File size: 9,152 Bytes
bc63b44
194731c
b058713
 
f4325ab
194731c
069bfa6
 
64a72dd
b529f79
a479880
069bfa6
 
379c443
b994095
b058713
c7cf3c2
 
 
 
 
 
b058713
c7cf3c2
 
 
 
b058713
e643487
d1da5ff
cab69d9
a479880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069bfa6
b994095
069bfa6
194731c
b994095
e6614b8
194731c
8504394
 
e4621e6
8504394
 
 
 
 
 
 
2a237b2
53d2cb3
8504394
 
 
e4621e6
8504394
 
 
 
 
66722b9
8504394
 
e6614b8
069bfa6
 
 
 
e1dcc24
 
069bfa6
 
 
f4325ab
069bfa6
 
 
 
 
 
 
 
 
 
 
b994095
069bfa6
 
 
 
 
 
 
d9a6e5a
ee975a5
069bfa6
 
 
 
 
 
 
ee975a5
069bfa6
 
 
 
 
 
915a0f9
069bfa6
 
 
 
915a0f9
069bfa6
 
 
 
 
 
 
 
 
6397229
194731c
980f253
 
 
 
194731c
 
 
980f253
194731c
 
 
ac28cc5
 
194731c
 
 
ac28cc5
194731c
d1da5ff
e643487
d1da5ff
64a72dd
 
 
 
 
 
 
37ebaa4
debdc1c
64a72dd
b44eeef
ee975a5
 
 
 
 
 
 
d1da5ff
 
194731c
c7cf3c2
194731c
d1da5ff
194731c
c17c736
 
038610e
3c24b96
cab69d9
5a38614
 
194731c
 
 
 
 
ac28cc5
 
 
 
 
 
 
 
 
 
 
172d00c
 
194731c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import spaces
import gradio as gr
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import DataCollatorForSeq2Seq, AutoConfig
from datasets import load_dataset, concatenate_datasets, load_from_disk
import traceback
from sklearn.metrics import accuracy_score
import numpy as np
import torch
import os
import evaluate
from huggingface_hub import login
from peft import get_peft_model, LoraConfig

os.environ['HF_HOME'] = '/data/.huggingface'
'''
lora_config = LoraConfig(
    r=16,  # Rank of the low-rank adaptation
    lora_alpha=32,  # Scaling factor
    lora_dropout=0.1,  # Dropout for LoRA layers
    bias="none"  # Bias handling
)
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
model = get_peft_model(model, lora_config)
model.gradient_checkpointing_enable()
model_save_path = '/data/lora_finetuned_model'  # Specify your desired save path
model.save_pretrained(model_save_path)
'''

def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    try:
        metric = evaluate.load("rouge", cache_dir='/cache')
        def compute_metrics(eval_preds):
            preds, labels = eval_preds
            if isinstance(preds, tuple):
                preds = preds[0]
            # Replace -100s used for padding as we can't decode them
            preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
            decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
            decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
      
            result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
            result = {k: round(v * 100, 4) for k, v in result.items()}
            prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
            result["gen_len"] = np.mean(prediction_lens)
            return result
        
        login(api_key.strip())
   
    
        # Load the model and tokenizer
             
        
    
        # Set training arguments
        training_args = TrainingArguments(
            output_dir='/data/results',
            eval_strategy="steps",  # Change this to steps
            save_strategy='steps',
            learning_rate=lr*0.00001,
            per_device_train_batch_size=int(batch_size),
            per_device_eval_batch_size=int(batch_size), 
            num_train_epochs=int(num_epochs),
            weight_decay=0.01,
            #gradient_accumulation_steps=int(grad),
            #max_grad_norm = 1.0, 
            load_best_model_at_end=True,
            metric_for_best_model="accuracy",
            greater_is_better=True,
            logging_dir='/data/logs',
            logging_steps=10,
            #push_to_hub=True,
            hub_model_id=hub_id.strip(),
            fp16=True,
            #lr_scheduler_type='cosine',
            save_steps=100,  # Save checkpoint every 500 steps
            save_total_limit=3, 
        )
        # Check if a checkpoint exists and load it
        if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
            print("Loading model from checkpoint...")
            model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)        
    
        #max_length = 128
        max_length = model.get_input_embeddings().weight.shape[0]
        try:
            tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
            tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
            
            # Create Trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=tokenized_train_dataset,
                eval_dataset=tokenized_test_dataset,
                compute_metrics=compute_metrics,
            )            
        except:
            # Load the dataset
            dataset = load_dataset(dataset_name.strip())
            tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
            # Tokenize the dataset
            def tokenize_function(examples):
                
                # Assuming 'text' is the input and 'target' is the expected output
                model_inputs = tokenizer(
                    examples['text'], 
                    max_length=max_length,  # Set to None for dynamic padding
                    truncation=True,
                    padding=True, 
                )
            
                # Setup the decoder input IDs (shifted right)
                labels = tokenizer(
                    examples['target'], 
                    max_length=max_length,  # Set to None for dynamic padding
                    truncation=True,
                    padding=True, 
                    text_target=examples['target']  # Use text_target for target text
                )
            
                # Add labels to the model inputs
                model_inputs["labels"] = labels["input_ids"]
                return model_inputs
        
            tokenized_datasets = dataset.map(tokenize_function, batched=True)
            
            tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
            tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
        
            # Create Trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=tokenized_datasets['train'],
                eval_dataset=tokenized_datasets['test'],
                compute_metrics=compute_metrics,
                #callbacks=[LoggingCallback()], 
            )            

        # Fine-tune the model
        if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
            train_result = trainer.train(resume_from_checkpoint=True)
        else:
            train_result = trainer.train()
        trainer.push_to_hub(commit_message="Training complete!")
    except Exception as e:
        return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
    return 'DONE!'#train_result
'''
# Define Gradio interface
def predict(text):
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(inputs)
    predictions = outputs.logits.argmax(dim=-1)
    return predictions.item()
'''

@spaces.GPU(duration=120)
def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    def initialize_weights(model):
        for name, param in model.named_parameters():
            if 'encoder.block.0.layer.0.DenseReluDense.wi.weight' in name:  # Example layer
                torch.nn.init.xavier_uniform_(param.data)  # Xavier initialization
            elif 'encoder.block.0.layer.0.DenseReluDense.wo.weight' in name:  # Another example layer
                torch.nn.init.kaiming_normal_(param.data)  # Kaiming initialization
    
    config = AutoConfig.from_pretrained("google/t5-efficient-tiny")
    model = AutoModelForSeq2SeqLM.from_config(config)
    initialize_weights(model)
    print(list(model.named_parameters()))
    lora_config = LoraConfig(
        r=16,  # Rank of the low-rank adaptation
        lora_alpha=32,  # Scaling factor
        lora_dropout=0.1,  # Dropout for LoRA layers
        bias="none"  # Bias handling
    )
    model = get_peft_model(model, lora_config)
    result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
    return result
# Create Gradio interface
try:    
    iface = gr.Interface(
        fn=run_train,
        inputs=[
            gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
            gr.Textbox(label="HF hub to push to after training"),
            gr.Textbox(label="HF API token"),
            gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
            gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
            gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
            gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1), 
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
    )
    '''
    iface = gr.Interface(
        fn=predict,
        inputs=[
            gr.Textbox(label="Query"),
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to test a fine-tune Hugging Face model."
    )
    '''
    # Launch the interface
    iface.launch()    
except Exception as e:
    print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")