File size: 3,366 Bytes
72228eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c91c3f
72228eb
 
4c91c3f
72228eb
 
4c91c3f
72228eb
 
4c91c3f
72228eb
 
 
 
 
 
 
 
 
4c91c3f
 
 
 
 
72228eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
910c6c2
 
72228eb
 
 
910c6c2
72228eb
 
 
39c8be8
 
4c91c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72228eb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC1_1_xlm-roberta-large
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: cnec
      type: cnec
      config: default
      split: validation
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.8521036974075649
    - name: Recall
      type: recall
      value: 0.8721183123096998
    - name: F1
      type: f1
      value: 0.8619948409286329
    - name: Accuracy
      type: accuracy
      value: 0.9512518524296076
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CNEC1_1_xlm-roberta-large

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3816
- Precision: 0.8521
- Recall: 0.8721
- F1: 0.8620
- Accuracy: 0.9513

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.4004        | 1.0   | 1174  | 0.2747          | 0.7598    | 0.7876 | 0.7735 | 0.9381   |
| 0.2765        | 2.0   | 2348  | 0.2268          | 0.8181    | 0.8340 | 0.8260 | 0.9506   |
| 0.2104        | 3.0   | 3522  | 0.2400          | 0.8318    | 0.8561 | 0.8438 | 0.9524   |
| 0.1713        | 4.0   | 4696  | 0.2285          | 0.8353    | 0.8645 | 0.8496 | 0.9552   |
| 0.1241        | 5.0   | 5870  | 0.2278          | 0.8458    | 0.8715 | 0.8584 | 0.9585   |
| 0.0997        | 6.0   | 7044  | 0.2717          | 0.8372    | 0.8653 | 0.8511 | 0.9559   |
| 0.0878        | 7.0   | 8218  | 0.2599          | 0.8439    | 0.8830 | 0.8630 | 0.9583   |
| 0.0585        | 8.0   | 9392  | 0.2868          | 0.8415    | 0.8764 | 0.8586 | 0.9564   |
| 0.0489        | 9.0   | 10566 | 0.2900          | 0.8594    | 0.8795 | 0.8693 | 0.9568   |
| 0.0416        | 10.0  | 11740 | 0.3061          | 0.8646    | 0.8852 | 0.8748 | 0.9598   |
| 0.0316        | 11.0  | 12914 | 0.3240          | 0.8567    | 0.8843 | 0.8703 | 0.9576   |
| 0.0264        | 12.0  | 14088 | 0.3329          | 0.8546    | 0.8795 | 0.8668 | 0.9588   |
| 0.0184        | 13.0  | 15262 | 0.3475          | 0.8628    | 0.8804 | 0.8715 | 0.9584   |
| 0.0156        | 14.0  | 16436 | 0.3472          | 0.8654    | 0.8826 | 0.8739 | 0.9592   |
| 0.0125        | 15.0  | 17610 | 0.3539          | 0.8670    | 0.8861 | 0.8764 | 0.9593   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0