|
--- |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnec |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: CNEC1_1_extended_xlm-roberta-large |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cnec |
|
type: cnec |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8533541341653667 |
|
- name: Recall |
|
type: recall |
|
value: 0.8770710849812934 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8650500790722193 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9670664608320468 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CNEC1_1_extended_xlm-roberta-large |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1498 |
|
- Precision: 0.8534 |
|
- Recall: 0.8771 |
|
- F1: 0.8651 |
|
- Accuracy: 0.9671 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3961 | 1.0 | 581 | 0.1800 | 0.8004 | 0.8231 | 0.8116 | 0.9560 | |
|
| 0.1772 | 2.0 | 1162 | 0.1518 | 0.8357 | 0.8648 | 0.8500 | 0.9642 | |
|
| 0.1266 | 3.0 | 1743 | 0.1545 | 0.8377 | 0.8717 | 0.8544 | 0.9680 | |
|
| 0.1043 | 4.0 | 2324 | 0.1472 | 0.8473 | 0.8691 | 0.8580 | 0.9656 | |
|
| 0.0804 | 5.0 | 2905 | 0.1498 | 0.8534 | 0.8771 | 0.8651 | 0.9671 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|