File size: 10,964 Bytes
6c85792
c8cb9bb
 
924af64
c8cb9bb
 
 
6c85792
a5ca5a6
 
 
 
 
a18a2d9
a5ca5a6
 
 
bba2454
a5ca5a6
 
 
 
 
 
 
774d798
a5ca5a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d01019
6c85792
 
21fc719
6c85792
924af64
6d2e8db
 
924af64
6d2e8db
 
924af64
ede9250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924af64
 
 
ede9250
bba2454
ea1e63c
ede9250
 
2e0fb71
020dc5b
a0a768e
 
 
6717f64
 
 
924af64
6717f64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea1e63c
6717f64
 
 
 
ede9250
6717f64
ede9250
38af3c8
ede9250
6717f64
ede9250
6717f64
 
 
 
 
 
 
2e0fb71
ede9250
 
 
 
 
 
 
 
 
 
 
 
 
6717f64
ea1e63c
a5ca5a6
 
 
 
 
46cde7f
ede9250
 
 
383d7cb
6717f64
924af64
6717f64
 
924af64
383d7cb
6717f64
 
 
 
 
ede9250
2e0fb71
6c85792
924af64
6c85792
3aeab0c
924af64
ede9250
3bccf73
ede9250
 
 
 
 
6c85792
 
 
 
 
 
 
 
 
cd73099
924af64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd73099
6c85792
 
924af64
 
 
 
 
 
 
 
 
 
 
ede9250
 
6c85792
ede9250
924af64
ede9250
 
 
 
 
 
 
924af64
ede9250
 
 
32d9c0d
924af64
ede9250
 
924af64
 
 
ede9250
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import gradio as gr
from PIL import Image
import numpy as np
import os,sys
import uuid
import torch
import cv2

import io
import multiprocessing
import random
import time
import imghdr
from loguru import logger

from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config

try:
    torch._C._jit_override_can_fuse_on_cpu(False)
    torch._C._jit_override_can_fuse_on_gpu(False)
    torch._C._jit_set_texpr_fuser_enabled(False)
    torch._C._jit_set_nvfuser_enabled(False)
except:
    pass

from lama_cleaner.helper import (
    load_img,
    numpy_to_bytes,
    resize_max_size,
)

NUM_THREADS = str(multiprocessing.cpu_count())

# fix libomp problem on windows https://github.com/Sanster/lama-cleaner/issues/56
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"

os.environ["OMP_NUM_THREADS"] = NUM_THREADS
os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
os.environ["MKL_NUM_THREADS"] = NUM_THREADS
os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
if os.environ.get("CACHE_DIR"):
    os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]

HF_TOKEN_SD = os.environ.get('HF_TOKEN_SD')

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'device = {device}')

def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

def get_image_enhancer(scale = 2, device='cuda:0'):
    from basicsr.archs.rrdbnet_arch import RRDBNet
    from realesrgan import RealESRGANer
    from realesrgan.archs.srvgg_arch import SRVGGNetCompact
    from gfpgan import GFPGANer

    realesrgan_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
                    num_block=23, num_grow_ch=32, scale=4
                  )
    netscale = scale

    model_realesrgan = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
    upsampler = RealESRGANer(
          scale=netscale,
          model_path=model_realesrgan,
          model=realesrgan_model,
          tile=0,
          tile_pad=10,
          pre_pad=0,
          half=False if device=='cpu' else True,
          device=device
    )

    model_GFPGAN = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'
    img_enhancer = GFPGANer(
          model_path=model_GFPGAN,
          upscale=scale,
          arch='clean',
          channel_multiplier=2,
          bg_upsampler=upsampler,
          device=device
      )
    return img_enhancer

image_enhancer = None
if sys.platform == 'linux':
    image_enhancer = get_image_enhancer(scale = 1, device=device)
        
model = None

def model_process(image, mask, img_enhancer):
    global model,image_enhancer
    
    if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
        # rotate image
        image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
        
    original_shape = image.shape
    interpolation = cv2.INTER_CUBIC
    
    size_limit = 1080
    if size_limit == "Original":
        size_limit = max(image.shape)
    else:
        size_limit = int(size_limit)

    config = Config(
        ldm_steps=25,
        ldm_sampler='plms',
        zits_wireframe=True,
        hd_strategy='Original',
        hd_strategy_crop_margin=196,
        hd_strategy_crop_trigger_size=1280,
        hd_strategy_resize_limit=2048,
        prompt='',
        use_croper=False,
        croper_x=0,
        croper_y=0,
        croper_height=512,
        croper_width=512,
        sd_mask_blur=5,
        sd_strength=0.75,
        sd_steps=50,
        sd_guidance_scale=7.5,
        sd_sampler='ddim',
        sd_seed=42,
        cv2_flag='INPAINT_NS',
        cv2_radius=5,
    )
    
    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)

    logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
    image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
    logger.info(f"Resized image shape_1_: {image.shape}")
    
    logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
    mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
    logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")

    if model is None:
        return None
        
    res_np_img = model(image, mask, config)
    torch.cuda.empty_cache()
  
    image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
    
    if image_enhancer is not None and img_enhancer:
        start = time.time()
        input_img_rgb = np.array(image)
        input_img_bgr = input_img_rgb[...,[2,1,0]]                        
        _, _, enhance_img = image_enhancer.enhance(input_img_bgr, has_aligned=False,
                                                only_center_face=False, paste_back=True)  
        input_img_rgb = enhance_img[...,[2,1,0]]
        img_enhance = Image.fromarray(np.uint8(input_img_rgb))                                                         
        image = img_enhance  
        log_info = f"image_enhancer_: {(time.time() - start) * 1000}ms, {res_np_img.shape} "
        logger.info(log_info)
         
    return  image # image
    
model = ModelManager(
        name='lama',
        device=device,
    )

image_type = 'pil' # filepath' 
def predict(input, img_enhancer):
    if input is None:
        return None
    if image_type == 'filepath':
        # input: {'image': '/tmp/tmp8mn9xw93.png', 'mask': '/tmp/tmpn5ars4te.png'}
        origin_image_bytes = open(input["image"], 'rb').read()
        print(f'origin_image_bytes = ', type(origin_image_bytes), len(origin_image_bytes))    
        image, _ = load_img(origin_image_bytes) 
        mask, _ = load_img(open(input["mask"], 'rb').read(), gray=True)       
    elif image_type == 'pil':
        # input: {'image': pil, 'mask': pil}
        image_pil = input['image']
        mask_pil = input['mask']
        image = np.array(image_pil)
        mask = np.array(mask_pil.convert("L"))
    output = model_process(image, mask, img_enhancer)
    return output


css = '''
.container {max-width: 100%;margin: auto;padding-top: 1.5rem}
#begin-btn {color: blue; font-size:20px;}
#work-container {min-width: min(160px, 100%) !important;flex-grow: 0 !important}
#image_output{margin: 0 auto; text-align: center;width:640px}
#erase-container{margin: 0 auto; text-align: center;width:150px;border-width:5px;border-color:#2c9748}
#enhancer-checkbox{width:520px}
#enhancer-tip{width:450px}
#enhancer-tip-div{text-align: left}
#prompt-container{margin: 0 auto; text-align: center;width:fit-content;min-width: min(150px, 100%);flex-grow: 0; flex-wrap: nowrap;}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
'''
set_page_elements = """async () => {
    function isMobile() {
        try {
            document.createEvent("TouchEvent"); return true;
        } catch(e) {
            return false; 
        }
    }

    var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
    if (!gradioEl) {
        gradioEl = document.querySelector('body > gradio-app');
    }
    var group1 = gradioEl.querySelectorAll('#group_1')[0];
    var group2 = gradioEl.querySelectorAll('#group_2')[0];    
    var image_upload = gradioEl.querySelectorAll('#image_upload')[0];
    var image_output = gradioEl.querySelectorAll('#image_output')[0];
    var data_image = gradioEl.querySelectorAll('#image_upload [data-testid="image"]')[0];
    var data_image_div = gradioEl.querySelectorAll('#image_upload [data-testid="image"] > div')[0];

    if (isMobile()) {
        var group1_width = group1.offsetWidth;
        image_upload.setAttribute('style', 'width:' + (group1_width - 13*2) + 'px; min-height:none;');
        data_image.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
        data_image_div.setAttribute('style', 'width: ' + (group1_width - 14*2) + 'px;min-height:none;');
        image_output.setAttribute('style', 'width: ' + (group1_width - 13*2) + 'px;min-height:none;'); 
        var enhancer = gradioEl.querySelectorAll('#enhancer-checkbox')[0];  
        enhancer.style.display = "none";
    } else {
        image_upload.setAttribute('style', 'min-height: 600px; overflow-x: overlay');
        data_image.setAttribute('style', 'height: 600px');
        data_image_div.setAttribute('style', 'min-height: 600px');
        image_output.setAttribute('style', 'width: 600px'); 
    }
    group1.style.display = "none";
    group2.style.display = "block";

}"""

image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
    with gr.Group(elem_id="group_1", visible=True) as group_1:
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    gallery = gr.Gallery(value=['./sample_00.jpg','./sample_00_e.jpg'], show_label=False)
                    gallery.style(grid=[2], width=320)                                 
            with gr.Row():
                with gr.Column():
                    begin_button = gr.Button("Let's GO!", elem_id="begin-btn", visible=True) 

    with gr.Group(elem_id="group_2", visible=False) as group_2:    
        with gr.Box(elem_id="work-container"):
            with gr.Row(elem_id="input-container"):
                with gr.Column():
                    image = gr.Image(source='upload', elem_id="image_upload",tool='sketch', type=f'{image_type}', 
                                     label="Upload(载入图片)", show_label=False).style(mobile_collapse=False)
            with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                with gr.Column(elem_id="erase-container"):
                    btn_erase = gr.Button(value = "Erase(擦除↓)",elem_id="erase_btn").style(
                        margin=True,
                        rounded=(True, True, True, True),
                        full_width=True,
                    ).style(width=100)   
                with gr.Column(elem_id="enhancer-checkbox", visible=True if image_enhancer is not None else False):
                    enhancer_label = 'Enhanced image(processing is very slow, please check only for blurred images)【增强图像(处理很慢,请仅针对模糊图像做勾选)】'
                    img_enhancer = gr.Checkbox(label=enhancer_label).style(width=150) 
            with gr.Row(elem_id="output-container"):             
                with gr.Column():
                    image_out = gr.Image(elem_id="image_output",label="Result", show_label=False)
                    
            btn_erase.click(fn=predict, inputs=[image, img_enhancer], outputs=[image_out])
    
        begin_button.click(fn=None, inputs=[], outputs=[group_1, group_2], _js=set_page_elements)

image_blocks.launch()