Spaces:
Running
Running
File size: 11,389 Bytes
c8763bd 4cfc121 c8763bd a894537 0f1bf97 c382b2a 0f1bf97 fbc8c87 0f1bf97 a894537 0f1bf97 c8763bd d262fb3 708b21b c8763bd a894537 f41da95 a894537 dcfabfb 6db5c25 bf397e6 0f1bf97 804d27e 97058d0 a894537 ec9f1c7 dcfabfb a894537 0f1bf97 ad86e2e 223c247 ec9f1c7 223c247 0f1bf97 5490c7c efc3d5b d262fb3 c8763bd b3a1bf0 e2c5bda 223c247 0f1bf97 a894537 ec9f1c7 a894537 ec9f1c7 223c247 5490c7c 89517bf bf397e6 f2d0515 223c247 f2d0515 223c247 f2d0515 223c247 f2d0515 223c247 f2d0515 75b2595 bf397e6 ec9f1c7 5490c7c b3a1bf0 5490c7c a600c79 a894537 a600c79 a894537 b3a1bf0 f41da95 fda0b51 a894537 0f1bf97 930b7c1 c8763bd b3a1bf0 f2d0515 8e785e9 8e8c463 0f1bf97 a894537 0f1bf97 a894537 0f1bf97 bf397e6 0f1bf97 b3a1bf0 8e8c463 5236273 8e8c463 0f1bf97 8e8c463 b3a1bf0 fbbd324 8985298 d3abea5 5643bcb 4cfc121 5643bcb 0f1bf97 a894537 bf397e6 0f1bf97 a894537 0f1bf97 8e8c463 97058d0 c4dcfe7 97058d0 b3a1bf0 a894537 0f1bf97 e2d1670 a894537 c4dcfe7 b3a1bf0 c796580 8e8c463 c8763bd 8e8c463 c8763bd 8e8c463 5721994 c8763bd 67b4a03 5721994 271d809 67b4a03 a894537 67b4a03 44c696c 97058d0 5721994 271d809 5721994 67b4a03 28d58c8 97058d0 5721994 271d809 ec9f1c7 271d809 67b4a03 6db5c25 67b4a03 6db5c25 67b4a03 c796580 67b4a03 c796580 5721994 c382b2a c796580 4cfc121 fbc8c87 c796580 fbc8c87 b3a1bf0 9dc4521 00642fb d262fb3 c796580 d262fb3 c8763bd 0f1bf97 c8763bd d262fb3 c8763bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
import gradio as gr
import pandas as pd
import plotly.express as px
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.css_html_js import custom_css, custom_js
from src.assets.text_content import (
TITLE,
INTRODUCTION_TEXT,
ABOUT_TEXT,
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
)
from src.utils import (
change_tab,
restart_space,
load_dataset_repo,
process_model_name,
process_model_type,
process_weight_class,
)
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
ALL_COLUMNS_MAPPING = {
"model_type": "Type π€",
"weight_class": "Class ποΈ",
#
"backend.name": "Backend π",
"backend.torch_dtype": "Dtype π₯",
"optimizations": "Optimizations π οΈ",
#
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
#
"best_scored_model": "Best Scored Model π",
"best_score": "Best Score (%) β¬οΈ",
}
ALL_COLUMNS_DATATYPES = [
"str",
"str",
#
"str",
"str",
"str",
#
"number",
"number",
#
"markdown",
"number",
]
SORTING_COLUMN = ["tradeoff"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark="1xA100-80GB"):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load and merge
bench_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
scores_df = pd.read_csv(
"./llm-perf-dataset/reports/Weighted+Classed-Open-LLM-Leaderboard.csv"
)
bench_df["merge_id"] = bench_df.experiment_name.str.split("_1_1000_").str[-1]
scores_df["merge_id"] = scores_df.weight_class + "_" + scores_df.model_type
merged_df = bench_df.merge(scores_df, on="merge_id")
# add optimizations
merged_df["optimizations"] = merged_df[
["backend.bettertransformer", "backend.load_in_8bit", "backend.load_in_4bit"]
].apply(
lambda x: ", ".join(
filter(
lambda x: x != "",
[
"BetterTransformer" if x[0] == True else "",
"LLM.int8" if x[1] == True else "",
"LLM.fp4" if x[2] == True else "",
],
),
)
if any([x[0] == True, x[1] == True, x[2] == True])
else "None",
axis=1,
)
# remove score for quantized models
merged_df.loc[
merged_df["optimizations"].str.contains("LLM.int8|LLM.fp4"), "best_score"
] = "Not Evaluated"
# create composite score
score_distance = 100 - merged_df["best_score"]
# normalize latency between 0 and 100
latency_distance = merged_df["generate.latency(s)"]
merged_df["tradeoff"] = (score_distance**2 + latency_distance**2) ** 0.5
merged_df["tradeoff"] = merged_df["tradeoff"].round(2)
return merged_df
def get_benchmark_table(bench_df):
# sort
bench_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True)
# filter
bench_df = bench_df[list(ALL_COLUMNS_MAPPING.keys())]
# rename
bench_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
# transform
bench_df["Type π€"] = bench_df["Type π€"].apply(process_model_type)
bench_df["Class ποΈ"] = bench_df["Class ποΈ"].apply(process_weight_class)
bench_df["Best Scored Model π"] = bench_df["Best Scored Model π"].apply(
process_model_name
)
return bench_df
def get_benchmark_plot(bench_df):
# untill falcon gets fixed / natively supported
bench_df = bench_df[bench_df["generate.latency(s)"] < 150]
fig = px.scatter(
bench_df,
x="generate.latency(s)",
y="best_score",
color="model_type",
size="forward.peak_memory(MB)",
custom_data=[
"best_scored_model",
"backend.name",
"backend.torch_dtype",
"optimizations",
"forward.peak_memory(MB)",
"generate.throughput(tokens/s)",
],
color_discrete_sequence=px.colors.qualitative.Light24,
)
fig.update_layout(
title={
"text": "Model Score vs. Latency vs. Memory",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Per 1000 Tokens Latency (s)",
yaxis_title="Open LLM Score (%)",
legend_title="Model Type",
width=1200,
height=600,
)
fig.update_traces(
hovertemplate="<br>".join(
[
"Model: %{customdata[0]}",
"Backend: %{customdata[1]}",
"Load Datatype: %{customdata[2]}",
"Optimizations: %{customdata[3]}",
"Peak Memory (MB): %{customdata[4]}",
"Throughput (tokens/s): %{customdata[5]}",
"Per 1000 Tokens Latency (s): %{x}",
"Open LLM Score (%): %{y}",
]
)
)
return fig
def filter_query(
text,
backends,
datatypes,
optimizations,
score,
memory,
benchmark="1xA100-80GB",
):
raw_df = get_benchmark_df(benchmark=benchmark)
filtered_df = raw_df[
raw_df["best_scored_model"].str.lower().str.contains(text.lower())
& raw_df["backend.name"].isin(backends)
& raw_df["backend.torch_dtype"].isin(datatypes)
& (
pd.concat(
[
raw_df["optimizations"].str.contains(optimization)
for optimization in optimizations
],
axis=1,
).any(axis="columns")
if len(optimizations) > 0
else True
)
& (raw_df["best_score"] >= score)
& (raw_df["forward.peak_memory(MB)"] <= memory)
]
filtered_table = get_benchmark_table(filtered_df)
filtered_plot = get_benchmark_plot(filtered_df)
return filtered_table, filtered_plot
# Dataframes
A100_df = get_benchmark_df(benchmark="1xA100-80GB")
A100_table = get_benchmark_table(A100_df)
A100_plot = get_benchmark_plot(A100_df)
# Demo interface
demo = gr.Blocks(css=custom_css)
with demo:
# leaderboard title
gr.HTML(TITLE)
# introduction text
gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")
# leaderboard tabs
with gr.Tabs(elem_classes="A100-tabs") as A100_tabs:
with gr.TabItem("π₯οΈ A100-80GB Benchmark π", id=0):
gr.HTML(
"π Scroll to the right π for more columns.", elem_id="descriptive-text"
)
# Original leaderboard table
A100_leaderboard = gr.components.Dataframe(
value=A100_table,
datatype=ALL_COLUMNS_DATATYPES,
headers=list(ALL_COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
gr.HTML(
"π Hover over the points π for additional information.",
elem_id="descriptive-text",
)
# Original leaderboard plot
A100_plotly = gr.components.Plot(
value=A100_plot,
elem_id="1xA100-plot",
show_label=False,
)
with gr.TabItem("Control Panel ποΈ", id=2):
gr.HTML(
"Use this control panel to filter the leaderboard's table and plot.",
elem_id="descriptive-text",
)
# control panel interface
with gr.Row():
with gr.Column(scale=1):
search_bar = gr.Textbox(
label="Model π€",
info="π Search for a model name",
elem_id="search-bar",
)
with gr.Column(scale=1):
with gr.Box():
score_slider = gr.Slider(
label="Open LLM Score π",
info="ποΈ Slide to minimum Open LLM score",
value=0,
elem_id="threshold-slider",
)
with gr.Column(scale=1):
with gr.Box():
memory_slider = gr.Slider(
label="Peak Memory (MB) π",
info="ποΈ Slide to maximum Peak Memory",
minimum=0,
maximum=80 * 1024,
value=80 * 1024,
elem_id="memory-slider",
)
with gr.Row():
with gr.Column(scale=1):
backend_checkboxes = gr.CheckboxGroup(
label="Backends π",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="βοΈ Select the backends",
elem_id="backend-checkboxes",
)
with gr.Column(scale=1):
datatype_checkboxes = gr.CheckboxGroup(
label="Dtypes π₯",
choices=["float32", "float16"],
value=["float32", "float16"],
info="βοΈ Select the load dtypes",
elem_id="dtype-checkboxes",
)
with gr.Column(scale=2):
optimizations_checkboxes = gr.CheckboxGroup(
label="Optimizations π οΈ",
choices=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"],
value=["None", "BetterTransformer", "LLM.int8", "LLM.fp4"],
info="βοΈ Select the optimizations",
elem_id="optimizations-checkboxes",
)
with gr.Row():
filter_button = gr.Button(
value="Filter π",
elem_id="filter-button",
)
with gr.TabItem("About π", id=3):
gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text")
demo.load(
change_tab,
A100_tabs,
_js=custom_js,
)
filter_button.click(
filter_query,
[
search_bar,
backend_checkboxes,
datatype_checkboxes,
optimizations_checkboxes,
score_slider,
memory_slider,
],
[A100_leaderboard, A100_plotly],
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(
restart_space,
"interval",
seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
)
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()
|