text")

    demo.load(
        change_tab,
        A100_tabs,
        _js=custom_js,
    )

    filter_button.click(
        filter_query,
        [
            search_bar,
            backend_checkboxes,
            datatype_checkboxes,
            optimizations_checkboxes,
            score_slider,
            memory_slider,
        ],
        [A100_leaderboard, A100_plotly],
    )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
            ).style(show_copy_button=True)


# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(
    restart_space,
    "interval",
    seconds=3600,
    args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
)
scheduler.start()

# Launch demo
demo.queue(concurrency_count=40).launch()